亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

簡介:

機器學習和深度學習以深遠的方式影響著世界,從我們與技術產品的交互方式以及彼此之間的交互方式來看,這些技術正在影響我們的關系,工作方式以及我們如何融入生活。如今,在可預見的將來,智能機器會成為社會文化和社會經濟關系賴以生存的核心。

機器學習可以描述為用于基于特定數據集中變量(也稱為特征或屬性)之間的一組交互作用來預測或分類未來事件的工具和技術。另一方面,深度學習擴展了一種稱為神經網絡的機器學習算法,用于學習計算機難以執行的復雜任務。這些任務可能包括識別面部表情和理解具有各種上下文含義的語言。

數據對機器學習和深度學習的興起以及未來的性能提高至關重要。自二十世紀初以來,生成和存儲的數據量呈指數級增長。龐大數據的增長部分歸因于Internet的興起和處理器的小型化,這些處理器已抑制了“物聯網(IoT)”技術。這些大量的數據使訓練計算機學習不可能使用顯式指令集的復雜任務成為可能。

本書的目的是為讀者提供構建學習模型的基本原理和工具。機器學習和深度學習正在迅速發展,對于初學者而言,機器學習和深度學習常常令人感到困惑和困惑。許多人不知道從哪里開始。本書使初學者可以了解有關感興趣的問題,并利用機器學習和深度學習技術的理論基礎和實際步驟進行深入研究。

本書分為八個部分。其細分如下:

?第1部分:Google Cloud Platform入門

?第2部分:數據科學的編程基礎

?第3部分:機器學習簡介

?第4部分:實踐中的機器學習

?第5部分:深度學習簡介

?第6部分:實踐中的深度學習

?第7部分:Google Cloud Platform上的高級分析/機器學習

?第8部分:在GCP上實現生產化機器學習解決方案

本書代碼的地址:

作者介紹:

Ekaba Bisong是T4G的數據主管。 他之前曾在Pythian擔任數據科學家/數據工程師。 此外,他還與卡爾頓大學的智能系統實驗室有項目合作,其研究重點是學習系統(包括自動學習和強化學習),機器學習和深度學習。 Ekaba是Google認證的專業數據工程師和機器學習的Google開發人員專家。

技術顧問:

Vikram Tiwari是Omni Labs,Inc.的聯合創始人,負責處理所有技術。他還是機器學習和Google Cloud Platform的Google Developer Expert。他在各種會議上發表演講,并舉辦有關云和機器學習主題的動手研討會。他喜歡與初創企業和開發人員作為導師合作,以幫助他們應對自己的研究中的各種挑戰。除了工作外,他還在舊金山的Google Developer Group Cloud運營著一個開發人員社區。

Gonzalo Gasca Meza是在GCP機器學習平臺上工作的開發人員程序工程師。他研究方向是TensorFlow和機器學習基礎架構。 Gonzalo擁有牛津大學的計算機科學學士學位和軟件工程碩士學位。加入Google之前,Gonzalo致力于語音和視頻通信的企業級產品。

部分目錄:

付費5元查看完整內容

相關內容

Ekaba Bisong是T4G的數據主管。 他之前曾在Pythian擔任數據科學家/數據工程師。 此外,他還與卡爾頓大學的智能系統實驗室有項目合作,其研究重點是學習系統(包括自動學習和強化學習),機器學習和深度學習。 Ekaba是Google認證的專業數據工程師和機器學習的Google開發人員專家。個人主頁:

【導讀】自2015年11月TensorFlow第一個開源版本發布以來,它便迅速躋身于最激動人心的機器學習庫的行列,并在科研、產品和教育等領域正在得到日益廣泛的應用。這個庫也在不斷地得到改進、充實和優化。今天給大家推薦一本偏實戰的教程《Hands-On Machine Learning with Scikit-Learn and TensorFlow, 2nd Edition》第二版,使用最新TensorFlow 2的官方高級API,幫助你直觀地理解構建智能系統的概念和工具。從業者將學習一系列可以在工作中快速使用的技術。第1部分使用Scikit-Learn來介紹基本的機器學習任務,例如簡單的線性回歸。第2部分已經過重大更新,采用Keras和TensorFlow 2.0引導讀者通過使用深度神經網絡的更先進的機器學習方法。通過每章的練習來幫助你應用所學知識,你只需要編程經驗即可開始使用。

Hands-On Machine Learning with Scikit-Learn and TensorFlow, 2nd Edition

▌本書簡介

通過近年來一系列的突破,深度學習推動了整個機器學習領域的發展。現在,即使對這種技術幾乎一無所知的程序員也可以使用簡單、高效的工具來實現能夠從數據中學習的程序。這本暢銷書的最新版本使用了具體的例子、最少理論和可復現的Python框架,幫助您直觀地理解用于構建人工智能系統的概念和工具。

您將學習一系列可以快速使用的技術。每一章都有練習來幫助你應用所學,你所需要的只是編程經驗。所有代碼都已更新為TensorFlow 2和最新版本的Scikit-Learn和其他庫。

  • 探索Keras API, TensorFlow 2的官方高級API
  • 使用TensorFlow的數據API、分發策略API和TensorFlow擴展平臺(TFX)對TensorFlow模型進行產品化
  • 部署在Google Cloud ML引擎或移動設備上使用TFLite
  • 學習新的和擴展的主題,包括聚類、異常檢測、對象檢測、語義分割、注意力機制、語言模型、GANs等

▌相關代碼

//github.com/ageron/handson-ml2

參考鏈接:

付費5元查看完整內容

通過機器學習的實際操作指南深入挖掘數據

機器學習: 為開發人員和技術專業人員提供實踐指導和全編碼的工作示例,用于開發人員和技術專業人員使用的最常見的機器學習技術。這本書包含了每一個ML變體的詳細分析,解釋了它是如何工作的,以及如何在特定的行業中使用它,允許讀者在閱讀過程中將所介紹的技術融入到他們自己的工作中。機器學習的一個核心內容是對數據準備的強烈關注,對各種類型的學習算法的全面探索說明了適當的工具如何能夠幫助任何開發人員從現有數據中提取信息和見解。這本書包括一個完整的補充教師的材料,以方便在課堂上使用,使這一資源有用的學生和作為一個專業的參考。

機器學習的核心是一種基于數學和算法的技術,它是歷史數據挖掘和現代大數據科學的基礎。對大數據的科學分析需要機器學習的工作知識,它根據從訓練數據中獲得的已知屬性形成預測。機器學習是一個容易理解的,全面的指導,為非數學家,提供明確的指導,讓讀者:

  • 學習機器學習的語言,包括Hadoop、Mahout和Weka
  • 了解決策樹、貝葉斯網絡和人工神經網絡
  • 實現關聯規則、實時和批量學習
  • 為安全、有效和高效的機器學習制定戰略計劃

通過學習構建一個可以從數據中學習的系統,讀者可以在各個行業中增加他們的效用。機器學習是深度數據分析和可視化的核心,隨著企業發現隱藏在現有數據中的金礦,這一領域的需求越來越大。對于涉及數據科學的技術專業人員,機器學習:為開發人員和技術專業人員提供深入挖掘所需的技能和技術。

付費5元查看完整內容

書名: Hands-On Machine Learning with Scikit-Learn and TensorFlow

主要內容:

這本書分為兩個部分。

第一部分,機器學習的基礎知識,涵蓋以下主題:

  • 什么是機器學習?它被試圖用來解決什么問題?機器學習系統的主要類別和基本概念是什么?
  • 典型的機器學習項目中的主要步驟。
  • 通過擬合數據來學習模型。
  • 優化成本函數(cost function)。
  • 零、前言
  • 處理,清洗和準備數據。
  • 選擇和設計特征。
  • 使用交叉驗證選擇一個模型并調整超參數。
  • 機器學習的主要挑戰,特別是欠擬合和過擬合(偏差和方差權衡)。
  • 對訓練數據進行降維以對抗 the curse of dimensionality(維度詛咒)
  • 最常見的學習算法:線性和多項式回歸, Logistic 回歸,k-最近鄰,支持向量機,決策 樹,隨機森林和集成方法。

第二部分,神經網絡和深度學習,包括以下主題:

  • 什么是神經網絡?它們有啥優勢?
  • 使用 TensorFlow 構建和訓練神經網絡。
  • 最重要的神經網絡架構:前饋神經網絡,卷積網絡,遞歸網絡,長期短期記憶網絡 (LSTM)和自動編碼器。
  • 訓練深度神經網絡的技巧。
  • 對于大數據集縮放神經網絡。
  • 強化學習。

第一部分主要基于 scikit-learn ,而第二部分則使用 TensorFlow 。 注意:不要太急于深入學習到核心知識:深度學習無疑是機器學習中最令人興奮的領域之 一,但是你應該首先掌握基礎知識。而且,大多數問題可以用較簡單的技術很好地解決(而 不需要深度學習),比如隨機森林和集成方法(我們會在第一部分進行討論)。如果你擁有 足夠的數據,計算能力和耐心,深度學習是最適合復雜的問題的,如圖像識別,語音識別或 自然語言處理。

付費5元查看完整內容

簡介:

自從2012年以來,最近的技術史上最重大的事件也許就是神經網絡爆炸了。標記數據集的增長,計算能力的提高以及算法的創新齊頭并進。從那時起,深度神經網絡使以前無法實現的任務得以實現,并提高了任務的準確性,使它們超出了學術研究范圍,并進入了語音識別,圖像標記,生成模型和推薦系統等領域的實際應用。在這種背景下,Google Brain的團隊開始開發TensorFlow.js。該項目開始時,許多人認為“ JavaScript深度學習”是一種新穎事物,對于某些用例來說并不能當真。盡管Python已經有了一些完善的,功能強大的深度學習框架,但JavaScript機器學習的前景仍然是零散的和不完整的。在當時可用的少數JavaScript庫中,大多數僅支持以其他語言(通常是Python)進行預訓練的部署模型。

這本書不僅是作為如何在TensorFlow.js中編寫代碼的秘訣,而且還是以JavaScript和Web開發人員的母語為基礎的機器學習基礎入門課程。深度學習領域是一個快速發展的領域。我們相信,無需正式的數學處理就可以對機器學習有深入的了解,而這種了解將使您能夠在技術的未來發展中保持最新。有了這本書,您就成為成為成長中的JavaScript機器學習從業人員社區的第一步,他們已經在JavaScript和深度學習之間的交匯處帶來了許多有影響力的應用程序。我們衷心希望本書能激發您在這一領域的創造力和獨創性。

目錄:

內容簡介:

本書分為四個部分。第一部分僅由第一章組成,向您介紹了人工智能,機器學習和深度學習的概況,以及在JavaScript中實踐深度學習為何有意義。第二部分是對深度學習中最基礎和最常遇到的概念的簡要介紹。本書的第三部分系統地為希望建立對更前沿技術的理解的用戶,提供了深度學習的高級主題,重點是ML系統的特定挑戰領域以及與之配合使用的TensorFlow.js工具。

付費5元查看完整內容

簡介: Google一直是引入突破性技術和產品的先驅。在效率和規模方面,TensorFlow也不例外,因此,編寫本書只是向讀者介紹TensorFlow核心團隊所做的這些重要更改。本書著重于機器學習方面的TensorFlow的不同應用,并更深入地探討了方法的最新變化。對于那些想要用TensorFlow進行機器學習的人來說,這本書是一個很好的參考點。本書分為三個部分。第一篇:使用TensorFlow 2.0進行數據處理。第二部分:使用TensorFlow 2.0構建機器學習和深度學習模型。它還包括使用TensorFlow 2.0的神經語言編程(NLP)。第三部分介紹了如何在環境中保存和部署TensorFlow 2.0模型。這本書對數據分析人員和數據工程師也很有用,因為它涵蓋了使用TensorFlow 2.0處理大數據的步驟。想要過渡到數據科學和機器學習領域的讀者也會發現,本書提供了實用的入門指南,以后可能會出現更復雜的方面。書中提供的案例研究和示例使您很容易理解和理解相關的基本概念。本書的優勢在于其簡單性以及將機器學習應用于有意義的數據集。

目錄:

  • Chapter 1:tenforflow 2.0介紹
    • tensor
    • TensorFlow 1.0與 Tensorflow 2.0的對比
    • Tensorflow 2.0安裝于基礎操作
  • Chapter 2:tenforflow 與監督學習
    • 監督機器學習是什么
    • TF2.0實現線性回歸
    • 使用TF和Keras的線性回歸應用
    • TF2.0實現邏輯回歸
    • TF2.0實現boosted樹
  • Chapter 3:tenforflow與深度神經網絡
    • 什么是神經網絡
    • 前向傳播與反向傳播
    • TF2.0構建神經網絡
    • 深度神經網絡
    • TF2.0構建深度神經網絡
    • 使用Keras模型估量
    • 總結
  • Chapter 4:圖片與Tensorflow
    • 圖片處理
    • 卷積神經網絡
    • TF2.0與卷積神經網絡
    • 遷移學習
    • TF2.0與變分自編碼器
    • 總結
  • Chapter 5:TF2.0與自然語言處理(NLP)
    • NLP概述
    • 文本處理
    • 文本分類與TF
    • TF projector
  • Chapter 6:TF模型
    • TF部署
    • 模型部署的Python
    • 基于TF的Keras模型
付費5元查看完整內容

書籍介紹: 機器學習是一門人工智能的科學,該領域的主要研究對象是人工智能,特別是如何在經驗學習中改善具體算法的性能。機器學習是人工智能及模式識別領域的共同研究熱點,其理論和方法已被廣泛應用于解決工程應用和科學領域的復雜問題。本書從機器學習的基礎入手,分別講述了分類、排序、降維、回歸等機器學習任務,是入門機器學習的一本好書。

作者: Mehryar Mohri,是紐約大學庫蘭特數學科學研究所的計算機科學教授,也是Google Research的研究顧問。

大綱介紹:

  • 介紹
  • PAC學習框架
  • rademacher復雜度和VC維度
  • 支持向量機
  • 核方法
  • Boosting
  • 線上學習
  • 多類別分類
  • 排序
  • 回歸
  • 算法穩定性
  • 降維
  • 強化學習

作者主頁//cs.nyu.edu/~mohri/

付費5元查看完整內容
北京阿比特科技有限公司