亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

//gm-neurips-2020.github.io/

在這次演講中,Graph Mining team的創始人Vahab對本圖挖掘和學習進行了高層次的介紹。這個演講涉及到什么是圖,為什么它們是重要的,以及它們在大數據世界中的位置。然后討論了組成圖挖掘和學習工具箱的核心工具,并列出了幾個規范的用例。它還討論了如何結合算法、系統和機器學習來在不同的分布式環境中構建一個可擴展的圖學習系統。最后,它提供了關于Google一個簡短的歷史圖挖掘和學習項目。本次演講將介紹接下來的演講中常見的術語和主題。

付費5元查看完整內容

相關內容

因果學習

因果推理在許多領域都很重要,包括科學、決策制定和公共政策。確定因果關系的金標準方法使用隨機控制擾動實驗。然而,在許多情況下,這樣的實驗是昂貴的、耗時的或不可能的。從觀察數據中獲得因果信息是可替代的一種選擇,也就是說,從通過觀察感興趣系統獲得的數據中獲得而不使其受到干預。在這次演講中,我將討論從觀察數據中進行因果學習的方法,特別關注因果結構學習和變量選擇的結合,目的是估計因果效果。我們將用例子來說明這些概念。

付費5元查看完整內容

對話人工智能系統通過完成用戶請求或進行簡單的聊天與人類用戶進行交互。這些系統的應用范圍從個人幫助、健康幫助到客戶服務等等。在這個由三部分組成的教程中,我們將首先概述最先進的模塊化對話AI方法,這些方法通常被面向任務的對話系統所采用。然后,我們將概述當前基于序列到序列、生成的對話AI方法。我們將討論普通的基于生成的模型的挑戰和缺點,如缺乏知識、一致性、同理心、可控性、多功能性等。然后我們將強調當前的工作,以解決這些挑戰,并在改進深度生成為基礎的ConvAI。在本教程的最后一部分,我們將指出對話AI的挑戰和未來研究的可能方向,包括如何減輕不適當的回復和終身學習。我們還將概述模塊化和基于生成的對話AI的共享任務和公開可用資源。

//nips.cc/Conferences/2020/Schedule?showEvent=16657

付費5元查看完整內容

不確定性的概念在機器學習中是非常重要的,并且構成了現代機器學習方法論的一個關鍵元素。近年來,由于機器學習與實際應用的相關性越來越大,它的重要性也越來越大,其中許多應用都伴隨著安全要求。在這方面,機器學習學者們發現了新的問題和挑戰,需要新的方法發展。事實上,長期以來,不確定性幾乎被視為標準概率和概率預測的同義詞,而最近的研究已經超越了傳統的方法,也利用了更一般的形式主義和不確定性計算。例如,不確定性的不同來源和類型之間的區別,例如任意不確定性和認知不確定性,在許多機器學習應用中被證明是有用的。講習班將特別注意這方面的最新發展。

綜述論文:

不確定性的概念在機器學習中是非常重要的,并且構成了機器學習方法的一個關鍵元素。按照統計傳統,不確定性長期以來幾乎被視為標準概率和概率預測的同義詞。然而,由于機器學習與實際應用和安全要求等相關問題的相關性穩步上升,機器學習學者最近發現了新的問題和挑戰,而這些問題可能需要新的方法發展。特別地,這包括區分(至少)兩種不同類型的不確定性的重要性,通常被稱為任意的和認知的。在這篇論文中,我們提供了機器學習中的不確定性主題的介紹,以及到目前為止在處理一般不確定性方面的嘗試的概述,并特別將這種區別形式化。

//www.zhuanzhi.ai/paper/8329095368761f81a7849fe5457949ed

付費5元查看完整內容

//www.aminer.cn/grla_ecmlpkdd2020

圖表示學習為挖掘和學習網絡數據提供了一個革命性的范例。在本教程中,我們將系統地介紹網絡上的表示學習。我們將以阿里巴巴、AMiner、Microsoft Academic、微信和XueTangX的行業案例作為教程的開始,來解釋網絡分析和網絡圖挖掘如何從表示學習中受益。然后,我們將全面介紹圖表示學習的歷史和最新進展,如網絡嵌入、圖神經網絡及其預訓練策略。獨特的是,本教程旨在向讀者提供圖形表示學習的基本理論,以及我們在將這方面的研究轉化為工業應用中的實際應用方面的經驗。最后,我們將為開放和可重現的圖表示學習研究發布公共數據集和基準。

付費5元查看完整內容

圖神經網絡(GNNs)是針對圖信號的信息處理體系結構。它們已經被開發出來,并在本課程中作為卷積神經網絡(CNNs)的推廣來介紹,它被用來在時間和空間上處理信號。這句話聽起來可能有些奇怪,這取決于你對神經網絡(NNs)和深度學習的了解程度。CNN不就是NN的特例嗎?GNN不也是這樣嗎?從嚴格意義上說,它們是存在的,但我們這門課的重點是涉及高維信號的大規模問題。在這些設置中,神經網絡無法伸縮。CNN為信號在時間和空間上提供可擴展的學習。GNNS支持圖信號的可擴展學習。

在本課程中,我們將在學習單特征和多特征GNN之前,介紹圖卷積濾波器和圖濾波器組。我們還將介紹相關的架構,如經常性的GNN。特別的重點將放在研究GNN的排列的等方差和圖變形的穩定性。這些特性提供了一個解釋的措施,可以觀察到的良好性能的GNNs經驗。我們還將在大量節點的極限范圍內研究GNN,以解釋不同節點數量的網絡間GNN的可遷移性。

//gnn.seas.upenn.edu/

Lecture 1: Machine Learning on Graphs 圖機器學習

圖神經網絡(GNNs)是一種具有廣泛適用性和非常有趣的特性的工具。可以用它們做很多事情,也有很多東西需要學習。在第一節課中,我們將回顧本課程的目標并解釋為什么我們應該關注GNN。我們還提供了未來的預覽。我們討論了在可擴展學習中利用結構的重要性,以及卷積是如何在歐幾里得空間中實現這一點的。我們進一步解釋如何將卷積推廣到圖,以及隨后將卷積神經網絡推廣到圖(卷積)神經網絡。

1.1 – Graph Neural Networks 圖神經網絡

在這門課程中,我希望我們能夠共同完成兩個目標。您將學習如何在實際應用程序中使用GNNs。也就是說,您將開發使用圖神經網絡在圖上表述機器學習問題的能力。你將學會訓練他們。你將學會評估它們。但你也會學到,你不能盲目地使用它們。你將學習到解釋他們良好的實證表現的基本原理。這些知識將允許您確定GNN適用或不適用的情況。

1.2 Machine Learning on Graphs: The Why 圖機器學習

我們關心GNN是因為它們使機器能夠在圖上學習。但我們為什么要關注圖機器學習呢?我們在這里詳述圖機器學習的原因。它為什么有趣?我們為什么要關心這個?我們關心的原因很簡單:因為圖表在信息處理中無處不在。

1.3 – Machine Learning on Graphs: The How

在討論了原因之后,我們來處理如何做。我們如何在圖上進行機器學習?這個問題的答案很簡單:我們應該使用神經網絡。我們應該這樣做,因為我們有豐富的經驗和理論證據證明神經網絡的價值。理解這些證據是本課程的目標之一。但在我們準備這么做之前,有一個潛在的阻礙因素:神經網絡必須利用結構來實現可擴展。

付費5元查看完整內容

【導讀】國際萬維網大會(The Web Conference,簡稱WWW會議)是由國際萬維網會議委員會發起主辦的國際頂級學術會議,創辦于1994年,每年舉辦一屆,是CCF-A類會議。WWW 2020將于2020年4月20日至4月24日在中國臺灣臺北舉行。由于疫情影響,這次會議在線上舉行,本屆會議共收到了1129篇長文投稿,錄用217篇長文,錄用率為19.2%。小編推薦一份圖深度學習-圖神經網絡教程,預覽版可以查看。

從圖數據和關系數據中學習在許多應用中起著重要的作用,包括社交網絡分析、市場營銷、電子商務、信息檢索、知識建模、醫學和生物科學、工程等。在過去的幾年里,圖神經網絡(GNNs)已經成為一種很有前途的新型監督學習框架,能夠將深度表示學習的能力引入到圖和關系數據中。越來越多的研究表明,GNNs在鏈路預測、欺詐檢測、目標配體結合活性預測、知識圖譜補全和產品推薦等方面的性能達到了最新水平。

本教程的目標有兩個。首先,它將概述GNN背后的理論,討論GNN非常適合的問題類型,并介紹一些最廣泛使用的GNN模型體系結構和設計用來解決的問題/應用程序。其次,它將引入深度圖庫(Deep Graph Library, DGL),這是一種新的軟件框架,簡化了高效的基于GNN的訓練和推理程序的開發。為了使事情更具體,本教程將提供使用DGL的實踐會話。這個實踐部分將涵蓋基本的圖形應用程序(例如,節點分類和鏈接預測),以及更高級的主題,包括在大型圖和分布式設置中訓練GNN。此外,它還將提供使用GNNs和DGL進行實際應用(如推薦和欺詐檢測)的實踐教程。

  • 第1節:圖神經網絡概述。本節描述了圖神經網絡是如何運作的,它們的基本理論,以及它們相對于其他圖學習方法的優勢。此外,它還描述了圖形上的各種學習問題,并展示了如何使用GNNs來解決這些問題。

  • 第2節:深度圖庫(DGL)概述。本節描述DGL提供的不同的抽象和api,這些抽象和api旨在簡化GNN模型的實現,并解釋DGL如何與MXNet、Pytorch和TensorFlow進行接口。然后介紹DGL的消息傳遞API,該API可用于開發任意復雜的GNNs和它提供的預定義GNN nn模塊。

  • 第3節:基本圖任務的GNN模型。本節演示如何使用GNNs解決四個關鍵的圖數據學習任務:節點分類、鏈接預測、圖數據分類和網絡嵌入前訓練。它將展示如何使用DGL的nn模塊實現一個流行的GNN模型GraphSage,并展示如何在不同類型的下游任務中使用由GraphSage計算出的節點嵌入。此外,本文還將演示使用DGL的消息傳遞接口實現定制的GNN模型。

  • 第4節:大型圖的GNN訓練。本節使用第3節中描述的一些模型來演示DGL中的微型批處理訓練、多GPU訓練和分布式訓練。它首先描述了mini-batch訓練的概念如何應用于GNN,以及如何通過使用各種抽樣技術來加速mini-batch計算。接下來將舉例說明一種稱為鄰接抽樣的抽樣技術,如何使用木星筆記本在DGL中實現。然后將該筆記本擴展為多GPU訓練和分布式訓練。

  • 第5節:實際應用的GNN模型。本節使用前面幾節中描述的技術,展示如何使用GNNs開發用于推薦和欺詐檢測的可伸縮解決方案。在推薦方面,本文提出了一種基于最近鄰的項目推薦方法,該方法通過采用端到端的學習方法,利用GNN模型學習項目嵌入。對于欺詐檢測,它擴展了上一節中的節點分類模型,以處理異構圖,并解決了標記樣本很少的情況。

付費5元查看完整內容

教程簡介: 最近AI對話技術的飛躍式發展,無疑與越來越復雜的深度學習算法有關,而深度學習算法所捕捉到的模式是由各種數據收集機制生成的。因此,本教程的目標是雙重的。首先,它旨在讓學術界熟悉基于統計學的對話系統算法設計的最新進展,其中包括開放性領域和基于任務的對話范例。本教程的重點是介紹對話系統端到端的學習機制,以及它們與更加常見的模塊系統之間的關聯。從理論上講,從數據中學習端到端可以為對話系統提供無縫的、空前的可移植性,有著非常廣闊的應用前景。從實踐的角度來看,該領域仍然存在大量的研究挑戰和機會:在本教程中,我們會分析理論和實踐之間的差異,并介紹當前端到端對話學習的主要優勢和實踐中的局限性。

目錄:

  • 理解數據(帶注釋和不帶注釋的)收集對AI對話系統的重要性。
  • 介紹最新的關于AI對話系統的數據收集范式。
  • 闡述大規模無結構的對話數據在對話系統預訓練方面的可用性。
  • 提供端到端數據驅動在AI對話學習模型的概述。
  • 討論數據和算法選擇之間的重要性。
  • 關于當前(任務導向)AI對話在實際操作中的一個行業視角。

下載鏈接: //pan.baidu.com/s/1qV4uQItQSZj0kWsXa4QgPg 提取碼: kk3v

付費5元查看完整內容
北京阿比特科技有限公司