亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

貝葉斯統計是一種基于貝葉斯定理的數據分析方法,統計模型中有關參數的可用知識會隨著觀測數據中的信息而更新。背景知識以先驗分布的形式表示,并以似然函數的形式與觀測數據結合來確定后驗分布。后驗也可以用來預測未來的事件。這本入門書描述了貝葉斯分析中涉及的各個階段,從指定先驗模型和數據模型到推導推理、模型檢查和細化。我們討論了前驗和后驗預測檢驗、從后驗分布中選擇合適的抽樣技術、變分推理和變量選擇的重要性。本書提供了貝葉斯分析在不同研究領域的成功應用實例,包括社會科學、生態學、遺傳學、醫學等。我們提出了重現性和報告標準的策略,概述了一個更新的WAMBS(什么時候需要擔心以及如何避免貝葉斯統計的誤用)清單。最后,我們概述了貝葉斯分析對人工智能的影響,這是未來十年的主要目標。

付費5元查看完整內容

相關內容

近年來,自然語言處理的研究方法取得了一些突破。這些突破來源于兩個新的建模框架以及在計算和詞匯資源的可用性的改進。在這個研討會小冊子中,我們將回顧這些框架,以一種可以被視為現代自然語言處理開端的方法論開始:詞嵌入。我們將進一步討論將嵌入式集成到端到端可訓練方法中,即卷積神經網絡和遞歸神經網絡。這本小冊子的第二章將討論基于注意力的模型的影響,因為它們是最近大多數最先進的架構的基礎。因此,我們也將在本章中花很大一部分時間討論遷移學習方法在現代自然語言處理中的應用。最后一章將會是一個關于自然語言生成的說明性用例,用于評估最先進的模型的訓練前資源和基準任務/數據集。

//compstat-lmu.github.io/seminar_nlp_ss20/

在過去的幾十年里,人工智能技術的重要性和應用不斷得到關注。在當今時代,它已經與構成人類塑造環境的大部分環境密不可分。因此,商業、研究和開發、信息服務、工程、社會服務和醫學等無數部門已經不可逆轉地受到人工智能能力的影響。人工智能有三個主要領域組成了這項技術:語音識別、計算機視覺和自然語言處理(見Yeung (2020))。在這本書中,我們將仔細研究自然語言處理(NLP)的現代方法。

這本小冊子詳細介紹了用于自然語言處理的現代方法,如深度學習和遷移學習。此外,本研究亦會研究可用于訓練自然語言處理任務的資源,并會展示一個將自然語言處理應用于自然語言生成的用例。

為了分析和理解人類語言,自然語言處理程序需要從單詞和句子中提取信息。由于神經網絡和其他機器學習算法需要數字輸入來進行訓練,因此應用了使用密集向量表示單詞的詞嵌入。這些通常是通過有多個隱藏層的神經網絡學習的,深度神經網絡。為了解決容易的任務,可以應用簡單的結構神經網絡。為了克服這些簡單結構的局限性,采用了遞歸和卷積神經網絡。因此,遞歸神經網絡用于學習不需要預先定義最佳固定維數的序列的模型,卷積神經網絡用于句子分類。第二章簡要介紹了NLP中的深度學習。第三章將介紹現代自然語言處理的基礎和應用。在第四章和第五章中,將解釋和討論遞歸神經網絡和卷積神經網絡及其在自然語言處理中的應用。

遷移學習是每個任務或領域的學習模型的替代選擇。在這里,可以使用相關任務或領域的現有標記數據來訓練模型,并將其應用到感興趣的任務或領域。這種方法的優點是不需要在目標域中進行長時間的訓練,并且可以節省訓練模型的時間,同時仍然可以(在很大程度上)獲得更好的性能。遷移學習中使用的一個概念是注意力,它使解碼器能夠注意到整個輸入序列,或自注意,它允許一個Transformer 模型處理所有輸入單詞,并建模一個句子中所有單詞之間的關系,這使得快速建模一個句子中的長期依賴性成為可能。遷移學習的概念將在小冊子的第6章簡要介紹。第七章將通過ELMo、ULMFiT和GPT模型來描述遷移學習和LSTMs。第八章將詳細闡述注意力和自注意力的概念。第九章將遷移學習與自注意力相結合,介紹了BERT模型、GTP2模型和XLNet模型。

為NLP建模,需要資源。為了找到任務的最佳模型,可以使用基準測試。為了在基準實驗中比較不同的模型,需要諸如精確匹配、Fscore、困惑度或雙語評估替補學習或準確性等指標。小冊子的第十章簡要介紹了自然語言處理的資源及其使用方法。第11章將解釋不同的指標,深入了解基準數據集SQuAD、CoQa、GLUE和SuperGLUE、AQuA-Rat、SNLI和LAMBADA,以及可以找到資源的預訓練模型和數據庫,如“帶代碼的論文”和“大壞的NLP數據庫”。

在小冊子的最后一章中,介紹了生成性NLP處理自然語言生成,從而在人類語言中生成可理解的文本。因此,不同的算法將被描述,聊天機器人和圖像字幕將被展示,以說明應用的可能性。

本文對自然語言處理中各種方法的介紹是接下來討論的基礎。小冊子的各個章節將介紹現代的NLP方法,并提供了一個更詳細的討論,以及各種示例的潛力和限制。

付費5元查看完整內容

這是一本專門為計算機科學學生設計的數學概率和統計課程的教科書。計算機科學的例子在整個領域被使用,例如:計算機網絡;數據和文本挖掘;計算機安全;遙感;計算機性能評價;軟件工程;數據管理;等。

為什么這本書不同于所有其他關于數學概率和統計的書?

首先,它強烈強調直覺,較少數學形式主義。根據我的經驗,通過樣本空間定義概率(標準方法)是做好應用工作的主要障礙。將期望值定義為加權平均值也是如此。相反,我使用一種直觀、非正式的方法,即長期頻率和長期平均值。我相信這在解釋條件概率和期望時特別有用,這些概念往往是學生們難以理解的。(他們通常認為自己理解了,直到他們實際上必須使用這些概念來解決一個問題。)另一方面,盡管相對缺乏形式主義,所有的模型等都被精確地用隨機變量和分布來描述。這部分內容實際上比這一層次上的大部分內容都更具有數學意義因為它廣泛地使用了線性代數。

第二,這本書強調了現實世界的應用。類似的課本,尤其是Mitzenmacher寫的那本優雅有趣的計算機科學學生的書,側重于概率,事實上是離散概率。他們預期的“應用”類別是算法的理論分析。相反,我關注的是這些材料在現實世界中的實際使用;它更傾向于連續而不是離散,更傾向于統計領域而不是概率。鑒于“大數據”和機器學習如今在計算機應用中發揮著重要作用,這一點應被證明尤其有價值。

第三,非常強調建模。相當多的重點放在這樣的問題上:在現實生活中,概率模型的真正含義是什么?如何選擇模型?我們如何評估模型的實用價值?這方面非常重要,因此有一個單獨的章節,叫做模型構建導論。貫穿全文,有相當多的討論的現實意義的概率概念。

付費5元查看完整內容

這是第一本介紹隨機過程貝葉斯推理程序的書。貝葉斯方法有明顯的優勢(包括對先驗信息的最佳利用)。最初,這本書以貝葉斯推理的簡要回顧開始,并使用了許多與隨機過程分析相關的例子,包括四種主要類型,即離散時間和離散狀態空間以及連續時間和連續狀態空間。然后介紹了理解隨機過程所必需的要素,接著是專門用于此類過程的貝葉斯分析的章節。重要的是,這一章專門討論隨機過程中的基本概念。本文詳細描述了離散時間馬爾可夫鏈、馬爾可夫跳躍過程、常規過程(如布朗運動和奧恩斯坦-烏倫貝克過程)、傳統時間序列以及點過程和空間過程的貝葉斯推理(估計、檢驗假設和預測)。書中著重強調了許多來自生物學和其他科學學科的例子。為了分析隨機過程,它將使用R和WinBUGS。

//www.taylorfrancis.com/books/mono/10.1201/9781315303598/bayesian-inference-stochastic-processes-lyle-broemeling

付費5元查看完整內容

這本書向讀者介紹點估計、置信區間和統計檢驗。基于線性模型的一般理論,本文對以下內容進行了深入的概述:固定效應、隨機效應和混合效應模型的方差分析;在擴展到非線性模型之前,回歸分析也首先出現在具有固定、隨機和混合效應的線性模型中;統計多決策問題,如統計選擇程序(Bechhofer和Gupta)和順序測試;從數理統計的角度設計實驗。大多數分析方法都補充了最小樣本量的公式。這些章節還包含了解答的提示練習。

付費5元查看完整內容

這本書的第五版繼續講述如何運用概率論來深入了解真實日常的統計問題。這本書是為工程、計算機科學、數學、統計和自然科學的學生編寫的統計學、概率論和統計的入門課程。因此,它假定有基本的微積分知識。

第一章介紹了統計學的簡要介紹,介紹了它的兩個分支:描述統計學和推理統計學,以及這門學科的簡短歷史和一些人,他們的早期工作為今天的工作提供了基礎。

第二章將討論描述性統計的主題。本章展示了描述數據集的圖表和表格,以及用于總結數據集某些關鍵屬性的數量。

為了能夠從數據中得出結論,有必要了解數據的來源。例如,人們常常假定這些數據是來自某個總體的“隨機樣本”。為了確切地理解這意味著什么,以及它的結果對于將樣本數據的性質與整個總體的性質聯系起來有什么意義,有必要對概率有一些了解,這就是第三章的主題。本章介紹了概率實驗的思想,解釋了事件概率的概念,并給出了概率的公理。

我們在第四章繼續研究概率,它處理隨機變量和期望的重要概念,在第五章,考慮一些在應用中經常發生的特殊類型的隨機變量。給出了二項式、泊松、超幾何、正規、均勻、伽瑪、卡方、t和F等隨機變量。

付費5元查看完整內容

作為布爾邏輯的替代

雖然邏輯是理性推理的數學基礎和計算的基本原理,但它僅限于信息既完整又確定的問題。然而,許多現實世界的問題,從金融投資到電子郵件過濾,本質上是不完整或不確定的。概率論和貝葉斯計算共同提供了一個處理不完整和不確定數據的框架。

不完全和不確定數據的決策工具和方法

貝葉斯編程強調概率是布爾邏輯的替代選擇,它涵蓋了為真實世界的應用程序構建概率程序的新方法。本書由設計并實現了一個高效概率推理引擎來解釋貝葉斯程序的團隊編寫,書中提供了許多Python示例,這些示例也可以在一個補充網站上找到,該網站還提供了一個解釋器,允許讀者試驗這種新的編程方法。

原則和建模

只需要一個基本的數學基礎,本書的前兩部分提出了一種新的方法來建立主觀概率模型。作者介紹了貝葉斯編程的原理,并討論了概率建模的良好實踐。大量簡單的例子突出了貝葉斯建模在不同領域的應用。

形式主義和算法

第三部分綜合了已有的貝葉斯推理算法的工作,因為需要一個高效的貝葉斯推理引擎來自動化貝葉斯程序中的概率演算。對于想要了解貝葉斯編程的形式主義、主要的概率模型、貝葉斯推理的通用算法和學習問題的讀者,本文提供了許多參考書目。

常見問題

第四部分連同詞匯表包含了常見問題的答案。作者比較了貝葉斯規劃和可能性理論,討論了貝葉斯推理的計算復雜性,討論了不完全性的不可約性,討論了概率的主觀主義和客觀主義認識論。

貝葉斯計算機的第一步

創建一個完整的貝葉斯計算框架需要新的建模方法、新的推理算法、新的編程語言和新的硬件。本書著重于方法論和算法,描述了實現這一目標的第一步。它鼓勵讀者探索新興領域,例如仿生計算,并開發新的編程語言和硬件架構。

付費5元查看完整內容

高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。

這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。

付費5元查看完整內容

貝葉斯數據分析第三版,這本經典的書被廣泛認為是關于貝葉斯方法的主要著作,用實用的方法來分析數據和解決研究問題。貝葉斯數據分析,第三版繼續采取一種實用的方法來分析使用最新的貝葉斯方法。作者——統計界權威——在介紹高級方法之前,先從數據分析的角度介紹基本概念。在整個文本中,大量的工作示例來自實際應用和研究,強調在實踐中使用貝葉斯推理。

第三版新增

  • 非參數建模的四個新章節
  • 覆蓋信息不足的先驗和邊界回避的先驗
  • 關于交叉驗證和預測信息標準的最新討論
  • 改進的收斂性監測和有效的樣本容量計算迭代模擬
  • 介紹了哈密頓的蒙特卡羅、變分貝葉斯和期望傳播
  • 新的和修改的軟件代碼

這本書有三種不同的用法。對于本科生,它介紹了從第一原則開始的貝葉斯推理。針對研究生,本文提出了有效的方法,目前貝葉斯建模和計算的統計和相關領域。對于研究人員來說,它提供了應用統計學中的各種貝葉斯方法。其他的資料,包括例子中使用的數據集,所選練習的解決方案,以及軟件說明,都可以在本書的網頁上找到。

貝葉斯數據分析課程

//avehtari.github.io/BDA_course_Aalto/index.html

付費5元查看完整內容

異常檢測是一個在各個研究領域和應用領域內得到廣泛研究的重要問題。本研究的目的有兩個方面:首先,我們對基于深度學習的異常檢測的研究方法進行了系統全面的綜述。此外,我們還回顧了這些方法對不同應用領域異常的應用,并評估了它們的有效性。我們根據所采用的基本假設和方法,將最先進的研究技術分為不同的類別。在每一類中,我們概述了基本的異常檢測技術,以及它的變體,并給出了關鍵的假設,以區分正常行為和異常行為。對于我們介紹的每一類技術,我們還介紹了它們的優點和局限性,并討論了這些技術在實際應用領域中的計算復雜性。最后,我們概述了研究中的未決問題和采用這些技術時所面臨的挑戰。

付費5元查看完整內容
北京阿比特科技有限公司