美國在太空的成功以及在這一領域不斷升級的軍事任務,需要在太空和陸地上有一個永久和強大的醫療支持裝置。這項研究試圖回答這個問題:載人軍事空間任務的醫療支持需要如何組織、培訓和裝備,以實現國家安全戰略(NSS)的目標,將空間作為一個安全領域加以推進?假設是有必要建立一個專門針對美國防部空間作戰的醫療支持結構。使用了情景規劃研究方法,并對四種情景進行了比較。這四種模式包括使用目前的空軍醫療服務,目前的NASA醫療支持,兩者的混合,和一個完全獨立的醫療服務。關鍵的發現是,這些設想在很大程度上是基于美國防部選擇如何組織其空間資產。是否使用太空部隊、太空軍團或其他一些變革組織將極大地改變特定醫療支持結構的可行性。此外,與美國宇航局的合作,特別是在美國防部載人航天行動的早期階段,將是至關重要的。此外,美國防部缺乏一個可持續的空間醫學專家的培訓管道。建議包括:在美國空軍航空醫學院(USAFSAM)與德克薩斯大學醫學部(UTMB)合作開發一個培訓管道,利用美國宇航局的醫療支持進行早期的國防部載人任務,包括載人航天任務中的醫生,在可能的情況下提供任務中的醫療支持,并保持對空間醫療支持的靈活性和適應性。
為了應對《2018年國防戰略》所描述的 "更具殺傷力和破壞性的戰場,跨域結合,并以越來越快的速度和越來越快的抵達力進行",美國國防部(DoD)正在通過聯合全域指揮與控制(JADC2),追求提高能力,通過以數字化、分布式的方式更緊密地整合和聯合對抗敵手。為了實現這一概念,需要將傳感器、網絡、平臺、指揮官、作戰人員和武器系統無縫整合,以實現快速的信息收集、決策和力量投射。
美國空軍部(DAF)對JADC2的貢獻是先進作戰管理系統(ABMS),該系統試圖通過傳感器到投射的信息收集、處理、路由、決策和交戰來實現聯合作戰的現代化,以便更快地對敏捷的對手發揮能力。人們對ABMS給予了極大的關注,因為它被認為是一個不斷發展的 "系統體系"和 "空軍的一個根本性的新采用模式"。然而,重要的問題仍然存在,因為ABMS沒有遵循傳統的采用方法,而且DAF預測到2025財年,它將花費大約33億美元。因此,國會正在尋求對ABMS的成本和技術開發工作進一步澄清。
管理和預算辦公室和空軍部要求美國國家科學、工程和醫學研究院評估計劃中的ABMS架構、技術差距和管理。從2020年10月到2021年5月,空軍先進作戰管理系統委員會從大部分公開來源的新聞中進行了廣泛的文獻審查,并召開了12次非機密會議和1次為期多天的機密數據收集會議,以接受專家證詞并收集有關現有ABMS通信和系統集成架構、技術方法和管理結構規劃和能力的信息。盡管COVID-19大流行病阻礙了委員會對作戰和指揮與控制(C2)中心進行實地考察的能力,但委員會還是從許多介紹ABMS和JADC2的專家那里收集了寶貴的見解。委員會還在2020年10月至2021年4月期間每周舉行一次虛擬規劃會議,并在2021年5月下旬舉行一次面對面的會議,以審議和討論關鍵的調查結果和建議。撰寫工作于6月開始,并在2021年9月完成。
空軍先進作戰管理系統委員會感謝眾多知名專家和思想領袖的貢獻,包括來自美國海軍部、陸軍部和空軍部的代表,他們就各自的通信系統和他們對JADC2的態度發表了見解。在研究過程中咨詢的其他專家組織包括聯合參謀部、美國北方司令部、聯合人工智能中心、國家安全局、聯邦資助的研究和開發中心、大學附屬研究中心、商業行業和許多其他機構。
雖然ABMS仍然是一個正在發展的生態系統,但本報告總結了美國國家科學院關于ABMS的共識研究結果和建議,對ABMS是什么和可以是什么,以及在繼續發展的過程中如何改進提供了一個時間點的視角。這項研究由八個委員會成員進行,并得到了我們的研究主任Ellen Chou和她優秀的工作人員的大力協助,包括Evan Elwell和Ryan Murphy。
Philip S. Antón,主席,空軍高級戰斗管理系統委員會
概要
第1章 觀點
第2章 架構和數據
第3章 管理
第4章 挑戰與機遇
附錄
美國國防部(DoD)正在追求通過聯合全域指揮與控制(JADC2)來提高對敏捷對手進行更緊密集成和聯合作戰的能力。這個框架將無縫整合傳感器、網絡、平臺、指揮官、作戰人員和武器系統,以使得聯合部隊和多國家部隊實現快速信息收集、決策和投射。美國空軍部(DAF)對JADC2的貢獻是先進作戰管理系統(ABMS)。
目前對于ABMS存在諸多疑問,它到底是什么?它的結構是否恰當?這些都存在擔憂,因為它缺乏一套明確的、獨立的、指定的最低性能目標,一套固定的要求,一個擬議的能力交付時間表,以及針對這些目標缺乏體系性的分配預算和資源。雖然敏捷性、靈活性和適應性是有價值的目標,但如果沒有一個提供足夠細節、具體要求和衡量標準的計劃來同步這樣一個龐大而復雜的系統,要成功地大規模交付能力就會受到挑戰,也不太可能。
為了解決這些問題,美國空軍先進作戰管理系統委員會被要求審查以下內容:
1.評估規劃中的ABMS數據和通信架構,并比較該架構的預期性能特征,以支持實時火力控制和全域傳感器到投射的數據流、指揮和控制(C2)活動、基于人工智能(AI)的生活模式訓練、戰斗損傷評估以及其他相關的數據活動。
2.確定ABMS技術和規劃中的系統集成架構的任何技術差距和不足。
3.審查ABMS的管理,并建議如何改進規劃中的組織和執行計劃及流程,以更好地使美國空軍部和整個國防部快速實現JADC2行動。
在進行研究時,前空軍負責采購、技術和后勤的助理部長(SAF/AQ)將ABMS的主要責任辦公室(OPR)從DAF的首席架構師辦公室(DAF CAO)轉移到DAF的快速能力辦公室(RCO)。這一變化的結果是雙重的。首先,委員會最初負責審查的任務與ABMS的優先事項和RCO的職責并不完全一致。由于這個原因,委員會為完成所需的分析而要求的一些信息無法提供,委員會收到的一些信息后來被更新的信息所取代。第二,委員會收到的ABMS的情況基本上是過渡性的,因為該系統的技術設計和管理在DAF內部正經歷著重大變化。
作為一個處于早期定義階段不斷發展的系統,ABMS架構及其支持要素仍然是動態的。2020年10月至2021年3月提交給委員會的ABMS技術架構在很大程度上反映了ABMS在"on-ramp "大規模演習中產生的狀態,該演習由DAF CAO主導。早期的架構和方法正在由DAF RCO進行評估和修訂,因為它致力于在將要投入使用的能力版本中創建一套采購方案。因此,委員會的分析反映了該早期架構的方法、益處、挑戰和機遇,并構成了CAO、RCO、DAF和更廣泛的美國防部元素的見解和建議,供他們在追求更新的ABMS架構、其中的單個采購計劃以及更大的JADC2框架時考慮。在新任空軍部長的指導下,DAF RCO已經在為ABMS不斷發展的規劃和設計,解決了其中的一些問題,但其他問題(尤其是非技術性因素)需要進一步考慮。
本報告按主題分為四章:觀點、架構和數據、管理以及挑戰和機遇。第1章描述了為什么需要ABMS,以及它是如何從一個聯合監視和雷達系統的替換計劃發展到一個全方位的指揮和控制系統的。第2章研究了當前和規劃的架構,包括數據標準、軟件、安全、測試和建模。第3章概述了ABMS過去和現在的管理,并強調了人力整合、培訓、文化和其他考慮。第四章詳細介紹了互操作性和情報,并總結了委員會的建議。
從高層宏觀上評論,委員會的結論是,作為一個非傳統的采購項目,ABMS已經走上正軌,但它仍然是一項正在進行的工作。它的技術設計和架構仍處于起步和發展階段,因此委員會很難對其數據和通信架構進行全面評估,特別是當它們與JADC2框架有關時,該框架也正在開發和定義中。此外,委員會發現,性能特征的規模和范圍在很大程度上是有限的,因為它們在很大程度上與“on-ramp”演示有關,而不是與實際作戰活動有關,因為現實世界的物理約束可能會限制實際性能。
委員會認為,指派DAF RCO作為ABMS的領導機構是一個積極的步驟,將ABMS從演示和實驗轉向重點能力開發。委員會還支持空軍部長的呼吁關于建立性能指標以衡量改進和操作結果。
作為一個家族系統,ABMS很難被量化。委員會無法詳細說明和評估ABMS的確切成本,因為它涉及到一個項目組合--其中一些沒有被指定為ABMS的要素,但仍被列為更廣泛ABMS生態系統的一部分。國會決定將ABMS的總預算減少近一半,這顯然限制了ABMS在近期和中期所能完成的工作。但是,這種預算限制也可能迫使DAF領導人對ABMS的投資和能力做出必要的決策和優先考慮。
委員會發現,目前的ABMS以及更廣泛的JADC2管理結構是不夠的,缺乏適當的權力來執行所有領域的指揮和控制。由于缺乏一個國防部級別的執行機構來處理和解決JADC2框架所有參與者的技術、操作和指揮決策,導致每個軍種和國防部機構都在開發自己的C2系統,其獨特的要求、標準和技術規范對實現互操作性構成挑戰。
委員會認識到,在本分析過程中,ABMS的技術方法和管理結構都在不斷發展。因此,需要注意的是,下面總結的和本報告其余部分詳細介紹的一些建議是針對早期的ABMS方法的,而其他建議可能仍然與較新的、更集中的項目計劃有關。
隨著預算削減的增加和空軍機隊的老化,空軍正在尋找創新的方法來減少工具、零件和用品的采購、運輸和庫存成本。特別是,傳統的制造、庫存和運輸飛機零部件和用品可能是緩慢的、昂貴的、對人員有害的和對環境有害的。被稱為"3-D打印"的新制造技術,也被稱為 "增材制造"(AM)被推薦為可能的解決方案,以減少維修時間、采購成本、運輸和庫存成本,同時也比傳統的、制造的替換零件更安全、勞動強度更低、更環保。
本文研究AM能在多大程度上使空軍受益,及其目前的實施情況。本文概述了空軍目前供應鏈的成本、操作失敗和環境影響,以及軍事單位如何利用AM來幫助減少這些問題。雖然正在采取措施在基地和倉庫層面實施三維(3-D)打印,但空軍沒有為其實施提供明確的方向,也沒有充分地利用其好處。因此,本文建議空軍開發可部署的三維打印包,提供三維打印培訓,并對在什么情況下應該購買三維打印機提供更多指導。此外,還就哪些部件應該被打印出來提出了建議,并建立了認證3-D打印飛機部件的正式批準程序。
在承包商工廠和軍事后勤中心之間的空軍物資運輸占用了巨大的資源;2013年運輸成本超過了56億美元。
運輸物資的成本如此之高,是因為C-5 "銀河 "運輸物資的平均每飛行小時成本為100941美元,而這還沒有考慮到飛機的維修和保養。因此,隨著作戰節奏的加快,需要更多的零部件。 此外,沖突越遠,運輸成本就越高。
戰爭規劃者試圖為軍隊后勤評估戰爭儲備和備件,然而,他們的評估往往與實際需求不相符合。例如,在2012年,空軍花費了4.861億美元用于交付16架C-27A "斯巴達 "貨運飛機,其中包括6050萬美元的備件給阿富汗空軍。在這16架飛機中,有6架必須被 "拆解 "以獲得備件,以便其他10架飛機能夠繼續運行。拆解是指從武器系統中拆下一個目前可以使用的零件,用于維修需要該零件的飛機,以使其具備任務能力。 C-27A "斯巴達 "計劃最終被認為是不可持續的,因為空軍確定需要額外的2億美元的備件來正常維護飛機。
為了解決與類似問題有關的巨大成本和短缺,陸軍、海軍、美國國家航空航天局、國防部(DOD)供應商和其他組織正越來越多地轉向一種名為 "3-D打印 "的新技術,也被稱為 "增材制造"。這項技術使他們能夠在內部創建零件和用品,從而減少他們的供應鏈和運輸成本。不幸的是,空軍現在才剛剛開始探索三維(3-D)打印的好處。因此,本文探討了以下問題:如果空軍在部署地點實施三維打印,會有什么好處?
空軍將3D打印機和相關原材料運輸到部署地點,允許快速定制飛機零件,減少危險廢物,并削減庫存持有和運輸成本。更重要的是,它可以通過允許部隊根據需要在現場制造工具、零件和用品來提高作戰能力。
增材制造(AM)是通過逐層添加(打印)一種材料(通常是塑料或金屬),直到創造出三維物體。相比之下,減材(傳統)制造則是將材料去除,直到留下所需的物體。AM允許零件的定制和現場生產,對培訓的要求最低。
3-D打印經常使用逆向工程來重新創建,并有可能在3-D掃描儀的幫助下改進現有零件。就像磁共振成像使用磁場和無線電波來創建人體內部器官和組織的詳細圖像一樣,3-D掃描儀創建了一個所需部件的數字副本。這種3-D模型數據可以被儲存起來,用于未來的制造,或使用軟件進行操作,以改進零件的設計。3D制造的零件可以打印出空心或蜂窩狀的屬性,這可以使它們更輕,更能夠承受熱應力。AM允許在制造開始前在虛擬環境中開發和快速測試設計。此外,這些3-D設計可以通過電子方式發送給部署地點的操作員。
在已部署軍事裝備的環境中,實施3-D打印將需要在初期運輸大型打印機、原材料和外圍支持設備。然而,它可以在幾個方面減少運輸和庫存成本。首先,原材料可以被包裝或托盤化,使每立方英寸的材料多于零件本身。因此,濃縮材料可以使飛機載荷的利用率更高,減少補給任務。其次,多余的粉末狀原材料可以被回收到AM工藝中至少14次。此外,原材料通常保留其貨幣價值或升值。因此,多余的原材料可以在私營部門出售,而且安全問題很小。
在部署地點制造零件和用品可以幫助減少運輸成本。空軍老化的機隊的許多備件沒有被提前制造出來,而且供應有限。3-D打印可以降低維護成本,并為空軍提供機會,通過內部制造這些零件來延長其機隊的使用壽命。尋找和運輸稀有零件的時間可以減少,從而提高出勤率(與任務和訓練有關的飛行時間)。
空軍最近為美國本土設施購置了3-D打印機,陸軍和海軍也在早期實施3-D打印,這可能表明AM提供了財務上的好處。AM允許在需要的基礎上生產零件,這可以減少物資儲存的占地面積,消除零件的持有成本,并以更少的停機時間提高操作能力。
這篇研究文獻將使用問題-解決方案的方法來研究空軍如何通過在前沿作戰基地部署3-D打印機來生產飛機零件、工具和用品而獲益。本文首先簡要介紹了3-D打印機和AM,并提供了它們的使用實例。此外,還將對空軍的供應鏈進行總結。在這個總結之后,將徹底描述空軍在部署飛機零部件和用品時面臨的問題和挑戰,以及環境問題和操作影響。下一節將概述如何將3-D打印機部署到戰斗環境中的可能手段。本文的每一節都將使用定量數據來支持所有關于支出、節約、庫存水平和制造產量的主張和建議。最后,將根據研究結果提出實施3-D打印機的建議,隨后是結論。
隨著美國為大國競爭而重組其軍隊,戰場的有效性將取決于美軍是否有能力超越其近似競爭對手的決策周期。速度是關鍵--軍隊如何快速從其傳感器中收集數據,分析數據,辨別重要信息,將其發送給相關作戰人員并作出最佳反應。一支日益一體化和互操作性的部隊,對共同作戰環境有共同理解,對于軍隊完成能力融合至關重要。
美國防部聯合作戰概念(JWC)描述了全域作戰,并設想了一個聯合殺傷網,它可以通過全域聯合指揮和控制(JADC2)的支持概念,快速有效地將任何傳感器與任何投射能力聯系起來,這就是融合的原則。實現融合要求各軍種之間專注聚焦,確定優先次序并進行協同。美國陸軍將在JADC2中發揮核心作用,因為它為作戰和戰術網絡的發展提供信息;為JWC提供后勤骨干;并在一系列與各部門、機構和國際合作伙伴的合作實驗中測試融合。
議題:隨著美國軍隊為大國競爭而進行的轉型,戰場效率將在很大程度上取決于其超越同行競爭對手決策周期的能力。
聚焦范圍:描述了陸軍和聯合實施JADC2的情況。
觀點:
在2020年以后,美國軍隊必須具有戰略上的敏捷性、反應性和致命性。中國和俄羅斯正在大力投資,以減輕美國在陸地、空中、海上、太空和網絡空間各個領域的能力。
在有可能限制聯合部隊戰略部署和使用其部隊能力的情況下,需要一個現代化的指揮和控制(C2)機構,能夠迅速匯集美國及其盟國的所有能力,以威懾,并在必要時擊敗近鄰和其他競爭對手。
目前的C2項目使用的是幾十年前的平臺,"沒有針對未來沖突的速度、復雜性和殺傷力進行優化"。目前的平臺各軍種不能有效地利用或發送數據、命令給其他軍種,而且它們的結構不能支持實現未來的C2。2018年國防戰略(NDS)強調了C2系統現代化的重要性,指出在退化的環境中未來的戰斗將以速度、更多的自主權和分布式的單位獲勝。
美國防部領導層設想了一個在戰場上沒有界限的未來,圍繞著一個統一的C2系統,其中一個多領域的方法--參與和整合地面、空中、海上、網絡和空間作戰--對于挑戰一個近似的對手是必要的。JWC是一個關鍵的概念,并且正在推動未來的研發和采購,同時也在整合作戰指揮部的審查和服務計劃。因此,該概念的發展是國防部的一個優先事項。
圖:全域聯合指揮與控制(JADC2)通過實時終端用戶報告和協作規劃,協同多個數據源,在國防支持民事當局行動期間,準確地在聯合特遣部隊民事支持(JTF-CS,美軍機構) 可能需要的地方提供支持能力。
注1:聯合作戰概念的四個支持性概念
美國防部JADC2戰略于2021年5月由國防部長勞埃德-奧斯汀批準,闡明了國防部實施JADC2的方法;它將JADC2描述為感知、探測和行動的作戰能力,從而提高從沖突到競爭以及所有領域的互操作性和決策速度。JADC2是一個以數據為中心的持續C2能力框架,它支持JWC,并使聯合部隊能夠迅速匯集有助于威懾的效果,并通過決策優勢使任務取得成功。
JADC2指的是所有聯合C2的實施,包括:
由于速度和規模在未來的戰斗中至關重要,JADC2將建立一個網狀網絡,實時將各部門的數據帶入一個 "可共享的數據湖",將來自所有領域--陸地、空中、海上、太空和網絡空間的傳感器連接起來。利用人工智能軟件、數據庫、處理器和算法,它將把偵察信息轉化為可識別的和優先的目標,比人類分析員更快。目標數據將被發送到處于最佳位置的單位/能力,無論是動能、網絡、電子戰(EW)還是信息作戰(IO)。
JADC2及其網狀網絡可以被看作是一個安全的戰斗互聯網,軍事應用程序在上面進行連接,從所有可用的來源搜尋數據,以迅速將最佳的 "投射 "或 "效應器 "與目標聯系起來。JADC2可以提供無處不在的數據,不同的人類和機械數據可以根據需要使用。歸根結底,JADC2不是一個特定的平臺;它是獲取數據并有效連接。
圖:聯合參謀部的JADC2作戰規劃實驗,允許陸軍、海軍、空軍和海軍陸戰隊的節點共享實時的信息,以實現傳感器與投射的聯系,并將其顯示在一個共同的作戰畫面上(美軍聯合現代化司令部)。
所有軍種都同意需要將JADC2作為一項組織戰略。2020年,陸軍和空軍簽署了一項協議,在2022財政年度(FY22)之前分享數據并制定共同的數據和接口標準;在多次實驗中,他們在這方面取得了成功。此外,陸軍、海軍和空軍在2021年初簽署了一項合作協議,以測試、整合和分享數據開發,以實現JADC2。
陸軍現代化戰略描述了陸軍將如何作戰,用什么作戰以及如何組織起來支持聯合部隊。陸軍致力于發展作戰網絡、技術和概念,通過一系列名為 "項目融合"(PC)的演示和實驗來實現超額匹配并為聯合部隊提供信息。這是一場持續的學習運動,旨在迅速 "融合"所有領域(陸地、空中、海上、太空和網絡空間)的效果,并塑造陸軍的新興理論、組織、訓練、能力、研究和發展以及后勤。
通過實驗和學習,"項目融合"有助于確保軍隊在適當的地方擁有適當的人員、適當的系統、適當的能力,以支持聯合戰斗。——陸軍參謀長詹姆斯-麥康威爾將軍
PC由五個核心要素組成:
每項實驗都通過新的架構、編隊和來自陸軍八個CFT的授權來融合現代化舉措,并深化陸軍現代化舉措的整合。這些努力正在加速2018年國防戰略中概述的現代化戰略,該戰略設想未來的戰斗將在退化的環境中以擁有速度、自主性和分布式能力的單位獲勝。
表:陸軍未來司令部項目融合戰略20-22財年
在亞利桑那州尤馬的 "項目融合2020"(PC20)持續了幾個月,展示了人工智能和機器人技術,包括兩次實彈演示。該實驗由士兵、平民、科學家和工程師設計,在最低作戰水平上測試了融合,以挑戰戰術邊緣的決策過程。其中一項測試使用衛星和無人駕駛航空系統:同時感知空中和地面目標;迅速將數據傳遞給平臺,以打擊目標;并在十幾秒內決定性地摧毀該目標。
圖:2021年10月19日,在亞利桑那州尤馬試驗場,被分配到第82空降師的美國陸軍一等兵丹尼爾-坎達爾斯使用戰術機器人控制器來控制遠征模塊化自主車輛,為 "項目融合"做準備。在2021年項目融合期間,士兵們試驗使用該車輛進行半自主偵察和再補給(美國陸軍中士馬里塔-施瓦布攝)。
對實現JADC2能力的另一個貢獻是陸軍繼續倡導將其從聯合(joint)擴展到 "結合(combined)"--CJADC2--因為任何網絡都需要包括盟友和合作伙伴。陸軍在亞洲和歐洲有著深厚的軍隊間關系,應該站在這種重要努力的最前沿。認識到這一點,陸軍21/22財政年度的PC戰略將參與范圍擴大到了結合伙伴和盟友,增加了指揮層級并使之多樣化,并推動了現代化概念和技術的極限。
注2:項目融合(Project Convergence):項目融合是聯合部隊對速度、射程和決策主導權的實驗,以實現超額完成任務,并為聯合作戰概念和全域聯合指揮與控制提供信息。作為一場學習運動,它利用一系列聯合的、多領域的交戰來整合人工智能、機器人技術和自主性,以提高戰場態勢感知,將傳感器與投射連接起來,并加快決策的時間線。因為誰能最先看到、了解并采取行動,誰就能獲勝。
注3:項目融合的五個核心要素
JADC2要求國防部和陸軍進行轉型,特別是在數據管理和共享、網絡支持能力、人工智能在決策周期中的作用以及為實現這些變化而對部隊結構進行調整。陸軍現代化戰略及其現代化優先事項是持續轉型的框架,以使陸軍能夠在多個領域進行部署與聚合效應。
注4:軍隊現代化的優先事項六大任務
一個用于C2的綜合戰斗管理系統需要在數據共享和標準化數據共享接口方面進行通信;然而,許多遺留系統包含數據共享障礙。2021年初,各軍種之間開始認真工作,制定數據標準以連接他們的JADC2項目,并通過 "發現、理解和與所有領域、梯隊和安全級別的合作伙伴交換數據 "來克服這些障礙。
陸軍的網絡CFT正在試驗網絡的現代化,以實現聯合接口、彈性和能力。它的重點是加強地面領域的數據和網絡傳輸能力,連接人工智能和機器學習(AI/ML),開發戰術云和邊緣計算。
國防部正在制定和實施一套初步的實驗和原型設計的核心原則,以統一國家安全事業。聯合部隊已經確定了幾個原型能力,通過將真實世界的威脅數據納入響應計算,在即將舉行的演習中進行測試。陸軍聯合現代化司令部建立了聯合系統集成實驗室(JSIL)--一個使用持久性環境場景的實驗網絡,允許各軍種、工業界和盟友通過幾個網絡測試數據共享能力。這將有助于對JADC2戰略進行可靠的評估。
由美國太空發展局管理的低地球軌道(LEO)衛星將整合各軍種的戰術網絡,以創建一個網狀網絡的傳輸層。計劃于2022年部署的近30顆衛星將提供一種 "作戰人員沉浸 "能力,其中傳感器、投射和戰術網絡可以與戰術通信連接。PC22將利用這些衛星,開發低地軌道能力。
人工智能國家安全委員會報告稱,國防部有必要在2025年前采用、實施人工智能并為其提供資源。人工智能/ML--陸軍的一個優先研究領域--對于在聯合、全域作戰中實現聯合戰場管理系統至關重要。人工智能的進步提高了對新出現的威脅的反應速度和敏捷性,使指揮官和工作人員能夠將精力集中在加速、優化決策上。
建設網絡安全基礎設施是陸軍網絡計劃的一個關鍵方面,它將為統一的網絡帶來速度、訪問和安全。在平衡這些要求的同時,美國網絡司令部正在與行業伙伴密切合作,擴大用于在國防部、情報界和商業網絡之間傳遞數據的安全共享工具,而不存在被破壞的風險。
圖:作為 "項目融合2020"的一部分,飛馬系列戰術自主系統的一部分在尤馬試驗場進行測試。飛馬系統有能力為無人駕駛航空系統(UAS)、地面行駛履帶式車輛,提供監視能力或創建一個地區的豐富詳細的三維地圖。
決策主導權--在技術和融合的作用下更快地做出更好的決策的能力--將使美國軍隊從其對手中脫穎而出。JADC2有助于實現信息主導權,并促進快速融合,實現速度關鍵優勢,這是未來AI/ML競爭的基礎。
目前,每個軍種都在其各自領域內管理C2的復雜性。隨著戰爭的特點變得越來越復雜,聯合部隊必須同時有效地整合五個領域。這需要新的C2方法。JADC2是建立一支能夠完成國防戰略目標的聯合部隊的基礎。國會的支持、持續的資助和軍種間的合作對于成功實施JWC和JADC2至關重要。
陸軍在實現這一聯合網絡的技術、創新和實驗方面處于領先地位。它的PC學習運動已經證明了它有能力使用新興技術和創新概念來實現軍種間和跨域的融合。陸軍的未來司令部、CFTs、作戰能力發展司令部和軟件工廠正在結合士兵的經驗、工業界的資源和科學家的專業知識來發展和提供未來的戰斗力量。通過實驗和聯合協作,陸軍正在使JADC2成為現實,從而增強戰略競爭中的威懾力和沖突中的超強戰斗力。
美國陸軍協會是一個非營利性的教育和專業發展協會,為美國的全部軍隊、士兵、陸軍文職人員和他們的家屬、行業伙伴以及強大國防的支持者服務。美國陸軍協會為陸軍提供聲音,支持士兵。
未來同等力量競爭者之間的軍事行動將以多域作戰(MDO)方法為特征,其特點是空中、海上、陸地、網絡空間和太空的綜合和并行使用。在整個軍事行動范圍內,從低節奏的維和任務和安全部隊援助到高強度、高節奏的作戰行動,軍方將利用所有的作戰領域,特別是太空領域。隨著作戰速度和節奏的加快,太空領域對于現代軍事活動變得至關重要,并使得指揮控制 (C2) 和戰術層面的決策時間周期縮短。
此外,鑒于民間社會行動者對公共領域開源信息的訪問加速和擴大,目前的軍事活動受到了更嚴格的審查。這樣做的一個后果是更加需要更快速更準確的情報來為軍事行動中的決策提供信息。不斷擴大來源和信息已成為決策的方式和手段,空間在軍事規劃和行動的演變中占據中心地位,而這一演變涉及到軍事人員要經常執行的一系列任務。
太空領域是當今確保持續的跨境情報和態勢感知并促進重要通信的唯一途徑。這一現實需要更加關注空間資產的安全性和未來空間應用的能力規劃。就目前而言,太空領域仍然沒有得到足夠的全球戰略關注。然而,軍方對太空的利用不僅會在未來幾年保留在國防組織和軍事能力規劃者的議程上,而且會變得越來越重要。
可以說,早在二戰期間,當德國向英國發射帶有彈道軌道的 V2 火箭時,就在戰爭中見證了太空的使用。在更近的時代,空間領域發揮關鍵作用的第一次軍事行動發生在1991年的第一次海灣戰爭期間。如果沒有使用由衛星支持的全球定位系統,為武器提供精確的導航和目標,并對沖突地區進行天基觀測以了解情況,美國及其聯盟伙伴可能不會在沙漠風暴行動中取得同樣的結果。
自第一次海灣戰爭結束以來,西方軍隊逐漸擴大其在太空領域的使用和嘗試,以此作為引入作戰優勢的一種方式。然而,這種對太空領域日益增長的依賴也為軍事行動創造并擴大了新類型的弱點,而對手越來越有能力利用這些弱點。在這種新出現的背景下,軍隊開始重新關注他們對空間的使用,以規劃和發展與新威脅和戰略弱點相關的空間能力,這一點至關重要。
這是一個需要應對的挑戰,因為很少有人會懷疑大國競爭又回到了全球舞臺上。隨著全球動態的變化,美國一直在重新平衡其全球態勢,將重心轉向亞洲。美國對中東的能源依賴度下降,也引發了關于其長期區域作用的討論。對歐洲來說,未來來自其東部和南部邊界的任何動蕩和不穩定都可能導致難民和流離失所者帶來前所未有的挑戰。在管理這種風險的安全影響方面,歐洲軍隊很可能面臨一個新的現實,即不能把對美國空間資產的依賴或可用性視為理所當然。
太空戰保障(SOA)
與此同時,歐洲自身對戰略自主和主權的決心可能會增強,并延伸到其未來的太空戰略。地緣政治因素和較低的進入壁壘可能會繼續引入新的參與者,追求空間的戰略和戰術使用,開發作戰衛星和地面基礎設施。雖然太空不能分為民用和軍用太空,但“軍事太空”領域將以美國、俄羅斯和中國的傳統大國為特色,但也會看到歐盟(EU)、印度、阿聯酋等其他國家加入。
隨著太空參與者數量的增加,使用和依賴太空進行軍事行動的風險正在迅速增加。空間擁堵是太空中的一個嚴重威脅,尤其是在低地球軌道(LEO)——在地球上空跨越 400-1500 公里的高度——衛星有被摧毀的風險。 LEO 不僅面臨軍事用戶飽和,而且越來越多的商業運營商生產和發射大量小型衛星,以服務于快速發展的商業航天工業。
日益增長的空間擁堵風險是真實存在的——自從2009年2月銥-33與Kosmos 2251的碰撞被廣泛研究以來,在2021年3月,云海1-02與1996年9月發射的俄羅斯天頂2號火箭的碎片的碰撞,加強了衛星作戰的風險。這些最近的碰撞很可能是意外,但最近觀察到衛星對其他衛星的近距離機動,這種近距離接觸可能是攻擊性意圖的結果,旨在使衛星不可靠、不值得信賴甚至完全無法使用。
通過光通信、密碼學、跳頻或精確無線電傳輸來保護數據和信息流將需要作為一個至關重要的能力設計參數。
最近觀察到的近距離接觸和行動似乎沒有造成任何明顯的損害,但這些事件已引發太空軍事行動者重新考慮他們的姿態并考慮加強對其資產的保護機制——包括可能通過武器化。 2019 年 12 月,北約明確承認太空是軍事作戰領域。眾所周知,反衛星(ASAT)武器已被廣泛試驗,并可能更容易被開發,作為將威懾和拒絕的邏輯引入空間領域的一種方式,以對付可能尋求利用傳統空間系統漏洞的對手。
這種軌跡會產生重大影響,因為這種發展會在最低水平上產生意想不到的后果和次要影響,僅僅是通過空間碎片散布到大片空間的風險。太空中的對手還將尋求瞄準衛星與支持地面基礎設施或指揮中心之間的關鍵通信中繼。技術欠發達的對手可以攻擊或破壞支持太空作戰的地面基礎設施,例如通過簡單地拒絕物理訪問、切斷電源線甚至物理攻擊和破壞。
太空中不斷擴大的威脅范圍并非包羅萬象——目前,這些威脅主要與 LEO 中的太空資產有關。在這里,軍事規劃人員可以提供一系列針對 LEO 環境的防御性反應——例如,強化支持和啟用地面基礎設施、地對空(反之亦然)通信渠道以及天基資產本身。此外,軍事規劃人員將需要創造新的方法和手段來提高太空態勢感知、太空交通管理、太空機動性、響應能力和有效載荷適應性,以及至關重要的國際合作和成就,以建立基于規則的太空秩序。
對手瞄準支持軍事作戰的太空能力的最簡單方法是專注于地面支持和使能基礎設施。幸運的是,這些太空能力要素是最容易防御的,必要時可以維修或更換。雖然這在減少軍事太空作戰的弱點方面可能最初看起來不太復雜且成本較低,但重要的是不要讓未來太空力量和能力規劃的這一要素脫離戰略設計和規劃過程。
GEO, MEO和LEO衛星
太空中不斷擴大的威脅范圍并非包羅萬象——目前,這些威脅主要與 LEO 中的太空資產有關。
隨著信息空間遇到太空,引入了雙重漏洞,特別是對于軍事通信。地面和天基資產之間的指揮與控制 (C2) 和信息通道對欺騙、干擾、阻塞和其他形式的干預高度敏感。通過光通信、密碼學、跳頻或精確無線電傳輸來保護數據和信息流將需要作為重要的能力設計參數。
衛星本身也越來越有可能成為攻擊性機動和作戰的對象,從而使其變得不那么有用甚至無用。太空中的軍事行動者必須開始考慮并解決如何保護天基資產免受物理攻擊、暴露于高能輻射、電磁篡改和一系列來自地球的新威脅。需要開發和實施用于檢測篡改和增強防御和適當對策的特殊防護層、傳感器。
SSA為空間領域提供了精確的實時圖像,并使洞察意外或不尋常的事件成為可能。有了SSA,衛星運營商可以更好地監測和控制其資產接近潛在威脅和碰撞風險,特別是適用于低軌道空間碎片導航。必要的傳感器配置和數據處理技術將能夠對可能的衛星安全入侵提供早期預警。在新出現的情況下,由于準確的歸因成為可能,進攻性演習和行動的可否認性將不再是問題,從邏輯上講,可以實施更有力的威懾模式。
通過更準確地了解空間和鄰近度計算,可以更及時地確定要考慮和采取的適當行動,并有效地開發空間交通管理系統。改進的 SSA 將導致減少衛星安全風險,反過來這將減少規避機動的傾向,同時提供更安全的方式來實現和保持太空中的安全導航和機動性。通過啟用空間交通管理,將增強天基系統的安全性,延長衛星壽命,并支持更好地規劃更換、升級和新插入。
改進的SSA將導致減少衛星的安全泡,因為它是構成的,反過來,這將減少規避機動的傾向,同時提供更安全的方式來實現和保持空間的安全導航和流動性。通過實現空間交通管理,天基系統的安全性將得到加強,延長衛星的壽命,并支持更好地規劃替換、升級。
增強衛星的機動性是增強其防護能力和生存能力的一項勢在必行的防御措施。機動性的好處同樣適用于地面單元,機動性加強了保護,但需要解決一系列更復雜的挑戰,如燃料、駐扎時間和戰術、技術和程序(TTP)。
如果由于對手的進攻行動或自然環境甚至意外而丟失??衛星,關鍵是要在盡可能短的時間內用同類或改進的系統取代任何失去的能力。事實上,衛星的未來在于微型或納米衛星,與傳統空間系統相比,這些衛星的建造和發射成本更低。當出現對新功能和要求的需求時,新的空間技術將創造新的方式來以更具響應性的方式提供這些功能。設計、制造、測試、程序和發射方面的響應能力需要成為空間能力規劃的關鍵標準,并且需要與工業和知識合作伙伴密切和持續的合作來支持。
在新衛星和空間系統的設計中,可能需要擴展新應用的開發,以便更快、更經濟地建造和發射衛星。通過開發計劃實施新的和不斷發展的需求是不合理的,軍隊必須更好地推動這些需求走向未來的迭代。對空間開發計劃的不斷變化和修改會增加巨大的成本和時間延遲。相反,重點必須放在使衛星更加模塊化或適應性更強,以便可以在不增加成本或復雜性的情況下修改其功能。如果將高度模塊化和適應性構建到當前正在開發的這一代衛星中,它們的可用性和壽命將大大提高。
地緣政治因素和較低的進入壁壘可能會繼續引入新的參與者,追求空間的戰略和戰術使用,運營衛星和開發基于地面的使能基礎設施。
對于較小規模的軍隊,特別是在共同安全保護下合作的軍隊,通過職責和能力分工來分擔負擔具有戰略意義。資產和能力的集中和共享使用將是發展太空能力的一個關鍵特征,這將依賴于國際合作的成果。在缺乏行為規則的情況下,有關空間利用的國際合作還需要解決目前存在于空間中的任何行為者的廣泛自由。到目前為止,擁有先進太空能力的國家數量有限,似乎一直不愿在彼此之間建立更具體的框架和制定長期規則,以避免妨礙未來的戰略可能性。然而,隨著低地球軌道越來越擁擠,太空中新的軍事行動者的出現以及它作為一個有爭議的作戰領域的演變,在沒有最低限度的規則和可接受的風險的情況下,不應再進入和利用太空。
日益擴大的威脅范圍——本質上越來越多地跨域——以及鑒于產生或可用的數據大量增加而需要加速軍事決策,這加劇了作戰人員未來面臨的挑戰。混合戰爭和軍事競爭將需要能夠為軍事規劃者和作戰人員提供預警、卓越的態勢感知和迅速決策的系統。在保證完整性的情況下快速訪問信息對于戰略成功至關重要。在所有這些戰略要務中,太空領域將發揮至關重要的作用。
進入太空領域本身就有足夠的挑戰,但在太空軍事用途的背景下,必須考慮更多。盡管如此,對太空領域的依賴和使用是不可避免的,其能力規劃必須考慮,以提供產生新的戰略和作戰優勢的技術解決方案,并通過推進國際合作來不引人注目地使用太空。不過,最終,軍方不應忘記如何就失去關鍵太空基礎設施的使用權進行談判。在人們認為進入太空是理所當然的時代,地圖和指南針閱讀、野外定向、導航和無通信操作等軍事藝術可能需要保留更長時間。
荷蘭皇家空軍中校(退休)帕特里克·博爾德(Patrick Bolder)專門研究規劃、政策和戰略思維。他曾被借調到海牙戰略研究中心 (HCSS),在那里他從事武裝部隊和國防部委托的項目。他在無人系統、人工智能和太空領域的軍事方面發表了多篇著作。他在無人和空間系統的軍事應用方面具備深厚的知識能力。
北約數據開發計劃旨在有效利用數據,開發保持北約軍事和技術優勢所需的技能、人力、敏捷流程、工具、服務和技術。
當代和新出現的安全威脅以及從最近的軍事行動中吸取的教訓已經證明,為了在傳統的物理領域(陸地、空中、海上、太空)實現作戰目標,確保在非物理領域的主導地位至關重要,即網絡空間、電磁環境(EME)和信息環境。因此,除了物理作戰領域之外,在非物理領域取得優勢的能力對于實現戰役的軍事和非軍事目標具有決定性意義。
作戰人員將面臨消除沖突,協作,同步和整合行動的挑戰,以實現并發揮協同效應以應對多種威脅,其中可能還包括來自每個作戰領域對手的武裝沖突閾值以下的行動,包括非物質的。
本文探討了作戰環境聯合情報準備 (JIPOE) 作為支持聯合作戰規劃、執行和評估的主要工具的作用和意義,從而有助于多域作戰 (MDO) 的同步和協調。在這方面,基于政治、軍事、經濟、信息、基礎設施-物理、時間(PMESII-PT)方法,不可能將對當代作戰環境(OE)的分析局限于物理領域及其與非物理領域的關系。相反,作者們相信,確定一種合適的方法來關注在非物理領域單獨或聯合進行的活動影響,它們在PMESII-PT所有領域的相互融合和實際操作領域的相關性,將大大有助于友軍識別和評估對手的重心(COG)、關鍵弱點、意圖和行動路線(COAs)的能力,包括各自的指標。JIPOE將為聯合部隊指揮官(JFC)提供OE的整體視圖,將與戰術層面密切合作、共享和開發,通過結合不同領域的能力,應該能夠壓倒對手的部隊。這種集中控制和分散執行的方法將有助于在作戰和戰術層面之間產生協同效應。
未來的軍事行動將以物理和非物理層面的融合為特征,眾多不同的行為者將在其中運作。任何部隊都需要適應極其復雜的作戰環境和大量的作戰變量,需要適應性地使用一系列武器系統來產生致命和非致命的效果。因此,除了物理作戰領域(即陸地、空中、海上和太空),在非物理領域(網絡空間、EME、信息環境)取得優勢的能力將對實現戰役的軍事和非軍事目標具有決定性意義[1, p.280]。
OE是影響能力運用和影響指揮官決策的條件、環境和影響因素的綜合體[2, p.3]。了解OE的因素和條件不僅是所有計劃活動,特別是行動設計的關鍵前提,也是友軍保護和許多其他相關任務的關鍵前提[3, p.41]。
JIPOE代表了一種系統的方法,用于分析有關OE和對手的信息。它可以應用于全部的軍事行動。指揮官和參謀部在危機背景、根本原因和具體動態方面,對戰區形成共同的理解和整體的看法。它使指揮官能夠直觀地看到問題的程度,以及他們如何塑造和改變OE,使之成為他們的優勢,這將為他們的決策提供信息[2, p.3-5]。
JIPOE產品極大地促進了聯合(即作戰)層面的軍事行動的規劃和執行。現代軍隊,特別是北大西洋公約組織(NATO)內的軍隊,幾十年來在討論跨領域(陸、海、空)的協調行動時一直使用聯合這一術語。如今,由于全球安全環境的巨大變化以及俄羅斯和中國日益增長的野心,為了挑戰潛在的同行對手,需要采取多領域的方法。在傳統的戰爭門檻下,盟國及其合作伙伴已經受到了跨越物理和非物理領域的持續攻擊[4, p.2]。MDO一詞不同于聯合行動,因為它旨在關注跨越多個領域的行動,而不考慮服務的歸屬,不一定是由多個部門進行的行動[5,p.49]。
圖1:支持聯合行動的當前JIPOE流程的可視化。
圖2:提出支持MDO的JIPOE過程方案。
低速、慢速和小型 (LSS) 飛行平臺的普及給國防和安全機構帶來了新的快速增長的威脅。因此,必須設計防御系統以應對此類威脅。現代作戰準備基于在高保真模擬器上進行的適當人員培訓。本報告的目的是考慮到各種商用 LSS 飛行器,并從不同的角度定義 LSS 模型,以便模型可用于LSS 系統相關的分析和設計方面,及用于抵制LSS系統(包括探測和中和)、作戰訓練。在北約成員國之間提升 LSS 能力并將 LSS 擴展到現有分類的能力被認為是有用和有益的。
【報告概要】
在安全受到威脅的背景下考慮小型無人機系統 (sUAS)(通常稱為無人機)時,從物理和動態的角度進行建模和仿真遇到了一些獨特的挑戰和機遇。
無人機的參數化定義包括以下幾類:
描述無人機飛行動力學的分析模型在數學上應該是合理的,因為任務能力在很大程度上取決于車輛配置和行為。
考慮到剛體在空間中的運動動力學需要一個固定在剛體本身的參考系來進行合適的力學描述,并做出一些假設(例如,剛體模型、靜止大氣和無擾動、對稱機身和作用力在重心處),可以為 sUAV 的飛行動力學開發牛頓-歐拉方程。
在檢測 sUAS 時,必須考慮幾個現象,例如可見波范圍內外的反射、射頻、聲學以及相關技術,如被動和主動成像和檢測。
由于需要多個傳感器檢測 sUAS,因此有必要考慮識別的參數以便針對不同類型的檢測器對特征進行建模。此外,對多個傳感器的依賴還需要在信息融合和集成學習方面取得進步,以確保從完整的態勢感知中獲得可操作的情報。
無人機可探測性專家會議表明了對雷達特征以及不同無人機、雷達和場景的聲學特征進行建模的可能性,以補充實驗數據并幫助開發跟蹤、分類和態勢感知算法。此外,雷達場景模擬的適用性及其在目標建模和特征提取中的潛在用途已得到證實。
然而,由于市場上無人機的復雜性和可變性以及它們的不斷增強,就其物理和動態特性對無人機簽名進行清晰的建模似乎并不容易。
sUAS 特性的復雜性和可變性使得很難完成定義適合在仿真系統中使用的模型的任務。這是由于無人機本身的幾個參數,以及考慮到無人機的所有機動能力和特性所需的飛行動力學方程的復雜性。
此外,sUAS 特性的復雜性和可變性不允許定義用于評估相關特征的參數模型。
圖1 無人機類別與其他類別/參數的關系(part 1)
圖2 無人機類別與其他類別/參數的關系(part 2)
圖3 參考坐標系
【報告目錄】