亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

論文題目: Unsupervised Pre-training for Natural Language Generation

論文摘要: 最近,由于無監督預訓練在促進自然語言理解(NLU)方面取得了令人驚訝的成功以及有效利用大規模未標記語料庫的潛力,因此在計算語言學領域正變得越來越受歡迎。但是,無論NLU是否成功,當涉及自然語言生成(NLG)時,無監督預訓練的功能只能被部分挖掘。 NLG特質的主要障礙是:文本通常是基于特定的上下文生成的,可能會因目標應用程序而異。結果,像在NLU場景中一樣,設計用于預訓練的通用體系結構是很難的。此外,在目標任務上學習時保留從預訓練中學到的知識也是不容置疑的。這篇綜述總結了近期在無監督的預訓練下增強NLG系統的工作,特別著重于催化將預訓練的模型集成到下游任務中的方法。根據它們處理上述障礙的方式,它們分為基于體系結構的方法和基于策略的方法。還提供了討論,以提供這兩種工作方式之間的進一步相互了解,一些有益的經驗現象以及未來工作可能涉及的一些方向。

付費5元查看完整內容

相關內容

 現實生活中常常會有這樣的問題:缺乏足夠的先驗知識,因此難以人工標注類別或進行人工類別標注的成本太高。很自然地,我們希望計算機能代我們完成這些工作,或至少提供一些幫助。根據類別未知(沒有被標記)的訓練樣本解決模式識別中的各種問題,稱之為。

題目: A Survey on Transfer Learning in Natural Language Processing

摘要:

深度學習模型通常需要大量數據。 但是,這些大型數據集并非總是可以實現的。這在許多具有挑戰性的NLP任務中很常見。例如,考慮使用神經機器翻譯,在這種情況下,特別對于低資源語言而言,可能無法整理如此大的數據集。深度學習模型的另一個局限性是對巨大計算資源的需求。這些障礙促使研究人員質疑使用大型訓練模型進行知識遷移的可能性。隨著許多大型模型的出現,對遷移學習的需求正在增加。在此調查中,我們介紹了NLP領域中最新的遷移學習進展。我們還提供了分類法,用于分類文獻中的不同遷移學習方法。

付費5元查看完整內容

摘要

圖神經網絡(GNNs)已被證明在建模圖結構的數據方面是強大的。然而,訓練GNN通常需要大量指定任務的標記數據,獲取這些數據的成本往往非常高。減少標記工作的一種有效方法是在未標記數據上預訓練一個具有表達能力的GNN模型,并進行自我監督,然后將學習到的模型遷移到只有少量標記的下游任務中。在本文中,我們提出了GPT-GNN框架,通過生成式預訓練來初始化GNN。GPT-GNN引入了一個自監督屬性圖生成任務來預訓練一個GNN,使其能夠捕獲圖的結構和語義屬性信息。我們將圖生成的概率分解為兩部分:1)屬性生成和2)邊生成。通過對兩個組件進行建模,GPT-GNN捕捉到生成過程中節點屬性與圖結構之間的內在依賴關系。在10億規模的開放學術圖和亞馬遜推薦數據上進行的綜合實驗表明,GPT-GNN在不經過預訓練的情況下,在各種下游任務中的表現顯著優于最先進的GNN模型,最高可達9.1%。

**關鍵詞:**生成式預訓練,圖神經網絡,圖表示學習,神經嵌入,GNN預訓練

付費5元查看完整內容

自回歸文本生成模型通常側重于局部的流暢性,在長文本生成過程中可能導致語義不一致。此外,自動生成具有相似語義的單詞是具有挑戰性的,而且手工編寫的語言規則很難應用。我們考慮了一個文本規劃方案,并提出了一個基于模型的模仿學習方法來緩解上述問題。具體來說,我們提出了一種新的引導網絡來關注更長的生成過程,它可以幫助下一個單詞的預測,并為生成器的優化提供中間獎勵。大量的實驗表明,該方法具有較好的性能。

付費5元查看完整內容

題目: Don't Stop Pretraining: Adapt Language Models to Domains and Tasks

摘要: 語言模型預先從各種來源的文本訓練,形成了今天的自然語言處理的基礎。鑒于這些廣泛覆蓋模型的成功,我們研究了將一個預訓練的模型裁剪到目標任務的領域是否仍然有幫助。我們提出了一項涉及四個領域(生物醫學和計算機科學出版物、新聞和評論)和八個分類任務的研究,表明在高資源和低資源環境下,領域內的第二階段訓練(領域自適應訓練)可提高性能。此外,適應任務的未標記數據(任務自適應預訓練)甚至可以提高域自適應預訓練后的性能。最后,我們證明使用簡單的數據選擇策略來適應擴充的任務語料庫是一種有效的替代方法,特別是在域自適應預訓練資源可能不可用的情況下。總的來說,我們一致發現,多相適應性訓練在任務效果方面提供了很大的提高。

付費5元查看完整內容

最近的研究表明,預訓練文本表示能夠顯著提高許多自然語言處理任務的性能。訓練的中心目標是學習對后續任務有用的文本表示形式。然而,現有的方法是通過最小化代理目標(如語言建模的負日志可能性)來優化的。在這項工作中,我們介紹了一個學習算法,它直接優化模型學習文本表示的能力,以有效地學習下游任務。我們證明了多任務預訓練和模型不可知的元學習之間有著內在的聯系。BERT中采用的標準多任務學習目標是元訓練深度為零的學習算法的一個特例。我們在兩種情況下研究了這個問題:無監督的預訓練和有監督的預訓練,不同的預訓練對象驗證了我們的方法的通用性。實驗結果表明,我們的算法對各種下游任務進行了改進,獲得了更好的初始化。

付費5元查看完整內容

主題: A Review on Deep Learning Techniques for Video Prediction

摘要: 預測,預期和推理未來結果的能力是智能決策系統的關鍵組成部分。鑒于深度學習在計算機視覺中的成功,基于深度學習的視頻預測已成為有前途的研究方向。視頻預測被定義為一種自我監督的學習任務,它代表了一個表示學習的合適框架,因為它展示了提取自然視頻中潛在模式的有意義的表示的潛在能力。視頻序列預測的深度學習方法。我們首先定義視頻預測的基礎知識,以及強制性的背景概念和最常用的數據集。接下來,我們會仔細分析根據擬議的分類法組織的現有視頻預測模型,突出顯示它們的貢獻及其在該領域的意義。數據集和方法的摘要均附有實驗結果,有助于在定量基礎上評估現有技術。通過得出一些一般性結論,確定開放研究挑戰并指出未來的研究方向來對本文進行總結。

付費5元查看完整內容

題目

Pre-trained Models for Natural Language Processing: A Survey

關鍵詞

預訓練語言模型,深度學習,自然語言處理,BERT,Transfomer,人工智能

簡介

最近,預訓練模型(PTM)的出現將自然語言處理(NLP)帶入了一個新時代。 在此調查中,我們提供了針對NLP的PTM的全面概述。 我們首先簡要介紹語言表示學習及其研究進展。 然后,我們基于分類從四個角度對現有PTM進行系統分類。 接下來,我們描述如何使PTM的知識適應下游任務。 最后,我們概述了PTM未來研究的一些潛在方向。該調查旨在作為實踐指南,幫助您理解,使用和開發適用于各種NLP任務的PTM。

作者

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai ,Xuanjing Huang

譯者

專知成員,范志廣

付費5元查看完整內容

題目: Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey

摘要: 為了在計算機視覺應用中從圖像或視頻中獲得更好的視覺特征學習性能,通常需要大規模的標記數據來訓練深度神經網絡。為了避免大規模數據集收集和標注的大量開銷,作為無監督學習方法的一個子集,提出了一種自監督學習方法,在不使用任何人類標注的標簽的情況下,從大規模無標記數據中學習圖像和視頻的一般特征。本文對基于深度學習的自監督一般視覺特征學習方法進行了廣泛的綜述。首先,描述了該領域的動機、通用管道和術語。在此基礎上,總結了常用的用于自監督學習的深度神經網絡體系結構。接下來,回顧了自監督學習方法的模式和評價指標,然后介紹了常用的圖像和視頻數據集以及現有的自監督視覺特征學習方法。最后,總結和討論了基于基準數據集的定量性能比較方法在圖像和視頻特征學習中的應用。最后,對本文的研究進行了總結,并提出了一套具有發展前景的自監督視覺特征學習方法。

付費5元查看完整內容

簡介:

作為面向任務的對話系統中的關鍵組件,自然語言生成(NLG)模塊將以語義形式表示的對話行為轉換為自然語言的響應。傳統的基于模板或統計模型的成功通常依賴于帶有大量注釋的數據,這對于新領域而言是不可行的。因此,對于NLG系統而言,在實際應用中使用有限的標記數據很好地泛化至關重要。為此,我們展示了FewShotWOZ,這是第一個NLG基準測試,用于模擬面向任務的對話系統中的少量學習設置。此外,我們開發了SC-GPT模型。它在大量帶注釋的NLG語料庫上進行了預訓練,以獲取可控的生成能力,并僅用少數幾個特定于域的標簽進行微調以適應新的域。在FewShotWOZ和大型Multi-Domain-WOZ數據集上進行的實驗表明,通過各種自動指標和人工評估,提出的SC-GPT明顯優于現有方法。

付費5元查看完整內容

題目: Deep Learning for Visual Tracking: A Comprehensive Survey

簡介: 視覺目標跟蹤是計算機視覺領域中最受關注和最具挑戰性的研究課題之一。考慮到這個問題的不適定性質及其在現實世界中廣泛應用的情況,已經建立了大量的大型基準數據集,在這些數據集上已經開發了相當多的方法,并在近年來取得了顯著進展——主要是最近基于深度學習(DL)的方法。這項綜述的目的是系統地調查當前基于深度學習的視覺跟蹤方法、基準數據集和評估指標。它也廣泛地評價和分析領先的視覺跟蹤方法。首先,從網絡體系結構、網絡利用、視覺跟蹤網絡訓練、網絡目標、網絡輸出、相關濾波優勢利用六個關鍵方面,總結了基于dll的方法的基本特征、主要動機和貢獻。其次,比較了常用的視覺跟蹤基準及其各自的性能,總結了它們的評價指標。第三,在OTB2013、OTB2015、VOT2018和LaSOT等一系列成熟的基準上,全面檢查最先進的基于dll的方法。最后,通過對這些最先進的方法進行定量和定性的批判性分析,研究它們在各種常見場景下的優缺點。它可以作為一個溫和的使用指南,讓從業者在什么時候、在什么條件下選擇哪種方法。它還促進了對正在進行的問題的討論,并為有希望的研究方向帶來光明。

付費5元查看完整內容
北京阿比特科技有限公司