亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

考慮到當今使用的各種大數據應用程序的復雜性,cpu密集型的數據處理任務已經變得至關重要。降低每個進程的CPU利用率對于提高應用程序的總體速度非常重要。

這本書將教你如何執行計算的并行執行,將它們分布在一臺機器的多個處理器上,從而提高大數據處理任務的整體性能。我們將討論同步和異步模型、共享內存和文件系統、各種進程之間的通信、同步等等。

你會學到什么

  • 介紹并行計算和分布式計算
  • 同步和異步編程
  • 探索Python中的并行性
  • 分布式應用
  • 云中的Python
  • 在HPC集群上的Python
  • 測試和調試分布式應用程序
付費5元查看完整內容

相關內容

在不同的編程環境中理解和使用高級C#最重要的特性。這本書教你高級C#的基本特性,以及如何使用Visual Studio 2019將它們合并到不同的編程技術中。

這本書分為兩部分。第一部分介紹了c#高級編程的基本原理和要點。您將了解委托和事件,然后轉向lambda表達式。第二部分將介紹如何用不同的編程技術實現這些特性,首先從泛型編程開始。之后,您將學習線程編程和異步編程,以便從多線程環境中獲益。最后,您將學習使用ADO進行數據庫編程。你將知道如何通過你的c#應用程序執行SQL語句和存儲過程。

你將學到什么

  • 在高級編程中使用委托、事件和lambda表達式
  • 利用泛型使應用程序更加靈活
  • 創建一個使用多線程和異步編程的快速應用程序
  • 在Visual Studio Community Edition中工作,這是使用c#最常見的IDE
  • 理解替代實現及其優缺點

這本書是給誰的

  • 已經在使用c#的開發人員和程序員
付費5元查看完整內容

關于本書

我編寫了《Geoprocessing for Python》 來幫助您學習處理地理空間數據的基礎知識,主要使用GDAL/OGR。當然,還有其他的選擇,但是其中一些是在GDAL之上構建的,所以如果您理解了這本書中的內容,您就可以很容易地獲得它們。這不是一本關于地理信息系統或遙感的書,盡管會解釋一些背景理論。相反,本書將教您如何編寫用于操作和創建空間數據的Python代碼,以及一些簡單的分析。您可以使用這些構建塊來簡化您自己設計的更復雜的分析。

關于作者

Chris Garrard是在猶他州立大學昆尼自然資源學院的遙感/地理信息系統實驗室做了近15年的開發人員。在那段時間里,她一直在教授一門關于Python的GIS課程,她還在校園和會議上教授研討會。她喜歡向人們展示處理數據的開源方法,但是她最喜歡的教學方法是“Aha!”,當某人意識到編碼的能力對他們的工作有多大幫助的時候。

面向人群

這本書是為任何想學習使用地理空間數據的人準備的。本文解釋了GIS和遙感的一些基礎知識,以便初次接觸地理空間分析的讀者了解他們為什么要學習某些內容,但是代碼開始時非常簡單,因此具有地理空間背景但沒有太多編碼經驗的人也會從中受益。

內容介紹

本書共分13章。它首先介紹了地理空間數據和Python,然后介紹了矢量數據、空間參考系統、光柵數據和可視化。

  • 第1章是空間數據和分析的介紹。它描述了您可以對不同類型的數據執行的分析類型,以及向量和柵格數據之間的差異以及它們各自的用途。

  • 第2章是Python的快速入門。

  • 第3章解釋了什么是OGR庫,并教你如何讀、寫和編輯向量數據源。

  • 第4章深入探討向量格式之間的差異。雖然在許多情況下可以對各種格式進行相同的處理,但是在這里您將了解特定的功能。

  • 第5章教你如何過濾和選擇基于空間和attri- bute關系的數據。

  • 第6章描述了創建和編輯點、線和多邊形幾何圖形的細節。

  • 第7章向您展示了如何查看幾何圖形之間的空間關系,以及如何使用這些概念進行簡單的分析。

  • 第8章包括空間參考系統的介紹,然后教你如何使用它們并在它們之間轉換數據。

  • 第9章解釋了什么是GDAL庫,并教你如何讀寫光柵數據集。它還向您展示了如何在實際坐標和像素偏移量之間進行轉換。

  • 第10章向您介紹如何處理光柵數據的各個方面,如地面控制點、顏色表、直方圖和屬性表。它還包括回調函數和錯誤處理程序的使用。

  • 第11章描述了如何在映射代數中使用NumPy和SciPy,包括局部、焦點、區域和全局分析,并介紹了重新采樣數據的一些方法。

  • 第12章向您展示了一些用于有監督和無監督地圖分類的技術。

  • 第13章教你如何使用matplotlib和Mapnik來可視化你的數據。

付費5元查看完整內容

簡單易懂,讀起來很有趣,介紹Python對于初學者和語言新手都是理想的。作者Bill Lubanovic帶您從基礎知識到更復雜和更多樣的主題,混合教程和烹飪書風格的代碼配方來解釋Python 3中的概念。章節結尾的練習可以幫助你練習所學的內容。

您將獲得該語言的堅實基礎,包括測試、調試、代碼重用和其他開發技巧的最佳實踐。本書還向您展示了如何使用各種Python工具和開放源碼包將Python用于商業、科學和藝術領域的應用程序。

  • 學習簡單的數據類型,以及基本的數學和文本操作
  • 在Python的內置數據結構中使用數據協商技術
  • 探索Python代碼結構,包括函數的使用
  • 用Python編寫大型程序,包括模塊和包
  • 深入研究對象、類和其他面向對象的特性
  • 檢查從平面文件到關系數據庫和NoSQL的存儲
  • 使用Python構建web客戶機、服務器、api和服務
  • 管理系統任務,如程序、進程和線程
  • 了解并發性和網絡編程的基礎知識

付費5元查看完整內容

這本教科書解釋的概念和技術需要編寫的程序,可以有效地處理大量的數據。面向項目和課堂測試,這本書提出了一些重要的算法,由例子支持,給計算機程序員面臨的問題帶來意義。計算復雜性的概念也被介紹,演示什么可以和不可以被有效地計算,以便程序員可以對他們使用的算法做出明智的判斷。特點:包括介紹性和高級數據結構和算法的主題,與序言順序為那些各自的課程在前言中提供; 提供每個章節的學習目標、復習問題和編程練習,以及大量的說明性例子; 在相關網站上提供可下載的程序和補充文件,以及作者提供的講師資料; 為那些來自不同的語言背景的人呈現Python的初級讀本。

付費5元查看完整內容

掌握通過機器學習和深度學習識別和解決復雜問題的基本技能。使用真實世界的例子,利用流行的Python機器學習生態系統,這本書是你學習機器學習的藝術和科學成為一個成功的實踐者的完美伴侶。本書中使用的概念、技術、工具、框架和方法將教會您如何成功地思考、設計、構建和執行機器學習系統和項目。

使用Python進行的實際機器學習遵循結構化和全面的三層方法,其中包含了實踐示例和代碼。

第1部分側重于理解機器學習的概念和工具。這包括機器學習基礎,對算法、技術、概念和應用程序的廣泛概述,然后介紹整個Python機器學習生態系統。還包括有用的機器學習工具、庫和框架的簡要指南。

第2部分詳細介紹了標準的機器學習流程,重點介紹了數據處理分析、特征工程和建模。您將學習如何處理、總結和可視化各種形式的數據。特性工程和選擇方法將詳細介紹真實數據集,然后是模型構建、調優、解釋和部署。

第3部分探討了多個真實世界的案例研究,涵蓋了零售、交通、電影、音樂、營銷、計算機視覺和金融等不同領域和行業。對于每個案例研究,您將學習各種機器學習技術和方法的應用。動手的例子將幫助您熟悉最先進的機器學習工具和技術,并了解什么算法最適合任何問題。

實用的機器學習與Python將授權您開始解決您自己的問題與機器學習今天!

你將學習:

  • 執行端到端機器學習項目和系統
  • 使用行業標準、開放源碼、健壯的機器學習工具和框架實現實踐示例
  • 回顧描述機器學習和深度學習在不同領域和行業中的應用的案例研究
  • 廣泛應用機器學習模型,包括回歸、分類和聚類。
  • 理解和應用深度學習的最新模式和方法,包括CNNs、RNNs、LSTMs和transfer learning。

這本書是給誰看的 IT專業人士、分析師、開發人員、數據科學家、工程師、研究生

目錄:

Part I: Understanding Machine Learning

  • Chapter 1: Machine Learning Basics
  • Chapter 2: The Python Machine Learning Ecosystem Part II: The Machine Learning Pipeline
  • Chapter 3: Processing, Wrangling and Visualizing Data
  • Chapter 4: Feature Engineering and Selection
  • Chapter 5: Building, Tuning and Deploying Models Part III: Real-World Case Studies
  • Chapter 6: Analyzing Bike Sharing Trends
  • Chapter 7: Analyzing Movie Reviews Sentiment
  • Chapter 8: Customer Segmentation and Effective Cross Selling
  • Chapter 9: Analyzing Wine Types and Quality
  • Chapter 10: Analyzing Music Trends and Recommendations
  • Chapter 11: Forecasting Stock and Commodity Prices

Chapter 12: Deep Learning for Computer Vision

付費5元查看完整內容

這本書在對算法工作原理的高層次理解和對優化模型的具體細節的了解之間找到一個平衡點。這本書將給你的信心和技能時,開發所有主要的機器學習模型。在這本Pro機器學習算法中,您將首先在Excel中開發算法,以便在用Python/R實現模型之前,實際了解可以在模型中調優的所有細節。

你將涵蓋所有主要的算法:監督和非監督學習,其中包括線性/邏輯回歸;k - means聚類;主成分分析;推薦系統;決策樹;隨機森林;“GBM”;和神經網絡。您還將通過CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度學習。你不僅要學習算法,還要學習特征工程的概念來最大化模型的性能。您將看到該理論與案例研究,如情緒分類,欺詐檢測,推薦系統,和圖像識別,以便您得到最佳的理論和實踐為工業中使用的絕大多數機器學習算法。在學習算法的同時,您還將接觸到在所有主要云服務提供商上運行的機器學習模型。

你會學到什么?

  • 深入了解所有主要的機器學習和深度學習算法
  • 充分理解在構建模型時要避免的陷阱
  • 在云中實現機器學習算法
  • 通過對每種算法的案例研究,采用動手實踐的方法
  • 學習集成學習的技巧,建立更精確的模型
  • 了解R/Python編程的基礎知識和Keras深度學習框架

這本書是給誰看的

希望轉換到數據科學角色的業務分析師/ IT專業人員。想要鞏固機器學習知識的數據科學家。

付費5元查看完整內容

//www.manning.com/books/deep-learning-with-javascript

深度學習已經改變了計算機視覺、圖像處理和自然語言應用領域。多虧了TensorFlow.js,現在JavaScript開發人員可以無需依賴Python或R就能構建深度學習應用程序。使用JavaScript的深度學習向開發人員展示了如何將DL技術引入web。本書由TensorFlow庫的主要作者編寫,為在瀏覽器或Node上使用JavaScript進行深度學習的應用程序提供了有趣的用例和深入的指導。

關于技術

在瀏覽器或基于Node的后端中運行深度學習應用程序,為智能web應用程序開辟了令人興奮的可能性。使用TensorFlow.js庫,您可以用JavaScript構建和訓練深度學習模型。TensorFlow.js具有無與倫比的可擴展性,模塊化和響應能力,其可移植性確實令人眼前一亮。它的模型可以在JavaScript運行的任何地方運行,從而將ML推向應用程序堆棧的更上層。

關于這本書

在Deep Learning with JavaScript這本書中,您將學習使用TensorFlow.js來構建直接在瀏覽器中運行的深度學習模型。這本快節奏的書由Google工程師撰寫,是實用的,引人入勝且易于閱讀。通過以文本分析,語音處理,圖像識別和自學習游戲AI為特色的各種示例,您將掌握深度學習的所有基礎知識并探索高級概念,例如對現有模型進行再訓練以進行遷移學習和圖像生成。

書里面有什么

在瀏覽器中的圖像和語言處理

用客戶端數據調優ML模型

通過生成式深度學習創建文本和圖像

源代碼示例以進行測試和修改

付費5元查看完整內容

//www.manning.com/books/mastering-large-datasets-with-python

現代數據科學解決方案需要簡潔、易于閱讀和可伸縮。在《用Python掌握大型數據集》一書中,作者J.T. Wolohan向您介紹了如何使用Python編碼的功能影響方法來處理小型項目并對其進行擴展。您將探索有助于清晰性和可伸縮性的方法和內置Python工具,比如高性能并行方法,以及支持高數據吞吐量的分布式技術。本實用教程中豐富的實踐練習將為任何大型數據科學項目鎖定這些基本技能。

對這項技術

當應用于大量文件或分布式數據集時,在筆記本大小的數據上運行良好的編程技術可能會變慢,甚至完全失敗。通過掌握強大的map和reduce范型,以及支持它的基于python的工具,您可以編寫以數據為中心的應用程序,這些應用程序可以有效地擴展,而不需要在需求發生變化時重寫代碼庫。

關于這本書

使用Python掌握大型數據集教會您編寫可以處理任何大小的數據集的代碼。您將從筆記本大小的數據集開始,這些數據集通過將大任務分解為可以同時運行的小任務來教會您并行化數據分析。然后將這些程序擴展到云服務器集群上的工業級數據集。有了map和reduce范型,您將探索像Hadoop和PySpark這樣的工具來有效地處理大量的分布式數據集,使用機器學習加速決策制定,并使用AWS S3簡化數據存儲。

里面有什么

  • 對map和reduce范例的介紹

  • 并行化與多處理模塊框架

  • 分布式計算的Hadoop和Spark

  • 運行AWS作業來處理大型數據集

付費5元查看完整內容

題目: A Survey on Distributed Machine Learning

簡介: 在過去十年中,對人工智能的需求已顯著增長,并且這種增長得益于機器學習技術的進步以及利用硬件加速的能力,但是,為了提高預測質量并在復雜的應用程序中提供可行的機器學習解決方案,需要大量的訓練數據。盡管小型機器學習模型可以使用一定數量的數據進行訓練,但用于訓練較大模型(例如神經網絡)的輸入與參數數量成指數增長。由于處理訓練數據的需求已經超過了計算機器的計算能力的增長,因此急需在多個機器之間分配機器學習工作量,并將集中式的精力分配到分配的系統上。這些分布式系統提出了新的挑戰,最重要的是訓練過程的科學并行化和相關模型的創建。本文通過概述傳統的(集中的)機器學習方法,探討了分布式機器學習的挑戰和機遇,從而對當前的最新技術進行了廣泛的概述,并對現有的技術進行研究。

付費5元查看完整內容

The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.

北京阿比特科技有限公司