摘要:隨著自然語言處理(NLP)領域中預訓練技術的快速發展,將外部知識引入到預訓練語言模型的知識驅動方法在NLP任務中表現優異,知識表示學習和預訓練技術為知識融合的預訓練方法提供了理論依據。概述目前經典預訓練方法的相關研究成果,分析在新興預訓練技術支持下具有代表性的知識感知的預訓練語言模型,分別介紹引入不同外部知識的預訓練語言模型,并結合相關實驗數據評估知識感知的預訓練語言模型在NLP各個下游任務中的性能表現。在此基礎上,分析當前預訓練語言模型發展過程中所面臨的問題和挑戰,并對領域發展前景進行展望。
導讀:本文將參考上述綜述論文,從預訓練語言模型應用于文本生成任務的三個挑戰出發:
如何對輸入數據進行編碼并保持語義,使其與預訓練語言模型進行融合; 如何設計通用且合適的預訓練語言模型架構,使其作為生成函數; 如何優化生成函數,并保證生成文本滿足特殊屬性。 并詳細列舉目前每個挑戰下的研究進展。
文本生成是目前自然語言處理領域一項非常重要但具有挑戰性的任務,它的目的是希望生成可讀的自然語言文本,比較有代表性的應用,例如對話系統、文本摘要和機器翻譯等。
目前,深度神經模型在文本生成研究中已取得重大進展,其優勢在于深度神經網絡可以端到端地學習輸入數據到輸出文本的語義映射,而不需要人工參與進行特征工程。但是,深度神經模型往往具有大量的參數,而大部分文本生成任務數據集都非常小,因此深度神經網絡非常容易在這些數據集上過擬合,導致其無法在實際應用中進行泛化。
隨著預訓練語言模型(Pretrained Language Models, PLMs)范式的蓬勃發展,越來越多的研究將其運用到各種自然語言處理任務中以取得SOTA效果,例如BERT解決語言理解和GPT解決語言生成。通過在大規模語料集上進行預訓練,預訓練語言模型可以準確地理解自然語言并以自然語言的形式流暢表達,這兩項都是完成文本生成任務的重要能力。
摘要 預訓練技術當前在自然語言處理領域占有舉足輕重的位置。尤其近兩年提出的ELMo、GTP、BERT、XLNet、T5、GTP-3等預訓練模型的成功,進一步將預訓練技術推向了研究高潮。該文從語言模型、特征抽取器、上下文表征、詞表征四個方面對現存的主要預訓練技術進行了分析和分類,并分析了當前自然語言處理中的預訓練技術面臨的主要問題和發展趨勢。
在目前已發表的自然語言處理預訓練技術綜述中,大多數文章僅介紹神經網絡預訓練技術或者極簡單介紹傳統預訓練技術,存在人為割裂自然語言預訓練發展歷程。為此,以自然語言預訓練發展歷程為主線,從以下四方面展開工作:首先,依據預訓練技術更新路線,介紹了傳統自然語言預訓練技術與神經網絡預訓練技術,并對相關技術特點進行分析、比較,從中歸納出自然語言處理技術的發展脈絡與趨勢;其次,主要從兩方面介紹了基于BERT改進的自然語言處理模型,并對這些模型從預訓練機制、優缺點、性能等方面進行總結;再者,對自然語言處理的主要應用領域發展進行了介紹,并闡述了自然語言處理目前面臨的挑戰與相應解決辦法;最后,總結工作,預測了自然語言處理的未來發展方向。旨在幫助科研工作者更全面地了解自然語言預訓練技術發展歷程,繼而為新模型、新預訓練方法的提出提供一定思路。
自然語言生成(NLG)技術利用人工智能和語言學的方法來自動地生成可理解的自然語言文本。NLG降低了人類和計算機之間溝通的難度,被廣泛應用于機器新聞寫作、聊天機器人等領域,已經成為人工智能的研究熱點之一。首先,列舉了當前主流的NLG的方法和模型,并詳細對比了這些方法和模型的優缺點;然后,分別針對文本到文本、數據到文本和圖像到文本等三種NLG技術,總結并分析了應用領域、存在的問題和當前的研究進展;進而,闡述了上述生成技術的常用評價方法及其適用范圍;最后,給出了當前NLG技術的發展趨勢和研究難點。
近年來,深度學習技術得到了快速發展。在自然語言處理(NLP)任務中,隨著文本表征技術從詞級上升到了文檔級,利用大規模語料庫進行無監督預訓練的方式已被證明能夠有效提高模型在下游任務中的性能。首先,根據文本特征提取技術的發展,從詞級和文檔級對典型的模型進行了分析;其次,從預訓練目標任務和下游應用兩個階段,分析了當前預訓練模型的研究現狀,并對代表性的模型特點進行了梳理和歸納;最后,總結了當前預訓練模型發展所面臨的主要挑戰并提出了對未來的展望。
因果關系抽取是自然語言處理(NLP)中的一種關系抽取任務,它通過構造事件圖來挖掘文本中具有因果關系的事件對,已經在金融、安全、生物等領域的應用中發揮重要作用。首先,介紹了事件抽取和因果關系等概念,并介紹了因果關系抽取主流方法的演變和常用數據集;然后,列舉了當前主流的因果關系抽取模型,并且在分別對基于流水線的模型和聯合抽取模型進行詳細分析的基礎上,對比了各種方法和模型的優缺點;此外,對各模型的實驗性能及相關實驗數據進行了歸納分析;最后,給出了當前的因果關系抽取的研究難點和未來的重點研究方向。
對話系統作為人機交互的重要方式,有著廣泛的應用前景。現有的對話系統專注于解決語義一致性和內容豐富性等問題,對于提高人機交互以及產生人機共鳴方向的研究關注度不高。如何讓生成的語句在具有語義相關性的基礎上更自然地與用戶交流是當前對話系統面臨的主要問題之一。首先對對話系統進行了整體情況的概括。接著介紹了情感對話系統中的對話情緒感知和情感對話生成兩大任務,并分別調研歸納了相關方法。對話情緒感知任務大致分為基于上下文和基于用戶信息兩類方法。情感對話生成的方法包括規則匹配算法、指定情感回復的生成模型和不指定情感回復的生成模型,并從情緒數據類別和模型方法等方面進行了對比分析。然后總結整理了兩大任務下數據集的特點和鏈接便于后續的研究,并歸納了當前情感對話系統中不同的評估方法。最后對情感對話系統的工作進行了總結和展望。
零樣本學習旨在通過運用已學到的已知類知識去認知未知類.近年來,“數據+知識驅動”已經成為當下的新潮流,而在計算機視覺領域內的零樣本任務中,“知識”本身卻缺乏統一明確的定義.本文針對這種情況,嘗試從知識的角度出發,梳理了本領域內“知識”這一概念所覆蓋的范疇,共劃分為初級知識、抽象知識以及外部知識.基于前面對知識的定義和劃分梳理了當前的零樣本學習(主要是圖像分類任務的模型)工作,分為基于初級知識的零樣本模型、基于抽象知識的零樣本模型以及引入外部知識的零樣本模型.本文還對領域內存在的域偏移和樞紐點問題進行了闡述,并基于問題對現有工作進行了總結歸納.最后總結了目前常用的圖像分類任務的數據集和知識庫,圖像分類實驗評估標準以及代表性的模型實驗結果;并對未來工作進行了展望.
//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6146&flag=1
//cea.ceaj.org/CN/abstract/abstract39198.shtml
近年來,深度學習技術被廣泛應用于各個領域,基于深度學習的預處理模型將自然語言處理帶入一個新時代。預訓練模型的目標是如何使預訓練好的模型處于良好的初始狀態,在下游任務中達到更好的性能表現。對預訓練技術及其發展歷史進行介紹,并按照模型特點劃分為基于概率統計的傳統模型和基于深度學習的新式模型進行綜述;簡要分析傳統預訓練模型的特點及局限性,重點介紹基于深度學習的預訓練模型,并針對它們在下游任務的表現進行對比評估;梳理出具有啟發意義的新式預訓練模型,簡述這些模型的改進機制以及在下游任務中取得的性能提升;總結目前預訓練的模型所面臨的問題,并對后續發展趨勢進行展望。