元強化學習(Meta - reinforcement learning, Meta - rl)從以前的任務中提取知識,實現對新任務的快速適應。盡管最近取得了一些進展,但對元強化學習的有效探索仍然是稀疏獎勵任務中的一個關鍵挑戰,因為它需要在元訓練和適應中快速找到與任務相關的信息性經驗。針對這一挑戰,我們明確建模了一個元強化學習的探索策略學習問題,該問題與開發策略學習分離,并引入了一個新的賦權驅動的探索目標,該目標旨在最大限度地獲取信息以進行任務識別。我們得到了相應的內在獎勵,并開發了一個新的非策略元強化學習框架,通過共享任務推理知識,有效地學習獨立的上下文感知的探索和開發策略。實驗結果表明,在不同的稀疏獎勵MuJoCo運動任務和更復雜的稀疏獎勵元世界任務中,我們的meta-RL方法顯著優于最先進的基線。
模仿學習使智能體能夠重用和適應他人來之不易的專業知識,為學習行為中的幾個關鍵挑戰提供了解決方案。雖然在現實世界中很容易觀察行為,但可能無法訪問底層操作。我們提出了一種新的方法,僅從觀測中進行模仿,在具有挑戰性的連續控制任務中達到與專家相當的性能,同時在與任務無關的觀測存在時也表現出魯棒性。我們的方法叫做FORM(“未來觀察獎勵模型”),它來自逆RL目標,并使用專家行為模型進行模擬,該模型是通過對專家觀察的生成模型學習而來的,不需要地面的真實行動。我們的研究表明,在DeepMind Control Suite基準上,FORM的性能與強基線IRL方法(GAIL)相當,而在存在與任務無關的特征時,FORM的性能優于GAIL。
多任務學習(Multi-task learning, MTL)旨在通過對多個相關任務的聯合學習來提高任務的泛化能力。作為對比,除了聯合訓練方案,現代元學習允許在測試階段進行一些不可見的、標簽有限的任務,希望能夠快速適應它們。盡管MTL和元學習在問題表述上存在細微的差異,但兩種學習范式都認為,現有訓練任務之間的共享結構可以導致更好的泛化和適應性。本文通過理論分析和實證調查,進一步了解了這兩種學習模式之間的密切聯系。理論上,我們首先證明了MTL與一類基于梯度的元學習(GBML)算法具有相同的優化公式。然后我們證明了對于具有足夠深度的過參數化神經網絡,MTL和GBML學習到的預測函數是接近的。特別是,這一結果表明,這兩個模型給出的預測是相似的,在相同的看不見的任務。通過實證,我們證實了我們的理論發現,通過適當的實現,MTL可以在一組少樣本分類基準上與先進的GBML算法相媲美。由于現有的GBML算法經常涉及代價高昂的二階兩級優化,我們的一階MTL方法在大型數據集(如微型imagenet)上快了一個數量級。我們相信,這項工作可以幫助彌合這兩種學習模式之間的差距,并提供一個計算效率高的替代GBML,也支持快速任務適應。
在為許多現實世界的問題指定獎勵方面的困難導致人們越來越關注從人的反饋中學習獎勵,比如演示。然而,通常有許多不同的獎勵功能來解釋人類的反饋,這讓智能體不確定什么是真正的獎勵功能。雖然大多數策略優化方法通過優化預期性能來處理這種不確定性,但許多應用需要規避風險行為。我們推導了一種新的策略梯度式魯棒優化方法PG-BROIL,它優化了平衡預期性能和風險的軟魯棒目標。據我們所知,PG-BROIL是第一個對獎勵假設分布魯棒的策略優化算法,該假設可以擴展到連續的MDPs。結果表明,PG-BROIL可以產生一系列從風險中性到風險厭惡的行為,并通過對沖不確定性從模糊的演示中學習,而不是尋求唯一識別演示者的獎勵功能時,表現優于最先進的模仿學習算法。
促進行為多樣性對于解決具有非傳遞性的動態博弈至關重要,因為這些博弈的策略存在周期性,而且沒有一致的贏家(例如,剪刀石頭布)。然而,在定義多樣性和構建具有多樣性意識的學習動態方面缺乏嚴格的處理。這項工作提供了游戲中行為多樣性的幾何解釋,并引入了一種基于決定點過程(DPP)的新的多樣性度量。通過將多樣性度量納入最佳響應動態,我們開發了多樣化的策略空間響應機制,用于解決正常形式的博弈和開放式博弈。我們證明了不同最佳響應的唯一性和我們算法在兩人博弈上的收斂性。重要的是,我們證明了最大化基于DPP的多樣性度量保證了擴大由代理策略混合跨越的凸多面體。為了驗證我們的多樣性感知求解器,我們在數十個顯示出強非傳遞性的博弈上進行了測試。結果表明,通過找到有效和多樣化的策略,可以實現比最先進的求解器更低的可利用性。
當演示專家的潛在獎勵功能在任何時候都不能被觀察到時,我們解決了在連續控制的背景下模仿學習算法的超參數(HPs)調優的問題。關于模仿學習的大量文獻大多認為這種獎勵功能適用于HP選擇,但這并不是一個現實的設置。事實上,如果有這種獎勵功能,就可以直接用于策略訓練,而不需要模仿。為了解決這個幾乎被忽略的問題,我們提出了一些外部獎勵的可能代理。我們對其進行了廣泛的實證研究(跨越9個環境的超過10000個代理商),并對選擇HP提出了實用的建議。我們的結果表明,雖然模仿學習算法對HP選擇很敏感,但通常可以通過獎勵功能的代理來選擇足夠好的HP。
模仿學習試圖通過利用專家行為來規避在為訓練代理設計適當的獎勵功能方面的困難。由于環境建模為馬爾可夫決策過程(MDP),大多數現有的模仿算法取決于專家演示的可用性,在同一MDP中,一個新的模仿策略是要學習的。本文研究了專家和代理MDP存在差異時如何進行任務模擬的問題。這些領域之間的差異可能包括不同的動態、觀點或形態; 我們提出了一個新的框架來學習通信跨這些領域。重要的是,與之前的工作相比,我們使用僅包含專家領域狀態的未配對和未對齊軌跡來學習這種對應關系。我們利用在狀態空間和領域未知的潛在空間上的周期一致性約束來做到這一點。另外,我們通過一個歸一化的位置估計函數強制狀態的時間位置的一致性,以使兩個區域的軌跡對齊。一旦找到了這種對應關系,我們就可以直接將一個域上的演示轉移到另一個域,并使用它進行模仿。在各種具有挑戰性的領域進行的實驗證明了我們方法的有效性。
元強化學習算法可以利用以前的經驗來學習如何學習,從而使機器人更快地獲得新技能。然而,目前關于元強化學習的研究大多集中在非常狹窄的任務分布上。例如,一個常用的元強化學習基準將模擬機器人的不同跑步速度作為不同的任務。當策略在如此狹窄的任務分布上進行元訓練時,它們不可能推廣到更快地獲得全新的任務。因此,如果這些方法的目標是能夠更快地獲得全新的行為,我們就必須在任務分布上評估它們,任務分布必須足夠廣泛,以使新行為普遍化。