在21世紀,人工智能侵入了我們生活的各個方面。它通過獲取、存儲和回憶信息,幫助用戶建立對周圍世界的更好理解。最令人震驚的是,每個手機擁有者隨時可以獲得的處理能力超過了第一代計算機的能力。在這種計算能力在私營企業中如此普遍的情況下,軍隊如何將這種技術融入其規劃方法,即軍事決策過程?這項研究探討了人機合作,因為它與陸軍師級的規劃有關。
這項研究解構了MDMP,并提出了與現有人工智能技術及其計算能力,以及人類理解和創造能力相結合的建議。這項分析闡明了通過伙伴式理解的概念獲得的一些流程效率;隨著人工智能學會如何為用戶處理信息,用戶對他們的操作環境獲得了更深的認知理解。這方面的工作也探討了這種整合的成本。
上面的例子在作戰人員的世界里并不是很少發生的。作戰計劃小組必須利用他們的現有資源,最重要的是他們的專業軍事判斷和時間,制定一個計劃供指揮官批準。他們的許多計算、估計和評估將完全取決于他們的集體經驗、理論知識和一些最佳猜測。根據這些計劃和整個陸軍和更大的美國國防部的作戰計劃小組的估計而調整的國家資產,主要是由數據驅動的。將這些數據關聯起來,以更及時的方式提供更精確的人員估計,無疑可以幫助工作人員適應作戰環境,并創造出更多高質量的行動方案、分支和續篇。此外,隨著戰斗的步伐和復雜性的不斷增加,由于通過技術的相互聯系,人類反應、計劃和執行持久行動的認知能力將難以跟上。人工智能技術,總體而言,可能提供了最好的機會,以加強和增強計算解決問題的任務,并減少作戰級規劃人員目前經歷的認知過載。這項技術有可能影響美國陸軍部隊規劃和執行戰爭的方式。
這項研究之所以重要,主要有兩個原因。美國陸軍使用相同的基本規劃方法,即軍事決策過程(MDMP),開展軍事行動已有46年。然而,隨著人工智能在社會應用中的增加,陸軍尚未確定人工智能技術如何在智能任務指揮系統(如XXI部隊旅及以下戰斗指揮系統(FBCB2))之外幫助決策。
其次,思想的全球化已經將人工智能推到了下一次技術革命的前沿。正如20世紀對太空主導權的爭奪刺激了世界主要大國的國家投資一樣,人工智能在21世紀也開始有同樣的投資優先權。人工智能的任何一個領域的重大突破都可能創造出一個在短期內證明不可能克服的優勢。最重要的是,由于我們在政府和私營企業中的信念與敵對國家背道而馳,陸軍和美國處于不利地位。只要專注和精確,軍隊可以從人工技術和軍事規劃的融合中大大受益。
由于本討論的技術性質,術語表是最合適的。以下術語貫穿本專著,為參考提供了基礎。
認知計算--利用各種人工智能技術進行大規模學習、有目的的推理并與人類自然互動的系統
知識庫--精心策劃的數據集或數據體,用作機器學習和認知計算系統的基線。
策劃的數據集--深度學習網絡的基礎知識數據集。
深度學習 - 人工智能的一個方面,涉及模仿人類用來獲得某些類型知識的學習方法。
專家系統 - 人工智能的一種形式,在一個特定的研究領域或專業領域內保持知識。
攝取 - 人工智能系統接收數據的過程。
自然語言處理 - 計算機系統的能力,使用世界知識,通過口頭輸入或書面/打字文本來處理和操作語言,與人類對話。
神經網絡 - 一組處理單元,結構上受人腦啟發,在深度網絡學習中結合一組輸入值產生一個輸出值。
機器學習 - 一個統計過程,從一組數據開始,推導出解釋數據的規則或程序,同時預測未來數據。
伙伴式理解--用戶和人工智能系統之間的迭代對話,其中用戶從系統中獲得更深入的理解,而人工智能系統則獲得對其數據集使用的理解。
強人工智能/通用人工智能--人工智能系統能夠在廣泛的認知任務中表現出明顯的智能行為,至少與人類一樣先進。
弱人工智能/狹義人工智能--人工智能系統能夠成功完成簡單或高度具體的應用。
人工智能技術正在通過私營行業的研究和開發迅速發展。因此,某些技術的許多能力和規格都是專有性質的。這種知識產權的發布對這項研究來說是非常有限的。
本研究假設陸軍師的帶寬分配不會因為作戰人員信息網絡--戰術(WIN-T)的取消而大幅減少或增加。本研究還假設陸軍師在理論上與《戰地手冊》3-94戰區陸軍、軍團和師級行動以及陸軍訓練出版物3-91師級行動的雇傭、組成和能力保持一致。本研究假設在本研究涵蓋的未來五年內,人工智能技術不會有重大突破。最后,本研究假設美國陸軍師提供更強大的網絡帶寬、人員冗余以及與戰場前沿的距離,這將優化人工智能技術的實施。
本專著將直接對人工智能歷史和理論進行簡要概述,以提供對該技術的基礎性理解。隨后,技術系統和軍事規劃的歷史整合將提供與建議在未來應用的相關背景。對MDMP的分析將確定人工智能技術是否可以利用私人產業中的應用進行整合。本專著將討論將人工智能技術納入作戰計劃的潛在權衡和副作用。最后,結論提供了進一步研究和應用的結果和建議。
(第2-3章關于AI的發展綜述請查看原文)
軍事規劃是指令性行動的結果。國家指揮機構指示解決沖突的選項,而軍隊則尋求完成所需的狀態。從本質上講,軍事規劃是一種確定和實施解決方案的手段。在介紹的例子中,相對于應急計劃中完成的研究和規劃工作,作戰規劃小組需要提供與當前作戰環境相關的選擇。技術革命從根本上增加了全球環境的互動復雜性,影響了作戰環境中的區域行為者。美國陸軍學說,特別是陸軍學說參考出版物(ADRP)5.0作戰過程,將規劃定義為 "理解的藝術和科學,設想一個理想的未來,并制定有效的方法來創造這個理想的未來。"對于作戰層面的戰爭,在本專著的其余部分,這被稱為作戰規劃。
在聯合出版物或美國陸軍理論中沒有關于戰役層面規劃的具體定義。然而,作戰水平是國家軍事戰略目標和部隊戰術運用之間的聯系,重點是設計、計劃和使用作戰藝術執行行動。AJP-5將戰役層面的規劃定義為 "在戰役層面進行軍事規劃,以設計、實施和維持戰役和主要行動,從而在特定的戰場或行動區完成戰略目標"。
在這個層次的戰爭中,規劃將戰略轉化為行動。戰役層面的規劃也是概念性規劃和指揮藝術與詳細規劃和控制科學的結合點。這一層次的規劃也最專注于軍事解決方案,在很大程度上擺脫了與戰爭政治相關的模糊性。贖罪日戰爭后的主要行動更關注于實現軍事目標,而不是參與戰爭政治。此外,行動的重點是奪取、保留或利用主動權。例如,在 "沙漠風暴 "戰役的規劃階段,由高級軍事學院培訓的戰役層面的規劃人員不太關心其計劃的政治影響,而是關心如何利用行動藝術來實現軍事目的。
作戰藝術是一種產生理解的工具。因此,戰役規劃在很大程度上依賴于指揮官正確構思問題并將一系列可能的解決方案可視化的能力。陸軍理論指出,作戰藝術是指揮官和參謀部制定戰略、戰役和行動的認知方法,通過整合目的、方式和手段來組織和運用軍事力量。通過對戰術行動在時間和空間上的排序,指揮官和參謀部可以組織系統地擊敗敵對勢力,或在戰役級別規劃開始時確定的戰略目標。與任何級別的規劃一樣,參謀部的經驗對于建立共同的理解尤為關鍵,而且隨著戰爭領域內的行動隨著時間的推移不斷擴大,參謀部的價值將繼續增加。
參謀部很重要,因為他們提供了必要的洞察力,使指揮官能夠做出明智的決定。通過批判性思維、知情分析和經驗,參謀部協助指揮官了解情況,做出并實施決策,控制行動,并評估進展。這些職能推動了行動過程,這是美國陸軍行動層面規劃的基礎框架。
美國陸軍有三種規劃方法,能夠對部隊的使用進行規劃。陸軍設計方法(ADM)和軍事決策程序(MDMP),分別作為戰爭戰略和戰役層面的渠道,而部隊領導程序(TLPs)則只在戰術層面上實現行動。指揮官和參謀部根據問題的復雜性、可利用的時間和參謀部的可用性來決定和使用這些方法的適當組合。沿著規劃的連續性,行政管理的性質大多是概念性的。行政管理的抽象性主要是由于它要解決的業務問題的復雜性。MDMP通過技術還原和基于系統方法的解決方案,很容易解決結構良好的問題。然而,當問題變得更加模糊和不可預測,或結構不良時,軍隊設計方法學提供了批判性和創造性思維的工具,以理解、可視化和描述不熟悉的問題和解決它們的方案。ADM幫助指揮官和參謀部匯總最相關的事實,并提供一種操作方法,以幫助過渡到更詳細的規劃方法,MDMP。雖然概念性規劃需要一些數據來確定進入戰區的力量流動,但MDMP創造了規劃中的大部分詳細行動(圖6)。
圖6. 美國陸軍的規劃方法。美國陸軍,FM3-0,1-20。
軍事決策過程是詳細規劃的起點。MDMP是迭代的、更加明確的規劃方法,建立了將ADM的解決方案框架中表達的概念操作化的框架。MDMP是協作性的,使指揮官和參謀部能夠理解、可視化和描述作戰環境,推進制定執行行動方案的進程。它由一系列的步驟組成,有獨立的輸入和輸出。產出導致了對作戰環境的進一步理解,并促進了MDMP的下一步工作。MDMP在很大程度上是有順序的,這證明了這個過程的嚴格性。MDMP可能是非常耗時的,而且高度依賴于工作人員的知識水平、熟練程度和客觀性。
與任何組織一樣,該部門的工作人員都會帶有無意識的偏見、別有用心的動機和由每個人的經驗所形成的判斷。這些內部動態和戰爭本身一樣,都是人類的屬性。在規劃和決策中,人類的認知偏差是不可避免的,除非工作人員制定了審慎的、客觀的策略來確認假設和調整范式。偏見主要是由于直覺判斷造成的,作者丹尼爾-卡尼曼稱之為系統1思維。利用自然發展的啟發式方法或經驗法則,軍事規劃人員建立了匆忙的認知 "框架",在其中對信息進行分類和處理,從而提高認知效率。 雖然不是所有的偏見都是壞事,但在規劃世界各地的軍事行動時,如果沒有意識到自己的心理傾向,就可能是負面的。
指揮官和參謀人員需要了解作戰環境,以實現共同理解,不僅是為了開展軍事行動,而且是為了敘事,這些軍事行動將向更大的受眾傳播。人工智能可以支持更多的知情決定,同時盡量減少人類的一些明顯的認知偏差。最近在阿富汗使用的人工智能 "瑪文項目 "在減少人類偏見方面被證明是有希望的。算法跨功能團隊讓我們看到了人機合作的潛力。
新興技術與戰爭的結合是一種歷史上出現的現象。自從從長矛和劍過渡到箭和手炮以來,先進的技術不斷提高戰爭的殺傷力和破壞力。然而,并非所有的技術創新都與 "前線戰斗"有關。例如,當普魯士陸軍總司令赫爾穆特-毛奇(Helmuth Moltke)將復雜的鐵路系統納入普魯士的動員計劃時,這項技術主要支持他的后勤和人員補充,積極影響他的作戰范圍。這種 "前線背后 "的技術與機槍的發展和使用不同,機槍直接促進了第一次世界大戰期間塹壕戰的殺傷力的增加。未來的戰爭也呼應了同樣的觀點。
從概念上講,過渡到一個多維的戰場,人工智能技術可以作為 "傳感器"、"戰斗機 "和 "規劃者",或其中的組合來使用。每種角色都對軍事手段的實施和應用有促進作用--在 "前線",或在 "后方"。無人駕駛飛行器(UAV)提供了一個前線傳感器和戰斗能力的例子,這取決于其變體和有效載荷。致命自主武器(LAW)是使用人工智能技術作戰的另一個例子。
直到最近,用于感知和戰斗的人工智能技術是最常見的就業建議。然而,規劃中的人工智能正開始作為 "第三次抵消戰略"的一個要素重新出現,利用新興技術來增強技術優勢。從美國國防高級研究計劃局(DARPA)的戰略計算倡議開始,到當代的機器人和自主系統戰略,美國國防部正在繼續努力將技術融入軍事行動。
美國國防部高級研究計劃局(DARPA)于1983年制定了戰略計算計劃,作為資助和開發日益有效的人工智能軟件的一種手段。該計劃將智能機器作為一個由相互關聯的子系統組成的單一問題來處理。通過大學和工業界的合作開發子系統,戰略計算計劃可以規劃出這些系統與現有技術的連接和接口。從一開始,戰略計算計劃就有很高的雄心壯志;預測在計劃結束時能實現完全自動化的機器智能,而這是在十年后。該計劃試圖分析和回答有關規劃任務的支持或自動化的關鍵問題。研究后來發現,開發完全自動化的規劃軟件既不可能,也不被軍方認為是可取的,但一個支持人類能力的系統是可行的。
這個時代的兩個擬議的軍事應用以專家系統和自然語言理解為中心。通過創建一個有能力解決問題、提供建議、預測并在狹窄的考慮范圍內提供理由的專家系統,開發者試圖為軍事規劃者創建一個知識體系。這種能力將與自然語言理解協同運作,使機器有能力理解自然語言作為一種交流界面。然而,20世紀80年代的計算機技術無法解釋本地語言,也無法可靠地對該信息采取行動。相反,用戶必須使用一種風格化的、正式的計算機語言和非常有限的關鍵詞來向計算機發出命令。雖然當時的技術不支持這一概念,但這一努力所產生的對話將落實到其他具有意義的項目中。
DARPA后來與MITRE公司和卡耐基梅隆大學合作開發了動態分析和重新規劃工具(DART),以分析智能規劃系統的可行性。作為一個基于人工智能的決策支持系統,它在波斯灣戰爭期間被用來確定在世界各地運輸軍事物資的物流要求。美國運輸司令部和歐洲司令部報告了這個項目的成功,因為它抵消了DARPA之前30年的資金使用。在接下來的20年里,這個項目將發展成為聯合發展和執行助理(JADE),一個支持在最短的時間內(一小時)制定大規模、復雜的部署計劃的規劃工具。JADE與聯合行動規劃和執行系統(JOPES)對接,產生今天仍然使用的時間階段性部隊部署數據(TPFDD)。DART和JADE是非常實用的程序,因為它們使軍事規劃人員能夠在問題發生之前就識別和預測。這些系統卸載了人類操作的認知任務,"提示 "這些規劃者計劃中的摩擦點。不幸的是,這些系統采用的人工智能水平高于操作水平,使戰術規劃人員無法使用它們。
美國陸軍通信電子司令部(CECOM)進行了平行的努力,建立了ARES項目,這是一個使軍團級規劃者能夠進行決策的助理系統。ARES項目是一項基礎研究和探索性開發,調查1986年陸軍軍團級組織對人工智能方法和工具的應用。ARES的目標是展示一個基于人工智能的輔助系統,為未來的行動進行規劃并控制正在進行的行動。使用地形分析、形勢分析和行動方案生成工具,該系統以最大限度地提高人機界面為導向。這些能力支持了規劃人員,減少了對緊張環境的認知壓力。
然而,作戰研究發現,當規劃人員必須考慮具有不同能力的若干執行機構的同時行動時,人工智能規劃理論有一個重大問題,即過于復雜。雖然ARES項目未能完成其最初的目標,但其對地形分析和士兵-機器互動的關注將未來的研究重點轉移到智能系統上,刺激了XXI部隊系統的創建。雖然這些系統是有用的,但它們只是提供態勢感知,而不是人工智能系統所要的任務自動化。此外,這些系統為先進的電子戰產生了一個可瞄準的信號,這是復雜戰場的一個缺點。
第三次抵消戰略是一項克服對手均勢、減少軍事力量結構和下降的技術優勢的計劃。這項多年的努力為一系列的重點領域提供了方向和資金。這些領域包括反介入和區域拒止(A2AD)、制導彈藥、海底戰、網絡和電子戰、人機合作以及兵棋推演和概念開發。第三個抵消戰略解決的主要問題之一是,美國有可能危險地落后于那些在先進技術上投入大量資金且沒有自我約束的潛在對手。隨著該戰略繼續在一個概念下調整目的、方式和手段,諸如機器人和自主系統戰略等附屬倡議有非常集中的努力來支持該戰略。
為了應對近似競爭對手的全球部隊現代化努力,美國陸軍在2017年制定了機器人和自主系統戰略(RAS),在一段時間內對投資和能力重點進行優先排序。RAS有五個能力目標:提高態勢感知,減輕士兵負擔,維持部隊,促進運動和機動,以及保護部隊。該戰略的重點是人機協作,也被稱為 "有人-無人協作"(MUM-T)。這一概念將人與自主系統或人工智能結合起來,以提高決策速度--這是當代戰場上急需的屬性。這一戰略應對了未來OE中的挑戰:戰場上行動速度加快,對手越來越多地使用RAS,以及競爭環境的復雜性擴大。
雖然這些目標是第三個抵消戰略的一個子集,但它們提供了一個新的戰術層面的重點。然而,這一戰略需要在更高層次上的補充技術。例如,RAS建議增加營級及以下級別的無人駕駛飛機和地面系統的數量。然而,營級人員的班、排和連的系統的大幅增加可能意味著收集和處理的數據量的指數級增長。如果高層沒有人工智能系統,師部工作人員將無法跟上同步行動的步伐。更糟糕的是,這些工作人員可能會在認知上被傳輸的大量數據所淹沒,使他們無法有效管理整體作戰環境。正如毛奇將軍通過補充性的鐵路運營官員(一種早期的人機合作形式)將鐵路運輸的復雜性引入到戰爭中,這一戰略需要在更高層次上做出平行努力。
人機合作是指系統和人的配對,以抵消兩者的弱點。美國陸軍的無人機系統和AH-64阿帕奇直升機采用了這種概念,稱為人機合作(MUM-T)。通過這一過程,陸軍AH-64阿帕奇飛行員能夠在被認為對載人航空過于危險的環境中使用和控制無人系統。MUM-T使無人系統能夠利用其優勢、對峙距離和目標獲取,以最大限度地發揮飛行員的優勢、殺傷力和反應能力。這一概念可作為人工智能人機協作的基礎。
在人工智能的范圍內,人工思維和人類思維的配對就是這個概念。人類提供目標、創造力和道德思維,而人工智能頭腦提供自學的經驗、直覺和預測能力。這種能力存在于目前的人工智能技術中。例如,通過算法,AlphaGo系統擊敗了世界上最好的圍棋選手,這個游戲估計比國際象棋復雜300倍。前面提到的深藍所使用的技術,對于下圍棋的計算機來說是不切實際的。因此,通過機器和人的合作,軍方可以保持 "人在回路中",同時獲得提示性反應和加強對情況的了解的好處,類似于前面提到的阿帕奇直升機飛行員。
綜上所述,人工智能和軍事應用的融合并不是一個新概念。不幸的是,在最初構想時,這種人工智能系統和人類規劃者的愿望遠遠超過了那個時代的技術能力。計算速度和計算機科學技術在過去三十年中取得了指數級的進步。鑒于私營企業的進步,人工智能的使用成為一種社會規范,并擴散到日常生活的所有其他方面,在過去幾十年里曾經被認為是不可思議的愿望現在可能即將實現。
這項研究確定了MDMP從自動化中受益的地方,同時考慮到與這種行動相關的權衡。此外,軍事決策過程在陸軍總部的各級戰爭中都有使用,但基本分析將以陸軍師為參考框架。在師一級,工作人員將足以通過各種規劃范圍管理多項規劃工作。這項研究將首先對軍事決策過程進行分析,研究一些步驟的具體投入和產出。然后,研究分析最相關的輸出,以確定人工智能是否可以提供輸出或增強人類工作人員的能力,同時也確定目前是否存在這種技術。該研究還將討論在這些下屬流程中獲得成功的基本技術要求。本節還將探討軍事和商業應用中類似的現有技術。最后,研究將討論在該過程中使用人工智能的權衡,提供與一些模擬過程的相似之處,這些過程隨著人類對技術過程的日益依賴而萎縮。
軍事決策過程由七個步驟組成,整合了被稱為作戰功能的專業領域。MDMP有獨立的輸入和輸出,能夠增加對形勢的理解。MDMP是陸軍作戰過程中 "規劃"步驟的基礎,隨后是軍事行動的準備、執行和評估。如下所述,每個步驟都有子過程,在人工智能技術的支持下,這些子過程可能更有效,也可能更及時。那些最好由人工智能支持的子流程如下:
接到任務是MDMP的第一步。這一步涉及剖析上級總部的行動命令,同時使計劃得以啟動。它需要提醒工作人員和其他關鍵參與者,收集必要的工具,并對可用于規劃的時間進行初步評估。接收任務還涉及到建立規劃的計劃--更廣泛的陸軍行動過程的一部分。通常情況下,師部工作人員在上級部門建立行動區域時進行平行規劃,并將產出產品過渡到MDMP中使用。MDMP包含了陸軍設計方法的要素(如作戰方法),ADM過程的概念性需要人類的創造力和批判性思維。作戰方法通過建立上級總部、作戰、規劃門路和敵方時間線之間的時間線來設定過程的節奏和軌跡。第一步的產出是指揮官對規劃方法的初步指導和發布第一個警告命令。
圖7. 任務協助計算(MAC)系統的圖形描述。
在MDMP中,人工智能將利用認知計算方法為該過程提供補充支持,實現深度學習。正如任務指揮系統在MDMP第一步的 "收集工具 "子步驟中被準備和吸收一樣,人工智能系統,任務協助計算或MAC,將被提供一個由高級總部行動命令/附件組成的精心策劃的數據集。這個攝取過程將支持對第一步中產生的最新人員估計進行交叉分析,同時允許與用戶互動,在系統的神經網絡中建立更好的聯系。使用由FM6-0和參謀部生成的預先格式化的警告令模板,系統會自動將來自上級總部的信息填充到警告令中。基于對聯合和機構間系統冗余網絡的漸進式訪問,該系統將對信息進行關聯,以便在MDMP的第二步與參謀部進行分析和討論。(見圖7)
MDMP的第二步是任務分析。這是MDMP中最重要的一步,因為它定義了包含問題的環境背景。通過對形勢的繼續評估,任務分析確定了作戰環境的框架,以產生問題和任務陳述,以及指揮官的意圖,從而推動作戰行動。如果問題陳述、任務陳述或指揮官的意圖從一開始就沒有被充分理解,任務成功的可能性就會大大降低。因此,每一個子步驟在計劃中都是重要的和相關的。下面的插圖討論了這些子步驟。
在一個師的規劃人員的 "整合單元 "中,無論是規劃、未來行動還是當前行動單元,都會有來自每個作戰職能小組的成員負責一個任務分析子步驟。在某些子步驟中,每個職能小組都需要審查、分析并向小組提交相關信息。例如,每個作戰職能部門都必須識別、分析和評估上級指揮部下達的指定的、隱含的和基本的任務。通過其他子步驟,如戰場情報準備(IPB),每個作戰職能部門都要對各自的對抗職能進行分析(如友軍火力資產與敵軍火力資產),但情報作戰職能部門負責管理這一過程。隨著各職能小組在每個子步驟中的工作,集體產品在任務分析簡報中向指揮官傳達了結論(子步驟14)。研究人員選擇了任務分析的第1-3、4和6個子步驟來整合人工智能。這些步驟是數據驅動的,為人工智能提供了最佳用途。
美國陸軍,ATTP 5-0.1,4-6。
在收到上級總部的行動命令和附件后,MAC將被加載數據。這一行動使系統能夠在作戰命令數據之間建立聯系,為與用戶結成伙伴式的理解做準備。當陸軍規劃人員需要信息時,MAC準備好提供答案,以及其回應背后的原因。例如,MAC會根據用戶的要求提供高級指揮部的行動概念,以及在命令中發現的任何其他文本信息。隨著用戶對命令越來越熟悉,并需要參考整個附件中的具體措辭,MAC將能夠根據要求提供頁面和其他背景信息,從而使各梯隊人員之間更好地同步。當信息發生變化時,MAC可以進行更新,并提醒下級參謀部注意這一變化,同時也將變化記錄下來,供以后參考。隨著任務分析進入戰場情報準備(IPB),MAC在匯總有關環境的數據以幫助增強參謀部對形勢的了解方面將是至關重要的。
戰場情報準備(IPB)是分析敵人、地形、天氣和民事因素等任務變量的系統過程,以確定它們對敵方和友方部隊行動的影響。IPB通過事實和假設深入了解友方和威脅部隊的互動。通過識別計劃中的關鍵差距,IPB也推動了指揮官的情報收集工作。這些工作產生了情報知識,并進一步完善了行動圖景,為指揮官提供了一個更強大的理解基礎來做出決策。IPB包括四個步驟。界定作戰環境,描述環境對作戰的影響,評估威脅,以及確定威脅的行動方案。用于執行這些步驟的數據從廣泛的來源收集。一旦策劃的地理空間數據、敵方模型數據、基礎設施數據和氣候學數據被上傳,這就允許MAC對數據進行匯編,并提供一些規劃者無法立即看到的關聯性。這種人機合作,或者說是拴住的自主權,支持工作人員通過迭代對話和伙伴式學習,對環境有更深入的了解。
與亞馬遜Echo、Alexa或Google Home技術類似,MAC會回答有關其數據庫內任何內容的問題。例如,"MAC,告訴我關于Atropia的人口中心"。該系統將提供有關人口的文化和人口屬性的信息,以及其中的基礎設施狀況。通過查詢近乎實時的社交媒體數據,該系統可以提供大氣,從而為行動方案的規劃提供依據(例如,敵對與中立的人類地形)。通過自然語言處理(NLP)和問題解答技術(QA),系統可以與用戶進行對話,以促進更好的理解。在這些互動中,用戶將完全控制對話,將對話從數據到信息再到理解的認知層次提升。在本研究中,人類和機器之間這種級別的對話在商業行業中存在。
美國境內的許多家庭已經部署了自然語言處理技術。這項技術的下一步發展是使系統能夠提出探索性的問題,對用戶的詢問提供更好的答復。QA技術也是存在的,最新的例子是IBM的Watson,它利用這項技術贏得了Jeopardy節目。與任何系統一樣,其改進在很大程度上取決于反饋,MAC也不例外。該系統將就提供給用戶的答案征求反饋意見,作為互動的質量保證機制。這些反饋將使數據管理人在必要時對數據集進行調整,同時也對算法進行微調。
在IPB完成后,MAC將提供機動性數據以告知友好和敵對的COA。這將包括通過衛星圖像分析和來自機構間來源的其他數據饋送的實時移動條件,這些屬性在過去幾年中通過人工智能進行了證明。隨著規劃的繼續,除了向用戶發出任何其他正式要求的警報外,MAC將提示規劃者驗證或證明是無效的假設。這種能力擴展了Project Maven所采用的現有技術,Maven項目是2018年部署在阿富汗的人工智能技術,用于支持圖像情報(IMINT)的情報分析員。
用戶和MAC將共同生成整個MDMP中使用最多的IPB產出,即事件模板、初始信息要求、決策支持矩陣和決策支持模板。在協助用戶的過程中,MAC將提供建議的條目,以便進行編輯或完全修改。隨著時間的推移和對已批準產品的觀察,MAC將改進其對用戶的建議,特別是對問題陳述和任務陳述的建議。
任務是指由士兵、單位、組織完成的明確界定和可衡量的活動,可支持任務。特定的任務在上級總部的命令或指導中明確指出。隱含任務必須完成指定任務,盡管這些任務可能沒有明確說明。最后,為完成任務必須完成基本任務。基本任務是特定的或隱含的任務,但在行動中始終是任務說明的一部分。參謀部必須找到、理解并說明每一項必要的任務,以便更好地計劃和執行行動。
通常情況下,參謀部的規劃人員會仔細研究上級總部的行動命令和附件,有時會超過50頁的文本,試圖找出與特定作戰功能相關或涉及的任何任務。雖然這種方法很繁瑣,但它可以提取任何可能對開展行動至關重要的特定和隱含任務。這種方法還能通過在指揮層之間產生澄清來加強工作人員的理解。然而,在更高的層次上,行動命令可能有幾百頁,并有許多附件,處理所有任務的能力可能是壓倒性的。更糟糕的是,這個過程需要時間,很少有工作人員真正閱讀所有的命令來理解,從而導致計劃的失誤。
使用文本掃描軟件,MAC將掃描命令、附件和書面指導,以提供一個與被查詢單位和作戰功能相關的任務的綜合。例如,一名維持計劃人員會問:"MAC,請從第十八軍團第12-345號命令中提取與第一裝甲師和維持作戰功能相關的所有任務。" 然后MAC將顯示結果,同時口頭上提供任務數量的整體描述。在參考了所提供的源網頁的維持計劃確認后,相關的任務會填充到維持運行的估計中。這個過程同時在每個作戰功能中反復進行,將工作人員的精力從無數個小時的閱讀和搜索轉移到分析和綜合知識上,以便進行下一階段的規劃。
問題陳述提供了阻礙實現預期目標或目的的問題或障礙。盡管行政部門為問題的制定提供了參考,但任務分析的次級步驟為行動環境和行動問題提供了適當的框架。問題陳述幫助指揮官和參謀部制定解決方案以實現預期目標。
任務說明是描述組織的基本任務、目的和行動的簡短句子或段落。根據單位的基本任務,參謀部提出任務說明供指揮官批準。上級總部的行動命令和指揮官的指導為一個單位的任務提供了信息,使任務說明變得公式化,從而可由人工智能程序計算出來。
雖然,人工智能有能力匯總、識別和回憶數據,但它仍然缺乏獨立創建問題陳述所需的抽象思維能力。盡管如此,由于任務陳述是公式化的,使用單位指定和隱含任務的具體輸入,MAC可以提出一個任務陳述。使用軍事規劃人員使用的相同方法,該系統將提供建議并不斷接收用戶反饋,從而通過深度學習技術實現長期改進。MAC還將有能力檢查、分析和分類用戶生產的產品之間的因果關系,允許其深度強化學習存儲并為未來的應用產生建議。
該系統將能夠根據任務分析簡報中批準的數據和以前的警告令草案制作最新的警告令。用戶將批準警告令草案的數據字段,根據需要為下屬單位編輯任何信息。此外,系統將為未來行動命令(第7步)提供最新的輸入數據,隨著計劃的制定和完善,更新數據字段。系統還將提示用戶從上級指揮部處理的分片命令中獲得新的信息。例如,如果上級指揮部批準了一個單位邊界的改變以調和戰斗空間,MAC將更新COA開發小組,并建議更新作戰命令模板,提醒計劃人員注意該信息和計劃中受影響的部分。
行動方案的制定是為指揮官提供選擇的方法。使用下屬單位之間同步的戰術行動,行動方案是對所確定的問題的廣泛的潛在解決方案。行動方案的制定包括七個下屬步驟:評估相對戰斗力、產生選擇、排列部隊、制定一個廣泛的概念、分配總部、制定行動方案和草圖、進行行動方案簡報。人類規劃者仍然是完成這些步驟的主要代理人。今天的人工智能技術還沒有展示出協調行動方案的能力,考慮到計劃火力、同步情報資產和安排運動隊列所需的細節水平。MAC將通過使用地形數據、氣候數據和特定車輛的機動性數據,提供隨時間變化的運動分析,來支持每個子步驟。這項技術類似于谷歌地圖,但包含了一個更強大的算法,以考慮到跨國流動性、編隊規模、移動走廊和車輛類型。來自MAC的分析將使時間線的準確性更加鮮明,并為整個計劃提供更好的同步性。當計劃人員為每個行動方案制定同步矩陣時,MAC將按作戰功能將COA小組的投入填充到COA聲明中,以實現協作。一旦選定的行動方案進入下一步,即戰爭博弈,MAC就會協助確定減員和隨時間推移的相對戰斗力。
兵棋使指揮官和參謀部能夠確定與所考慮的作戰行動相關的困難和協調問題。通過對計劃中的假設和行動進行現實測試,各組織可以預見潛在的風險、摩擦點以及會阻礙任務完成的行動(友軍和敵軍)。這一步也影響了指揮官對作戰問題的理解,確定所提議的解決方案是否會帶來所提議的最終狀態。如果提議的作戰行動方案不可行、不可接受、不合適、不完整或無法區分,那么作戰行動方案將回到發展過程中進行完善。
通過這一步驟,MAC將提供兩種功能。最重要的工作是為每個COA建立計算機輔助的模型和模擬。考慮到COA數據需要更新,這個方案非常耗費時間。用戶必須驗證從系統輸入中收集到的數據(如總部、特遣部隊組成等),以便正確地排列部隊和作戰計劃。第二個功能的強度較低,涉及計算每次交戰的結果。這個功能很重要,因為它提供了對一段時間內戰斗力的分析。它還提供了對戰術行動有效性的評估,保留了足夠的戰斗力以實現任務和期望的最終狀態。MAC將考慮到技術武器數據;殺傷概率和車輛軍備數據來提供結果。人類規劃者仍將負兵棋推演方法和兵棋簡報。這一步的產出將不涉及人工智能。
MDMP的最后一步是命令生產、傳播和過渡。在這個步驟中,計劃過渡到行動過程的執行階段。第7步包括制作和傳播行動命令、附件和附錄。在這一過程中,工作人員負責核對由于疏忽或基本計劃的變化而造成的規劃差距。此外,參謀部還與上級指揮部進行聯絡,適當反映作戰環境和軍事計劃的關鍵變化。每個作戰職能部門都有一個指定的部分來完成作戰命令,所有部分都必須確保集體產品的連貫性、全面性和完整性。在一個陸軍師中,單元有一個指定的人負責編寫作戰命令的輸入,同時還有一個指定的人將所有的部分編入最后的命令。
MAC,使用整個過程中的數據輸入,將是在這個任務中執行的主要代理。例如,該系統將從批準的COA草圖中讀取COA聲明,并將此文本作為行動部分概念的基礎。由于系統攝取了上級總部的情況和行動概念的段落,它將提供這些作為對師部命令的建議,并在數據集中進行核算修訂。
同樣的活動將發生在每個作戰功能的附件和附錄中。此外,系統將對照已經提交的支持性文件審查新輸入的數據,提示用戶文件之間的差異或規劃的差距,類似于一個更強大的拼寫和語法檢查,像Grammarly程序。一旦調和,用戶將提交該部分,讓指定的編譯人員完成項目。被指定的匯編者將是批準、編輯和審查計算機上轉寫的數據的系統用戶。這項技術是對谷歌應用目前所使用的智能回復技術的改編。使用能夠編寫電子郵件的深度神經網絡,這種形式的人工智能分析電子郵件的內容,并應用一套復雜的編程規則來構建一個回復。人類沒有參與這個過程;算法正在通過機器學習和接觸內容繼續處理自然語言。
隨著MDMP的完成和訂單的打包分發,MAC將繼續支持工作人員,在附件和附錄中推薦文本條目。隨著整個行動過程中的變化,MAC將繼續為集體工作人員提供提示,以便從更高的命令中進行修改。此外,隨著后續MDMP的發生,MAC將建議對行動環境的演變進行修改。這種迭代過程將持續到該司部署完成,在這種情況下,數據集被分析并適應未來的系統。策劃的數據集將被適當地分類細化,以考慮到以前用戶的反饋,隨著時間的推移創造一個更好的系統。
隨著任何技術的使用,人類從根本上適應于更好地發揮其效用。人類與現今移動設備的互動和依賴最能證明這種認知適應。在尼古拉斯-卡爾的著作《淺灘》中,他討論了由于我們與個人計算設備的互動,人類的注意力持續時間更短,專注能力受阻。隨著人工智能和戰役層面規劃的融合,軍事規劃人員有可能變得依賴技術提供的速度和易用性。這種可能性類似于世界上對谷歌查找信息的依賴(速度和易用性)與深入思考和記憶信息的技能萎縮之間的相關性。在任何一種情況下,美國陸軍都面臨著規劃人員在師級高度競爭和嚴酷環境中適應能力下降的風險。然而,使用退化的系統進行訓練可以減輕這種風險。此外,規劃人員在較低層次上仍將使用沒有人工智能的MDMP,從而保留了模擬規劃的技能。另一個風險是計劃人員各梯隊之間面對面的合作可能減少,因為系統以電子方式拉動和存檔OPORD信息。這種影響類似于電子郵件通訊的增加和實際通訊的減少之間的關聯。這些影響都是不可避免的,但并不嚴重妨礙軍事規劃的進行。事實上,這些風險是值得的,因為將人工智能整合到作戰層面的規劃中,可以提高效率、速度和準確性。
人工智能比以往任何時候都更傾向于社會規范。這項技術幾乎伴隨著人類生活的每個方面。深度強化學習和專家系統技術的進步正在使私人企業激增。然而,美國軍隊只是見證了人工智能力量的一小部分。隨著其他發達國家對人工智能技術的投資成倍增長,美國正在落后于創新曲線。如果不增加、逐步將人工智能納入軍事規劃單元和作戰規劃團隊,那么作戰過程將不會對未來產生有利影響。此外,美國陸軍站在見證一個戰場,讓我們的認知能力無法規劃、準備和執行,適應使用MDMP的行動。
通過人工智能的能力來分析MDMP,這項研究確定了通過部分融合獲得的潛在效率和積極表現。人工智能技術應逐步整合到陸軍師級MDMP中,以發揮其能力。目前的人工智能技術可以支持MDMP的某些方面,但只有在為軍事用途做了具體的調整之后。未來的研究應該調查目前在戰斗環境中使用人工智能技術的陸軍跨職能小組的擴展情況,以便將規劃過程納入其范圍。最后,研究應該調查人工智能在所有作戰功能中的好處。
2022 年 10 月 11 日,美國陸軍發布了一份綜合數據計劃(ADP),這是一種全軍范圍內改進數據管理以確保陸軍成為以數據為中心的組織的方法。
該計劃是一項為期三年的工作,將改善整個陸軍的數據管理、數據治理和數據分析。作戰任務是陸軍數據計劃的當前重點。ADP 在該任務領域的成果是通過進行必要的更改來確保作戰人員的數據得到正確管理和使用,從而為作戰人員提供優勢。陸軍已經開始對數據管理能力、工具和模型進行原型設計,以實現這一目標。
陸軍首席信息官 Raj Iyer 博士說:“數據以及如何在所有梯隊中整合這些數據以實現真正快速、敏捷的決策,才是真正為陸軍提供其在未來戰爭中所需的競爭優勢的關鍵。”
數據和數據分析將為 2030 年的陸軍提供動力。士兵將需要在正確的時間和正確的地點獲得正確的數據,以便在每個梯隊做出更快、更好的決策——以超越任何對手的思維和步伐。
與早期的軍事行動相比,現在的戰爭范圍更大且范圍不斷擴大。作為聯合全域作戰的一部分,多域作戰是陸軍必須準備并贏得下一場戰斗的地方。這是一個數據豐富的環境。
每個領域都有自己的信息和數據流,一些信息來自開源情報,一些來自天基傳感器,還有一些來自網絡空間。今天的士兵和指揮官需要跨領域的綜合來主宰戰場。
ADP 概述了工作的組織并提供了總體戰略目標。它側重于中期努力,未來將被另一個更新所取代。
通過陸軍數據計劃實現這一決策優勢是陸軍的關鍵目標。
美國陸軍未來與概念中心 未來戰爭部主任 克里斯-羅杰斯上校
歷史上的戰爭包含了大量改變戰爭性質的工具和技術的例子。自最初研究多域作戰(MDO)以來,美國陸軍發現人工智能是一種新興技術,有可能改變戰爭的特點,也許也會改變戰爭的性質。使用人工智能(AI)解決方案來緩解軍事問題是過去兩年未來戰爭研究、檢查和學習的一個反復出現的主題。作為2019年未來研究計劃的一部分,我們與陸軍、聯合、多國、學術和科技組織合作,探索和了解人工智能對多軍種的影響,并為未來的研究和發展制定一個操作框架。
多域作戰的人工智能運作最終報告提供了采用人工智能的組織框架,以幫助陸軍和聯合部隊更好地定義所需的能力以及相關的數據和網絡架構,以實現多域能力部隊。描述聯合部隊如何采用人工智能解決方案,為了解人工智能在時間和空間上對多域作戰的影響提供了一個操作說明。本報告確定并解決了與人工智能相關的好處、機會和挑戰,為進一步分析提供了基礎。諸如人工智能等新興技術使陸軍不僅可以改進當前的戰術、技術和程序,而且可以創造新的運用和融合能力的方法。
該報告支持美國陸軍人工智能任務組,該組織負責制定陸軍的人工智能戰略和政策。本文通過描述部隊如何在整個MDO框架內采用人工智能解決方案和相關技術,啟動了陸軍的人工智能運用工作。這份報告使概念發展團體能夠修改陸軍功能概念和戰場發展計劃。它為能力發展團體提供了作戰視角和部隊在確定所需能力時必須考慮的技術影響。此外,該報告還為作戰概念文件或基于能力的評估提供了開發情景或小插曲的基礎。該文件為科學和技術界提供了行動背景,以便為人工智能研究、開發、建模和模擬提供信息和指導。最后,它支持制定一個在未來使用人工智能的全面愿景,以告知陸軍現代化的努力,這將創造有能力的MDO部隊,準備好與任何對手作戰并取得勝利。
人工智能(AI)是未來聯合部隊實現多域作戰(MDO)全部潛力的基礎。人工智能系統提供了跨越領域、電磁頻譜和信息環境戰勝對手的能力。在競爭中使用這些系統使聯合部隊能夠近乎實時地了解作戰環境,從而更好地運用能力來擊敗旨在破壞區域穩定的威脅行動,阻止暴力升級,并將被拒絕的空間變成有爭議的空間。在從競爭到武裝沖突的過渡中,人工智能的機動、火力以及情報、監視和偵察能力為聯合部隊提供了拒絕敵人奪取優勢地位的能力。改進的維持能力與攻擊敵人的反介入/空中拒止網絡的能力相結合,為美國部隊提供了奪取作戰、戰略和戰術優勢位置的能力。通過由人工智能支持的多領域聯合行動圖(MDCOP)增加了解,使美國部隊有能力協調多領域的效果以創造優勢窗口。
制定人工智能的作戰概念使陸軍能夠更好地理解這些技術對戰爭的性質和特征的潛在影響。描述陸軍如何在未來的作戰環境中使用人工智能,有助于說明其對戰爭的暴力、互動和基本的政治性質的影響,以及戰爭不斷演變的特點。本文提供了一些小插曲(附錄A),說明了人工智能的組織運用,為美國陸軍RAS總體概念、作戰和組織概念、基于編隊的作戰概念以及系統或單個系統的運用概念的潛在發展提供信息。
人工智能的運作影響到未來部隊將如何運作,如何針對對手開展行動,以及指揮官如何利用軍事藝術和科學,運用部隊能力來實現預期效果和目標。在2019年未來研究計劃(FSP19)期間,人工智能工作線(LoE)確定了與實施人工智能支持的多領域解決方案有關的以下問題:
數據管理--AI/ML應用程序依賴于對策劃的數據的訪問,以便發揮作用。陸軍必須培養一種以數據為中心的文化,以標準化的格式和協議有效地生成、存儲和訪問數據。人才管理的努力必須側重于發展、培訓和保留一支精通數據的員工隊伍。這可以通過以下方式實現:
在整個部門培養一種以數據為中心的文化
投資于整個員工隊伍的數據科學培訓
簡化數據訪問
設計和實施協議,以確保數據的可發現、可訪問、可共享和可互操作性
功能分解--狹義的人工智能本質上是有限的,構建算法的數據科學家需要精確的問題定義,準確確定聯合部隊的要求。
可解釋人工智能--人工智能支持的系統需要有能力解釋決策/建議和所采取的行動背后的邏輯。這種解釋 "為什么"的能力是人類對人工智能智能體的信任基礎。
邊緣計算/人工智能--未來的作戰環境與有爭議的電磁頻譜預期要求有能力向前處理極其龐大的數據集,以及能夠自主行動的人工智能平臺。
利用商業部門--美國防部實驗室繼續在人工智能/ML發展方面取得重大進展,特別是與聯邦資助的研究和發展中心合作。商業部門繼續探索和擴大可能適用于軍事應用的工作。
作為FSP19的一部分,人工智能LoE開發了五個小插曲和一個概念草圖(見附錄A),以協助人工智能和機器學習的運作。這些小插曲說明了聯合部隊如何利用人工智能/ML來解決多領域行動所需的關鍵能力。MDCOP概念將依靠幾個有限內存的人工智能來建立和維護描繪整個戰場的藍、紅、綠活動。一個反應式機器人工智能將為特定的指揮官和總部定制MDCOP。合作傳感、維持、攻擊和瞄準的小插曲依靠反應式機器人工智能來優化傳感器覆蓋、維持吞吐量、攻擊順序和射手選擇。
未來部隊需要人工智能來充分實現多領域作戰的潛力。人工智能支持的系統使未來部隊能夠進行信息收集和分析,以便在時間有限和信息競爭的環境中增加對形勢的了解。這種能力使快速、知情和合理的決策成為可能。人工智能的決策支持代理將減輕作戰人員的認知工作量并提高整體效率。由人工智能支持的無人系統將探測、識別和穿透高風險區域,以提高開展行動和保護部隊、人口和資源的能力。人工智能使MDO在與近似對手的沖突規模下實現了作戰速度的要求。
美國缺乏一套專門的人工智能(AI)戰爭的理論。這導致了在戰爭的作戰層面上缺乏對人工智能影響的討論。人工智能的定義通常采用技術視角,不考慮對作戰藝術的影響。提議的作戰藝術的新要素 "抓手(Grip)"解釋了人工智能和人類在兩個方面的基本關系:自主性和角色交換。“抓手”為人工智能戰爭的理論奠定了基礎,除了揭示改變任務指揮理論的必要性外,還提出了作戰的假設。美國空軍陸戰隊的發展以及由此產生的戰爭作戰水平(和作戰藝術)在歷史上有類似的案例,說明關鍵假設如何影響戰場的可視化。去除“人在回路中”的人工智能戰爭的假設,揭示了需要一種新的作戰藝術元素來安排部隊的時間、空間和目的,此外,美國陸軍任務指揮理論需要調整,以使指揮官能夠在各種形式的控制之間移動。
“機器人和人工智能可以從根本上改變戰爭的性質......誰先到達那里,誰就能主宰戰場。”- 美國陸軍部長馬克-埃斯佩爾博士,2018年
預計人工智能(AI)將極大地改變21世紀的戰爭特征。人工智能的潛在應用只受到想象力和公共政策的限制。人工智能擁有縮短決策周期的潛力,超過了人類的理論極限。人工智能也有望執行人類、機器和混合編隊的指揮和控制功能。人工智能在自主武器系統(AWS)中的潛力同樣是無限的:分布式制造、蜂群和小型化的先進傳感器為未來的指揮官創造了大量的配置變化。與圍繞人工智能的技術、倫理和概念問題相關的無數問題,為如何將這項技術整合到戰爭的戰術層面上蒙上了陰影。現代軍隊幾個世紀以來一直在為正確整合進化(和革命)的技術進步而奮斗。美國內戰期間的鐵路技術對 "鐵路頭 "軍隊和格蘭特將軍在維克斯堡戰役中的勝利都有貢獻。25年后,法國人忽視了普魯士的鐵路試驗,給第三帝國帶來了危險,同時也沒能把握住小口徑步槍的優勢。卡爾-馮-克勞塞維茨在《論戰爭》中指出,每個時代都有自己的戰爭和先入為主的觀念。本專著將探討當前的先入為主的觀念和人工智能在戰爭的操作層面的出現。
對作戰層面的討論側重于作戰藝術,以及指揮官和他們的參謀人員如何通過整合目的、方式和手段,以及在時間、空間和目的上安排部隊來發展戰役。在作戰藝術中缺乏以人工智能為主題的討論,增加了不適當地部署裝備和以不充分的理論進行戰斗的風險;實質上是在邦聯的火車上與追兵作戰。美國的政策文件和技術路線圖主要集中在能力發展和道德影響上,而沒有描述一個有凝聚力的人工智能戰爭的理論。但美國和中國在自主行動方面的實驗趨于一致;這引起了沖突的可能性,其特點是越來越多的被授權的人工智能和AWS沒有得到實際理論框架的支持。這個問題導致了幾個問題。美國軍隊的人工智能戰爭理論是什么?大國競爭者的人工智能戰爭理論是什么?有哪些關于顛覆性技術的歷史案例?理論應該如何改變以解釋顛覆性技術?
本專著旨在回答上述問題。它還提出了兩個概念,以使指揮官能夠在戰場上可視化和運用人工智能;一個被暫時稱為 "抓手"的作戰藝術的新元素和一個任務指揮理論的延伸。該論點將分三個主要部分進行闡述。第一節(理論)將證明人工智能需要一個認知工具來在時間、空間和目的上安排部隊,方法是:綜合美國的人工智能戰爭理論,描述中國的人工智能戰爭理論,以及揭示當前文獻中的“抓手”理論。第二節(歷史)是對1973年為應對技術轉變而從主動防御演變而來的空地戰(ALB)的案例研究。第二節將重點討論戰場維度的思想、任務指揮理論的演變以及相關的作戰藝術的正式出現。第三節(新興理論)提出了作戰藝術的新要素,作為一種認知工具,幫助指揮官和參謀部將21世紀的戰場可視化。第三節將把以前的章節整合成一個有凝聚力的模型,讓指揮官和參謀部在時間、空間和目的方面可視化他們與AI和AWS的關系。第三節還將提供一個任務指揮理論的建議擴展,以說明人機互動的情況。
人工智能的復雜性導致了正式的戰爭理論的缺乏;然而,在美國的政策和發展文件中存在著一個初步的美國人工智能戰爭理論。人工智能戰爭理論必須解釋人類和人工智能之間的關系,這樣才能完整。通過作戰藝術和任務指揮的視角來看待人工智能,揭示了自主性和角色互換的兩個頻譜,通過不同的組合創造了人工智能戰爭理論的維度。這些維度,或者說掌握的形式,代表了作戰藝術的一個新元素。同樣,需要將任務指揮理論擴展到一個過程-產出模型中,以實現掌握形式之間的移動。
綜合美國目前的人工智能政策和AWS的發展路線圖,提供了一幅戰略領導人如何看待人工智能的圖景,允許發展一個暫定的戰爭理論。由于缺乏關于武器化人工智能的歷史數據,政策和發展路線圖是必需的,因此本專著中提出的理論是由提煉出來的概念產生的。由于中國的工業和技術基礎的規模,中國被選為對抗模式,預計在10到15年內,中國將超越俄羅斯成為美國最大的戰略競爭對手。
圖文并茂的案例研究方法將被用來分析主動防御和空地戰之間的過渡。該案例研究將整合技術、政策和戰爭理論,以喚起人們對多域作戰(MDO)和人工智能在21世紀戰爭中作用的疑問。第二節的批判性分析側重于理論的發展,而不是其應用。第二節的詳細程度是有限制的,因為它仍然是一個更大(和有限)整體的一部分,因此重點應繼續揭示戰場可視化和認知輔助工具之間的聯系。第三節通過作戰藝術的新元素和任務指揮理論的調整來回答每一節中發現的問題,從而將前幾節連接起來。人工智能缺乏歷史,考慮到人們不能直接分析以前的沖突,以獲得教訓或原則。在這種情況下,任務指揮理論提供了一種間接的方法來理解使人類能夠集中式和分布式指揮和控制功能的機制,以及為什么人工智能缺乏相應的機制會抑制我們感知機會的能力。第三節將把美國現行政策和路線圖中的幾個抓手成分匯總到任務指揮理論提供的框架中。
本專著存在于美國陸軍多域作戰概念的框架內,其理解是解決方案是聯合性質的,因為 "陸軍不能單獨解決問題,概念發展必須在整個聯合部隊中保持一致,清晰的語言很重要。"本專著不能被理解為對MDO中提出的問題的單一解決方案,而是一種幫助實現戰斗力聚合的方法。
關于人工智能的討論充滿了倫理、法律和道德方面的考慮,本專著不會涉及這些方面。本專論的假設是,人工智能的軍事用途在政治上仍然是可行的,而且 "戰略前提 "允許該技術的軍事應用走向成熟。由于運用的變化幾乎是無限的,人工智能的戰術實施將不會被詳細討論,而重點是在作戰層面上的概念整合。一般能力將被限制在與作戰藝術和作戰過程有關的具體趨勢上。
戰爭的特點正在發生根本性的變化,這些變化對空中力量的影響尤其深遠。多域整合為空中力量和越來越多的空間力量在未來幾年內的一系列轉變做好了準備,這些轉變不僅與技術有關,而且與空軍組織和進行規劃和行動的戰略和作戰概念有關。
迫在眉睫的、不可避免的多域作戰似乎是空中力量的一個明顯的邏輯演變,它可能會引發這樣的問題:為什么我們沒有更早地沿著這些思路思考和發展作戰概念?畢竟,對優化、作戰協同和武力經濟的尋求在空中力量中是持久的。可以說,多年來,空軍及其相關部門事實上已經嘗試以某種方式或形式在多域背景下運作。然而,在整個部隊甚至整個戰區范圍內,為多域作戰(MDO)提出的早期作戰概念(CONCOPS),在多域作戰空間產生作戰協同和效果的努力是前所未有的。
諸如聯合全域指揮與控制(JADC2)這樣的結構闡述了一個作戰云賦能的未來戰爭,其中任務指揮和戰斗空間管理被有效地隱含在整個戰斗部隊中,觀察-定向-決定-行動(OODA)環路被加速到邊緣計算的速度。傳感器和通信網絡決定了空軍承擔幾乎所有傳統任務的功能能力。數據和數據流將變得比空軍傳統上對機動自由的依賴更加重要,并且有效地成為其戰略推動者。空軍力量將越來越多地與網絡而非平臺、數據而非武器系統有關。
任務的成功和失敗一直是由指揮官和作戰人員可用的態勢感知水平決定的。在新興的作戰模式中,空軍以近乎實時的速度收集、處理和利用數據的能力有效地使數據成為最大的工具和最令人垂涎的武器。收集、處理、匯總、分析、融合和傳播大量的數據、信息和知識將需要像未來有爭議的戰場上的事件速度一樣快。目前正在進行的戰爭數字化將導致在未來幾年內將 "大數據"廣泛用于作戰過程。空間領域將在實現全球范圍內連續的、有保障的和安全的通信方面發揮顯著的作用,除了更傳統的遠程監視用途外,它還被用作這種通信的運輸層。
對信息主導地位的追求將以新的和不確定的方式在物理、電磁和虛擬世界中擴展競爭的連續性。隨著空軍對帶有嵌入式人工智能(AI)工具和應用的作戰云的使用,新的風險、脆弱性和故障點將被引入。本出版物收集了來自世界各地領先的思想家的文章和見解,對多域整合和空中力量的信息優勢框架和概念的一些最相關問題提供了深入的觀點。這里的觀點和討論反映了當前對各種戰略、指揮和作戰層面的思考,讀者會發現這些思考對他們更廣泛的理解很有幫助。
這里介紹的專家展望本身既不樂觀也不悲觀,正如我們所期望的那樣,所確認的是各種新技術促成的 "飛躍"機會正在地平線上形成,但其有效利用帶來了復雜和破壞性的新挑戰。在強調其中一些關鍵的挑戰和更好地理解這些挑戰的必要性的同時,正如通常的情況一樣,沒有快速的解決辦法或現成的解決方案。然而,有令人信服的理由認為,今天所預見的眾多挑戰似乎在理論上和技術上是可以克服的,有些甚至在未來幾年內就可以克服。在未來存在的許多不確定因素中,可以肯定的是,空中力量將被徹底重新定義。
《美國陸軍多域作戰2028》(MDO 2028)是陸軍的未來作戰概念。該文件說明了陸軍需要如何適應和發展以在未來作戰中保持競爭性軍事優勢。該概念的關鍵組成部分是多域作戰的原則--校準部隊結構、多域編隊和融合--這使得敵人的反介入和區域拒止系統能夠被瓦解,并使軍隊能夠利用短暫的優勢窗口。這是一個取決于在時間、空間和目的上持續同步能力的概念,以實現跨領域的協同作用,并創造一個可利用的優勢窗口。聯合部隊目前通過"域聯合解決方案的階段性同步"來實施能力融合,這并不支持在針對未來同行威脅的競爭和利用的重復循環中快速和持續地整合多個領域的能力。因此,關鍵是要考慮什么能力可以讓軍事領導人克服這些技術和人類認知的局限性。一個可能的解決方案是將人工智能融入作戰管理過程。
本專著重點說明了將人工智能融入作戰管理過程以促進多域作戰融合的必要性。通過分析多域作戰的融合差距、人工智能的發展以及當前的指揮和控制系統,該研究旨在說明多域作戰中能力持續融合的復雜性迅速超過了人類的認知能力。此外,由于美國的對手正在大量投資于人工智能和自主性,將人工智能融合到作戰管理過程中的問題不是在戰場上取得優勢的問題。相反,問題在于如何擁有競爭性臨時可利用的優勢窗口的能力。
簡而言之,速度在兩個不同的方面很重要。首先,自主性可以提高決策速度,使美國能夠在對手的行動周期內采取有效措施。其次,如果美國要維持軍事優勢,作戰能力向自主性的持續快速轉變至關重要。— DSB 自主性報告,2016 年
《美國陸軍多域作戰2028》(MDO 2028)是陸軍的未來作戰概念。這份文件說明了陸軍預計它需要如何適應和發展,以在未來的作戰中保持競爭性軍事優勢。該概念的關鍵組成部分是多域作戰的原則——經過校準的部隊結構、多域編隊和融合——這使得敵方反介入和區域拒止 (A2AD) 系統能夠被瓦解,并允許軍隊利用短暫的優勢窗口。這一概念取決于指揮官在時間、空間和目的上不斷同步的能力,以實現跨域協同并創造可利用的優勢處境。
目前,聯合部隊正在通過“域聯合解決方案的階段性同步”來融合能力,這一過程不支持在針對未來對等威脅的競爭和利用的循環中快速和持續地整合多個領域的能力。軍方領導人承認這一缺點和任務的復雜性,因此引入了需要開發新的軍事技術來填補關鍵空白的融合考慮。基于這些差距,未來的指揮和控制系統需要為所有梯隊的指揮官提供戰斗空間內所有聯合單位的完整共同作戰圖,并有能力快速傳輸偵察和目標數據,以通過動能和非動能手段攻擊擬議的目標。
然而,敵人在自主性和人工智能 (AI) 方面的發展極大地壓縮了時間窗口。由于時間窗口短,協調融合工作的任務很快超出了人類的能力。其他因素,例如彈藥優化和能力重置時間的需要,進一步增加了任務的復雜性。因此,至關重要的是要考慮軍事領導人需要具備哪些能力來克服這些技術和人類認知限制。一種可能的解決方案是將人工智能集成到作戰管理過程中。因此,多域作戰融合所帶來的挑戰提出了一個關鍵問題:美國陸軍是否需要一個人工智能引導的作戰管理系統,以便在多域作戰中成功地融合能力,對抗一個有能力使用自主和人工智能引導能力的同行競爭對手?
我們尋求獲得優勢的方式是在決定性的空間優化所有領域,以影響滲透。— 美國陸軍能力整合中心主任埃里克-韋斯利中尉
武裝競爭的一種現象是技術創新的武器化。從軍事角度來看,這是一個關鍵的進步,可以讓一個國家的戰斗力量在戰場上保持競爭優勢。為了推動能力發展,軍方領導人引入了未來的作戰概念。這些概念是預測軍隊需要如何訓練、裝備和組織自身以競爭和戰勝新興威脅的文件。目前,美國陸軍正在進行重大改革。此次重組將使軍隊轉向大規模作戰行動,并調整部隊以滿足國家安全戰略 (NSS)、嵌套式國防戰略 (NDS) 和國家軍事戰略 (NMS) 中概述的需求。這種變化代表了軍隊的范式轉變。在將近兩個十年的時間里,這主要集中在平叛上。對于美國陸軍來說,這項工作驗證了歷史不會重演,但卻是會押韻的格言。主要是因為當前未來作戰概念“MDO 2028”的引入促使轉型讓人想起過去的重組周期。一個相關的例子是 20世紀80年代中期引入空地一體戰學說引發的重組。
空地之戰是美國陸軍在冷戰高峰期對俄羅斯威脅的回應。它于 1986 年出版,提出了一個依賴于陸地和空中能力有效同步的作戰框架。在技術進步的推動下,復雜性不斷增加,導致 "事件的節奏加快",這是基本的前提。該文件的一個關鍵組成部分是引入了反映戰爭不斷發展的新術語。其中一個新術語是綜合戰斗——集中使用所有能力來擊敗敵人——它依賴于獲得和保持態勢感知的能力。基于對新興技術可以在戰場上提供優勢的認識,空地戰指導正在迅速發展的計算機技術集成。1986年美國防部向國會提交的年度報告中提出了所需的創新努力。聯合戰術融合計劃 (JTFP) 和聯合監視和目標獲取系統 (JSTAS) 是隨后出現的系統。這兩個系統都旨在為指揮官提供從各種來源收集信息并指導采用聯合動力努力追擊地面目標的能力。開發這些系統的必要性表明了兩個事實。首先,這些系統顯示了技術和戰爭之間的整體關系。第二,這些系統強調了軍事領導人承認,從現在開始,在戰場上有效同步軍事能力所需的速度和復雜性超過了人類的認知能力。目前的多域作戰概念將這一認識帶到了未來。
認識到美軍的競爭優勢正在減弱,麥克馬斯特中將(退役)和當時的國防部副部長羅伯特-O-沃克呼吁開發空地戰2.0。時任訓練與條令司令部司令的大衛-G-帕金斯將軍(退役)響應號召,推出了多域作戰。然而,在2016年美國陸軍年會和博覽會期間,帕金斯將軍(退役)指出,這個概念不是對空地戰或全譜作戰的改造,而是描述了一種革命性的戰爭方法。多域作戰被稱為革命性的一個關鍵原因是,它要求軍事力量的運作方式發生轉變。新的作戰方式的基本驅動力是科學和技術的快速發展,以及需要在競爭、失敗、利用和再競爭的連續循環中與所有領域的同行威脅進行競爭。
在中國和俄羅斯等大國競爭的推動下,2017 年的美國國家安全戰略 (NSS)指示軍隊需要擁有同時在多個領域與競爭對手競爭的能力。要建立跨域對抗敵人的能力,需要發展“新的作戰概念和能力,以在不保證在空中、海上、陸地、太空和網絡空間領域的主導地位的情況下取得勝利”。來自聯合推動者的可靠和及時的跨領域支持是成功競爭的關鍵要求和隱含任務。由此產生的域相互依賴意味著“一個域中缺乏訪問可能會在一個或多個域中產生級聯效應”。因此,美國空軍多域作戰戰略計劃助理教授賈里德·唐納利博士預測,未來的戰爭將在一個快速而復雜的多域連續體中進行,不依賴于一系列作戰條件的連續設置但需要跨多個域的能力永久同步。因此,了解不同域中存在的能力以及如何利用每種能力來獲得暫時的優勢是多域作戰成功的基礎。
在 NSS 和 NDS 的指導下,美國訓練和條令司令部 (TRADOC) 于 2018 年初推出了 TRADOC 手冊 525-3-1,即“美國陸軍多域作戰2028”。這是一個概念,作為前 TRADOC 總司令Stephen J. Townsend 強調,承認敵人有能力在多層次的對峙中提出挑戰并與美軍抗衡,其目的是“在時間、空間和功能上將美軍和其盟友分開,以擊敗我們。”
該概念提出戰爭演變的一個原因是,它將多個領域的能力互動形象化,這超越了在不同領域內的機動性或擁有實現跨領域效果的能力。相反,這個概念承認,技術進步改變了領域之間的相互關系和跨領域連接的速度。MDO 2028將這些變化納入了該概念的多域作戰原則--校準的部隊結構、多域編隊和融合--這使得敵方的反介入和反侵略系統被瓦解,并使軍事力量能夠創造短暫的優勢窗口。它們結合在一起,為指揮官在時間、空間和目的上匯聚能力創造了條件,以實現跨領域的協同,并創造一個可利用的優勢地位。此外,多域融合是一個可以通過整合人工智能引導系統來優化和加速的過程。
我們必須習慣這樣一個激進的想法,即我們人類將只是智能生物之一。— Alexander Kott,美國陸軍研究實驗室網絡科學部主管
人工智能是技術系統執行此前需要人類智能才能執行的任務的能力。這些任務包括觀察和識別模式、通過觀察學習、預測事件或采取行動的能力。中國是美國的主要競爭對手之一,認識到人工智能可以使戰場對稱性向他們的優勢傾斜。中國在人工智能引導軍事能力(包括自主武器系統)發展方面的大量投資證明了此觀點。為了在武裝沖突中保持相對優勢地位,美國需要發展將人工智能與決策過程聯系起來的反擊能力。當前的美國人工智能計劃主要集中在模式識別上,由于計算能力的快速增長,模式識別可以分析越來越多的數據以創建信息。
多域作戰是需要收集和分析大量數據以觀察和評估作戰環境發展。目前人工智能在軍事上的應用主要集中在后勤運輸和數據分析的支持上。然而,聯合人工智能中心和白宮人工智能特別委員會的成立,都標志著人工智能將擴展到國防部的其他領域。例如,美國陸軍未來司令部目前正在開展多項計劃,分析人工智能如何提高指揮官獲得態勢感知和做出明智決策的能力。一個重點領域是發展能力,以提高美軍同步效果和減輕日常認知任務的速度。強調開發人員和潛在的最終用戶之間的迭代合作,為該部門開發人工智能指導系統創造了條件,該系統可以 "產生并幫助指揮官探索新的選擇",并使他們能夠專注于選擇有利的作戰方案,使部隊和任務的風險最小化。
關于將人工智能納入作戰管理過程,關鍵是要區分將人類置于環中或環上的系統。根據機器人和自主系統的聯合概念,自主的定義是 "自動化的范圍,其中獨立決策可以為特定的任務、風險水平和人機合作的程度量身定做"。范圍本身包含了不同程度的自主性。在由TRADOC和佐治亞理工學院主辦的2017年瘋狂科學家會議上,專家們介紹了三種程度的自主性--完全自主、受監督的自主和自主基線。 一個完全自主的系統獨立于人類的實時干預,在人類不參與的情況下運行。在有監督的自主系統中,人類保持著實時干預和影響決策的能力,因此仍然處于循環之中。自主基線是目前各種現有系統中存在的自主性。在軍事應用中,這種自主性存在于人類監督的武器中,如愛國者和宙斯盾導彈系統,或AH-64D阿帕奇攻擊直升機長弓火控雷達,它獨立地 "搜索、探測、定位、分類和優先處理陸地、空中和水中的多個移動和靜止目標。"
Mitre公司的Richard Potember將機器學習視為 "人工智能的基礎",其重點是系統在無監督下學習的能力,并創建深度神經網絡,以支持決策和機器人應用。自主性和人工智能的整合是一個過程,不經意間將導致 "我們以前電氣化的一切,現在將'認知化'"。 支持將人工智能引導的作戰管理系統納入多域作戰的一個關鍵技術發展趨勢是,自主性和學習逐漸從感知轉向決策。這樣一來,人工智能可以減輕多域作戰中固有的復雜性。一個固有的復雜性是整合能力和做出跨越多個領域的決策能力,不是在幾分鐘或幾小時內,而是幾秒鐘內,如果需要的話。因此,將人工智能整合到決策和同步過程中,平衡有利于美國的觀察-定向-決定-行動周期。
在戰略層面,人工智能引導的系統可以影響推動不同領域的升級和降級的決策。在作戰層面,通用人工智能可以建立態勢感知和同步效果。為了支持多個領域的能力融合,人工智能 "處理來自在多個領域運作的各種平臺的大量信息 ",直接促進了MDO戰爭的兩個基本方面:速度和范圍。人工智能支持比敵人更快、更遠的打擊能力。這種能力能夠實時分析動態戰場,為快速打擊創造條件,將美國“友軍”的風險降到最低。美國國防科學委員會2016年的一項研究,提出人工智能系統能夠在一個動能瞄準周期內整合多種作戰管理、指揮與控制、通信和情報能力的觀點。此外,委員會評估說,這些人工智能引導的系統的累積效應可以在整個多域融合周期內改變戰斗的運行和戰略動態。
AI 即將上戰場,這不是是否會出現的問題,而是何時和誰的問題。— 美國陸軍未來司令部司令約翰·默里將軍
在武裝沖突中,美國的競爭對手旨在整合他們的A2AD系統以建立分層對峙區。其目的是剝奪美軍聯合部隊在時間和空間上同步作戰的能力。俄羅斯的S-400 Triumf是美國部隊在大規模戰斗中可能面臨的系統代表。S-400是一種移動式地對空導彈系統,擁有對付從無人機到終端彈道導彈的各種武器系統的能力。該雷達可在600公里范圍內跟蹤目標,并具有100公里的交戰范圍。該系統提供的關鍵技術進步之一是傳感器到操作手的全自動循環,使該系統能夠同時跟蹤和打擊多達80個目標。這是支持MDO 2028假設的一個例子,即美軍在大規模對抗同行威脅的敵對行動開始時,不能假設自己在任何領域擁有優勢。為了在競爭、滲透、分解和利用的連續循環中攻破敵人的防御系統,美國陸軍的多域作戰框架引入了多域作戰的三個原則--校準的部隊態勢、多域編隊和融合。
校準的部隊態勢是指能夠迅速適應和改變作戰環境的部隊和能力組合。其目的是找出潛在的弱點或在戰場上創造不對稱性,以建立一個可利用的局部優勢窗口。前方存在的部隊支持在整個軍事行動范圍內快速升級,以滲透和瓦解敵人的系統。這些部隊被安排具有任務指揮、火力、情報收集、維持、信息活動和特種作戰能力。遠征部隊具有在需要時進行聯合強行進入行動的能力,并為后續部隊創造了條件。這些部隊通過空中和海上部署,可在幾天或幾周內完成。
多域編隊的重點是使較低的梯隊能夠對近距離的威脅進行進攻和防御行動。支持多域編隊的三種能力是進行獨立機動的能力、采用跨域火力的能力和最大限度地發揮人的潛力。為了支持在有爭議的領域內達到軍事目的,MDO 2028認識到軍團、師和旅梯隊的單位需要獨立行動,不受上級總部資源優先級的限制。因此,他們需要擁有有機的后勤、機動、火力、醫療和通信網絡,使部隊能夠在預先確定的時間內獨立作戰。作戰概念目前的框架要求這些梯隊 "在通信線路高度競爭的情況下,仍能維持數天的進攻行動。"維持進攻的能力是由指揮官采用跨域火力的能力來驅動的。
跨域火力是指在暫時脫離上級總部火力支援的情況下,對火力能力進行整合,并具有冗余性。這個過程包括直接和間接火力單位、保護能力和電子戰裝置,以及 "多光譜融合彈藥,以及網絡空間、空間和信息相關能力"。為了加強在復雜和快速發展的多域作戰環境中的決策過程,需要開發 "由人工智能和高速數據處理支持的人機交互"。 校準部隊態勢和創建多域編隊都是為了實現本文所認為的多域作戰的一個關鍵組成部分--融合。
MDO 2028將融合定義為 "在所有領域、電磁頻譜和信息環境中快速和持續地整合能力,通過跨領域的協同作用,優化效果以超越敵人"。盡管它可能看起來像目前聯合能力的整合和同步延伸,但這個概念與目前應用的聯合能力有很大不同。這主要是因為它不是在時間和空間上按順序消除沖突的過程,而是由目標周期和任務分配命令指導和限制。相反,它是在窗口期中對所有領域的效果進行持續的同步化,在空間和時間上都有很大差異。要在一個同行競爭的環境中競爭,需要有能力通過跨域的協同作用創造暫時的領域超越。這種協同作用集中在決定性的空間。決定性空間是時間和空間上的一個物理的、虛擬的和認知的位置,它使美國部隊能夠獲得一個可利用的明顯優勢位置。此外,由于軍事單位期望同時對抗多種威脅,多域融合要求在所有領域的競爭連續體中同時進行系統分解和中立化。
快速指揮和控制為指揮官通過跨域協同和分層選擇,實現融合創造了條件。因此,軍事指揮官在任何特定時間點擁有對戰斗空間內運作的所有聯合力量的整體態勢感知是融合的一個關鍵組成部分。MDO 2028確定了兩項要求,即必須開發技術先進的指揮和控制系統并將其整合到多域編隊中以促進這一進程。第一個是需要 "每個梯隊的指揮官和參謀人員都能得到所有領域的戰斗可視化呈現并且指揮",并迅速調整能力以實現融合。第二是有能力迅速協調聯合能力的匯合,以對付敵人的特定弱點。
指揮官在目的和時間上實現融合能力的關鍵是五個融合要素的同步化--準備時間、計劃和執行時間、持續時間、重置時間和周期時間。對這些要素的考慮使指揮官能夠計算出從啟動開始達到效果所需的時間,以及為新一輪的重新競爭重置能力所需的時間。在這個框架內收斂多種能力的過程因不同的能力使用率而進一步復雜化。雖然周期率提出了一個無限的使用序列,但使用率代表了一個與 "彈藥和消耗性虛擬武器 "相聯系的不斷減少的單位。 由于后勤是有爭議的,可預測的補給沒有保證,指揮官在多域融合中面臨著額外的挑戰。這個挑戰就是優化現有彈藥的使用,并使彈藥的使用與聯合能力的協調相一致。
目前可用彈藥的數量限制和無法建立庫存可能會導致未來大規模作戰行動中后勤儲備嚴重不足。為了延長軍隊的續航能力,特別是在跨越軍事爭端地區的交通線作戰時,需要對各種系統的武器狀況進行持續評估。在動能范圍內對所有聯合平臺進行 "優化和排序射擊 "變得至關重要。這種優化和排序過程,同樣迅速超過了人類決策者的認知能力,并提出了一個技術作戰管理系統的缺陷,該缺陷會對聯合能力的有效融合產生不利影響。
美國陸軍在多域戰斗空間中實現作戰敏捷性的核心是能夠從不斷增長的綜合數據集中創造理解,同時保持 "卓越的決策速度"。戰場上永遠存在著未知情況和沖突,但減少觀察環境變化和相應調整部隊方向所需的時間,可以提高決策和行動速度。提高對聯合部隊在各個領域內的所處位置的認識,相對于敵人和他們的作戰和戰術計劃,對于加速較低層次的機動是必要的。此外,短暫的機會窗口要求未來的作戰管理系統迅速將傳感器與射手相匹配。
在美國陸軍的現代化框架內,新興技術需要為兩個關鍵的技術和組織上的不足提供一個解決方案。首先是保持對作戰區域內所有聯合軍事單位完全態勢感知的能力。第二是迅速建立從傳感器到射手的冗余回路能力,其中包括所有可用的聯合單位并考慮到能力的不同再生周期。這是一項任務,根據需要處理的數據量,當聯合軍事單位在有爭議的戰場上競爭時,需要持續同步,這很快就會超過人類的認知能力。將人工智能融入作戰管理過程可以減輕這種人類的局限性。
我們的投資重點之一是網絡,這并非巧合……因此我們有能力將這種目標快速傳達給另一個領域。— 美國陸軍未來司令部司令約翰·默里將軍
實現多域融合的最關鍵步驟之一是開發聯合指揮和控制(C2)系統,將整個戰斗空間的能力縱向和橫向聯系起來。2017年,SYSTEMATIC公司獲得了設計美國陸軍新型作戰管理系統 SitaWare 的合同。美國陸軍戰術任務指揮部負責人 Shane Taylor 中校稱該系統是“一種開箱即用的解決方案,用于跨梯隊同步任務指揮數據,這為陸軍遷移到通用架構的目標提供了一個跨越式發展的機會。”該系統提供的一些進步包括簡化指揮所 C2、改進與聯合和聯盟伙伴的互操作性以及標準作戰功能融合框架。該系統的另一個關鍵功能是能夠快速擴展大量數據并以提高指揮官態勢感知的方式呈現。
在美國陸軍的作戰環境中,SitaWare 是一個指揮后計算環境組件,有望消除信息和情報孤島,并可集成為通用作戰平臺。 SYSTEMATIC公司承認未來的作戰需要情報、后勤和作戰系統的快速同步。因此,當前系統旨在分析大型數據集并在直觀的用戶界面上顯示相關信息。因此,它可以實時建立指揮官的態勢感知并提高他們的決策速度。此外,系統軟件符合各種民用和軍用互操作性標準,這使得系統更容易與其他聯合和聯盟平臺連接。
為了在各梯隊之間嵌套系統,SitaWare的用戶界面應用程序和顯示器可根據操作環境的要求進行定制。縱向信息共享確保所有梯隊之間共享共同數據。為了提供戰術層面上的態勢理解,該系統具有對輕型、輪式和裝甲編隊的美國“友軍”跟蹤能力。該系統的另一個關鍵特征是綜合指揮層。這一功能使指揮官能夠根據作戰環境的變化,迅速傳播對原始命令的更新和修改。然而,SitaWare的設計并不是為了指導效果。因此,它不能充分加快傳感器到射手的周期,不能提高指揮官在有爭議的環境中有效地匯聚聯合能力,以對抗擁有自主和人工智能支持的武器平臺的同行威脅。
在解決未來多域作戰要求的另一項努力中,美國陸軍啟動了一個內部項目,旨在 "增加物理目標、數據收集、數據分析和自主決策在戰場物聯網中的整合。"該項目專門用于填補美國陸軍領導人評估的商業生產技術沒有充分解決的差距。弗吉尼亞理工大學的專家預測,項目的主要挑戰之一是 "處理許多復雜的變量 "的能力,這影響了結合從博弈論到分布式學習等方面的能力。這些挑戰由于以下事實而被放大:美國陸軍目前的技術開發工作側重于能力的實戰化,很少考慮整合軟件和硬件,使這些系統能夠與各種聯合能力溝通。
該項目的重點是將人工智能引導的系統置于回路中,為指揮官提供在戰斗空間的各種傳感器平臺上收集的大量數據的綜合分析。通過收集相關傳感器系統的數據,分析敵人的能力分布,并將其與可用的美國“友軍”武器系統進行比較,該系統提供關于如何最有效地實現效果的建議。為了使這一過程有效運作,指揮官必須放棄相當程度的控制權,因為他們允許系統 "為如何發動戰爭選擇最合適的戰略"。盡管有這種擔憂,陸軍下一代戰車跨功能小組的副主任凱文-麥凱納里承認,人工智能在多域作戰中是必不可少的,因為它提供了可將目前九十六小時的師級目標定位周期 "減少到九十六秒 "的能力。總的來說,"四分衛項目 "是幫助指揮官 "準確了解戰場上的情況,然后根據可用的和其他因素選擇最合適的戰略。"該倡議是能夠在時間有限的決策空間中有效地融合能力邁出的重要一步,因為它將人工智能的作用提升到數據可視化工具之外,使其成為戰斗戰略工具。
對人工智能在作戰管理過程中的可靠性的擔憂可以通過云架構和深度學習系統的快速發展來緩解。與人類互動類似,在人工智能和自主系統發動的戰爭中建立信任需要時間。中校Wisham,"四分衛"項目的負責人之一,指出這需要一個深思熟慮的策略來證明系統是可靠和有效的,由于很難或不可能追蹤到神經網絡的決策路徑,這就很復雜。 然而,Nvidia公司的機器人研究員Dieter Fox預測,這是一個有解決方案的問題,因為研究人員繼續開發分析神經網絡和機器學習過程的新程序,在未來可以解決這一問題。要分析網絡和學習過程是人工智能的一個關鍵方面,因為它允許開發人員在一個設定的決策框架內約束自主學習系統。另一個認識到發展人工智能啟用能力重要性的部門是美國空軍。
由于確定需要開發多域 C2 系統,美國空軍打算用“衛星、有人機和無人機上不同傳感器的全新網絡”取代其傳統的聯合監視目標攻擊雷達系統。這種新能力的名稱是先進作戰管理系統(ABMS)。盡管項目當前的重點是連接美國空軍單位,但其最終目標是開發“未來作戰的數字神經系統”。美國空軍準將、美國空軍聯合部隊整合總監戴維·熊城(David Kumashiro)表明,他們的方法集中在這樣一種觀念上,即如果“你不遵循開放系統架構的標準,你就會發現自己在場邊,與戰斗無關。” ABMS結構建立在現有的基于云的目標定位助手之上,旨在有效跟蹤目標和飛機。通過擴展這一概念,美國空軍規劃人員希望專注于網絡機器對機器的交互。該項目的指導思想是開發可以“像樂高積木一樣拼在一起”的系統,以快速輕松地連接聯合能力。
總體而言,將人工智能整合到作戰管理過程中的需求是由一種認識驅動的,即在作戰領域將美國軍事部門聯系起來對于保持競爭性軍事優勢是必要的。如果不走人工智能整合的道路,就有可能對美軍在未來的戰斗中擊敗近似競爭對手的能力產生不利影響。以下兩個場景說明了在軍團和師級的多域作戰中,人工智能引導的作戰管理系統如何影響戰場上的動態。
長期規劃使軍方能夠集中研究和開發工作,并指導人員配備、訓練和裝備決策。這個過程的核心是制定評估發展中威脅的概念。 MDO 2028 是一個包含假設和預測以推動軍事戰略的文件示例。聯合出版物 5-0“聯合規劃”,將假設定義為“關于當前態勢或事件未來進程的假設,在缺乏事實的情況下假設被認為是真實”,這對于推進規劃過程至關重要。為了提供一個將軍事能力和需求與預期的未來作戰環境聯系起來的背景框架,軍事規劃人員創建情境以增加理解。這一過程使各級軍事領導人能夠“接觸可能的未知情況,并且吸收理解它”,并提出解決方案。因此,情景模擬是作為創建承認技術發展可行框架的一種方式。然而,重要的是不要將情景與具體預測混為一談,而應將其視為擴展可能性領域并根據預期的技術發展識別未來機會的工具。此外,重要的是要認識到情景構建的一個潛在因素是不確定性。為了展現不確定性和復雜性,同時保持情景“介于預測和推測之間”,需要整合歷史和當前信息,識別行為模式,以及“構建 關于未來的連貫敘事。”其他重要的考慮因素是場景需要與可信的現實生活條件保持一致。
布加勒斯特國防大學國防與安全研究中心的研究員 Marius Potirnich 創建了特定軍事情景分類。他提出的兩個類別是戰略情景和演習情景。戰略情景是出現最廣泛的類別,考慮了在整個軍事行動中可能發生和使用的軍事事件和能力。演習場景嵌套在戰略場景框架內,并進一步細分為真實和虛構。真實場景使用現有軍事能力,在現有作戰環境的約束下,分析現實世界任務集中的情況。虛構環境評估軍事能力的現狀以及預期的未來能力,并將它們置于基于已發布的軍事行動概念和現代化框架的預期威脅環境中進行預測。
本專著介紹了兩個虛構的場景,以說明在未來的多域作戰中集成人工智能引導作戰管理系統的潛在影響。所有場景都基于與對手(如中國)發生沖突的環境。第一個場景以軍梯隊為背景,重點關注空中和海上動能打擊的融合,以及“支持軍區機動計劃或代表下屬梯隊”的網絡空間活動。第二個場景設置在師梯隊,側重于聯合能力的融合和需要分析和傳播的“大量情報的定制”。對手的A2AD和軍事創新努力以及美國陸軍的 MDO 2028 和當前的現代化舉措被用作背景情景。場景是嵌套的,最后評估了美國陸軍是否能將人工智能納入其作戰管理流程,以便在當前的MDO 2028現代化框架下有效地融合多域作戰能力,以及如果該部門不能這樣做的潛在風險。
這本專著的框架是美國陸軍的多域作戰概念。重點不是討論人工智能在戰場上的法律和道德以及考慮人工智能產生在兩個方面產生的后果。相反,它旨在評估人工智能如何幫助在日益復雜的作戰環境中實現多域元素的融合。由于人工智能領域的快速變化和發展,評估是在概念層面進行的,沒有深入探討人工智能在戰爭戰術和作戰層面的廣闊應用前景。對算法是否可以指導能力融合的評估是基于當前的發展,以及機器學習、量子計算和自主機器對機器組合領域的預期進行的。該專著所介紹的和用作基礎的所有信息都完全來自于已被批準公開發布的渠道。因此,有可能存在與本專著的假設相矛盾的機密文件。
在2035年。根據“一個中國”的政策,中國軍隊已經開始收復臺灣,并開始阻止美國海軍進入中國南海。為了捍衛自己的利益,中國軍隊的導彈防御力量處于高度戒備狀態。綜合性的反介入和反侵略網絡得到了中遠程導彈、各種反飛行器和防空武器以及各種中遠程情報收集和監視能力的支持。中國的《新一代人工智能發展規劃》在過去15年中指導了軍事技術的發展。在 2017 年的介紹中,中國領導層宣稱“人工智能已成為國際競爭的新焦點。人工智能是一項引領未來的戰略技術; ……發展人工智能作為增強國家競爭力和保護國家安全的重大戰略。”因此,中國每年投資超過 150 億美元用于“智能技術”的發展,重點是人工智能引導的自主能力。中國的人工智能整合上付出不僅僅在軍用機器人領域,還包括自主軍事決策。基于人工智能在推理、作戰指揮和決策的潛力,中國領先的國防公司負責人,認為“在未來的智能戰爭中,人工智能系統將就像人類的大腦一樣”。因此,美國軍方面對的是一支具有在機器對機器團隊的前沿運作能力的中國部隊。
自主偵察無人機、攻擊機和導彈發射器整合到一個由人工智能引導的傳感器到射手網絡中。這些發展成倍地加快了戰斗的速度。對手的系統可以同時跟蹤和打擊數百個目標,并在需要時快速重新接觸和重新分配單位。為了競爭和滲透對手多余的防御結構,需要美軍快速、持續地匯聚能力,以“滲透和瓦解”A2AD 保護傘。這些行動能夠建立臨時的優勢窗口,軍和師梯隊可以利用這些優勢機動進入戰術支援區和近距離區域。在這些區域內,軍以下的梯隊可以集中他們的有機能力對抗敵人。這反過來又使軍團能夠在不斷的滲透和整合的循環中重新競爭和整合能力,為下級梯隊部隊的利用創造條件。
為了應對對手的現代化努力,美國陸軍在國家安全戰略、人工智能指令和多域作戰理念指導下,對機器-機器團隊聯動進行了大量投資。因此,美國的軍事能力包括一系列可以感知、協調效果以及指揮和控制的自主學習的作戰網絡系統。單個自主機器人和無人機系統,以及更大的無人駕駛飛機、海軍和導彈投送系統,都在該框架內作為自主節點運行。美國私營公司在量子計算領域的重大進展為美國軍隊提供了處理速度和響應時間方面的競爭優勢。這提供了一個戰機,使美國“友軍”能夠比對手更快地觀察、定位、決定和行動。但是,由于技術的進步,John Boyd 的 OODA 循環不再以分鐘為單位執行,而是以秒或毫秒為單位。這些新出現的威脅導致美國越來越多地將人從循環中移除,這使得聯合部隊能夠“以比對手更快、更有效的節奏作戰”。然而,受到有關在戰爭中使用自主制導系統和人工智能的道德法規的限制,美國軍方仍然將人類置于決策循環中。其結果是在指揮和控制層面有效整合了人機協作,允許指揮官在連續競爭期間從一系列進攻行動中選擇進攻方案,同時依靠自主的人工智能引導行動進行保護。
美國陸軍的關鍵指揮控制系統是由人工智能引導的作戰管理系統。它是美軍戰場網絡的樞紐。該系統從作戰環境中的所有聯合傳感器收集數據,并不斷從戰區和國家收集數據的單位中提取和推送數據,以構建共同的作戰圖景。這使系統能夠分析敵方和美國“友軍”在戰場上的位置。由于該系統是自主學習的,它會不斷評估敵人的行動和能力。同時,它對美國“友軍”能力及其狀態有完整的認識,包括各種系統的再生時間、彈藥消耗率和補給狀態。因此,該系統可以識別敵人的弱點和威脅,并執行一個連續的評估周期,以預測美國“友軍”聯合能力如何融合以在戰場上創造暫時的優勢。此外,作戰管理器還計算彈藥優化、能力調配和能力的使用,以達到預期的效果,同時最大限度地減少附帶損害和對部隊的風險。
在戰場網絡內,該系統與所有領域的聯合能力相聯系。各種作戰管理系統本身是橫向和縱向連接的,這使它們能夠跨多個域快速執行任務和重新分配任務,而不會失去實現各自目標的能力。與所有的傳感器和射手相連,允許系統控制傳感器到射擊者的連接,并分配最好的武器系統來實現動能和非動能效果。在保護作用中,作戰管理系統完全自主運行控制消除敵人對美國“友軍”和指定保護區的威脅。由于連續的進攻性競爭的融合能力必須嵌套在更高的總體目標中,作戰管理系統將人置于進攻行動的循環中。該系統分析了美國“友軍”能力通過在不同梯隊的聯合能力融合所能達到的各種效果。
多域框架將美國陸軍部隊視為遠征部隊。這個梯隊的關鍵作用之一是擊敗和消滅遠程和中程系統。因此,他們是在其控制范圍內各師的輔助力量。為了與同級別的威脅相抗衡,關鍵是要整合能力,以對抗對手的防空、遠程地面火力和反艦導彈。此外,在需要時,軍團總部負責指揮和控制在其作戰區域內運行的多域聯合能力。融合動能聯合火力的主要目標是摧毀敵人的中程武器系統,以促進師和旅單位的自由機動。最后,軍團負責同步國家、戰區和內部單位的情報收集工作。網絡空間能力本質上集成在融合工作中,包括國家和戰區級單位。總體意圖是對融合工作進行分層,以提供多種選擇并創建各種跨域協同能力變化。
在競爭周期內,軍團的重點是對敵方防御系統的滲透和瓦解。對對手A2AD保護傘的滲透,包括瓦解敵人的遠程火力系統。這包括使雷達和關鍵指揮和控制節點失效,這可能比破壞運載系統產生的影響更大。滲透的另一個方面是對手地面部隊機動的較量,以及在暫時優勢窗口期間與美國“友軍”從作戰和戰略距離機動的同步。
在師級,部隊的重點是分解和利用。在沖突開始時,他們可以作為前沿存在或遠征部隊。該師的主要作用是為下級部隊在近距離區域機動和對抗創造條件。該師的主要職責是“航空、火力、電子戰、機動 支援和多旅機動以獲得優勢位置。”關鍵是摧毀或消滅對手的中程火力單位。在這個梯隊,該師有能力將有機單位與上級司令部同步,并整合分配的空軍和海軍能力。與擁有自主和人工智能引導系統的相同競爭者相比,兩個梯隊的成功都受到他們進行多域同步的能力和能力自主水平的影響。
美國陸軍第 18 空降兵團總部位于作戰支援區。該組織的主要作用在戰場上創造條件,使其控制下的各師和增援部隊可以利用這些條件進入近距離機動區域。進攻行動以四個目標為中心--消滅對手的遠程防空單位,瓦解對手的中程火力能力,限制對手的地面部隊速度,以及創造 "通過分配資源、安排師的機動順序并將其與縱深結合起來,在較低層次上實現匯合。" 雖然近距離和縱深機動區的距離超過1500公里,但盟軍一直處于中程彈道導彈的動能目標和網絡及太空領域內的非動能目標的威脅之下。
為了保護,美國第 18 陸軍空降兵團的 AI 作戰管理系統不斷連接到國家和戰區的情報收集單位以收集情報。一旦發現對手的威脅,作戰管理系統就會自動與戰區和國家傳感器協調,以確定威脅,并促進傳感器的交接,確保收集情報的完整性,同時減少不必要的情報冗余。同時,它識別出跨所有領域的多個交付平臺,以構建一個強大的殺傷鏈,盡管可能丟失主要聯系,但該殺傷鏈可在時間受限的環境中執行。
空間傳感器為系統提供有關敵人遠程和中程火力能力的各個組成部分配置信息并且能持續更新。與此同時,作戰管理系統將海軍驅逐艦識別為最有可能成功摧毀來襲導彈的單位。同時,該系統識別出可以對威脅做出反應的其他美國“友軍”單位,并根據其當前對整體作戰環境的評估對其進行優先級排序。系統基于其算法考慮的一些因素是:強制風險、成功概率、彈藥狀態、能力重置時間和附帶損害。
對于保護工作,作戰管理系統以人在環結構中運行。這意味著軍團的作戰中心可以觀察事態發展,并在緊急情況下進行干預,但該過程是為作戰管理系統自主運行而設計的。對手威脅的程度以及他們可以運行的速度推動了對自主運行的需要。一旦檢測到來襲導彈,作戰管理系統就會在幾秒鐘內執行概述的序列以摧毀對手的威脅。這個循環實時并持續運轉,以應對新出現的威脅。三個方面使得智能引導的作戰管理系統在國防領域的自主運行方面變得至關重要。首先,能夠在幾秒鐘內關閉射手到傳感器的鏈接,以應對以高超音速單位的威脅。其次,建立強大和冗余殺傷鏈的能力,可以快速整合備用和應急能力。第三,在優化使用有限且難以再補給的資源的同時指導保護工作的能力。在保護行動的同時,該系統分析作戰環境以檢測進攻行動的機會。
對于進攻行動,作戰管理系統以人在回路中的模式運作。美國政府關于人工智能和自主武器的道德使用政策,以及公眾對使用人工智能引導的自主武器系統的看法,是決定將人類留在決策鏈中的基礎。美國陸軍的“四分衛項目”為構建當前的作戰管理系統提供了框架。與保護工作類似,作戰管理系統不斷從外部和有機傳感器中提取數據。然后,它評估聯合能力如何融合以暫時禁用對手的部分防御傘,并允許下屬單位推進并將其有機單位帶入射程。
由于聯合單位在在時間和空間上的協調需要在幾秒鐘內執行和同步,因此需要作戰管理系統不斷分析作戰環境。在此過程中,它重組了 OODA 循環概念的部分內容,以獲得以秒或毫秒為單位的自主對手決策周期的能力。該系統通過持續觀察戰場空間并同時分析美國“友軍”的行動來應對威脅,而不是觀察后再確定方向來實現這一目的。然后,該系統會產生一系列可用的選項來進行攻擊性打擊。在軍團的行動中心內,選項顯示在交互式顯示器上,允許具有適當釋放權限的個人決定采取何種行動。通過不斷分析和重新配置可能的傳感器到射擊者的回路,該系統創建了一個決策空間,可以減輕將人置于回路中對抗嚴重依賴自主能力的對手缺點。在作戰中心的相關權力機構確認以對手單位為目標后,作戰管理系統通過在時間和空間上同步依賴的效果,將來自各種選定的聯合推動者的能力融合起來。
在這種情況下,在發射美國“友軍”導彈之前,作戰管理系統會協調進攻性網絡行動,威脅信號淹沒對手雷達,這增加了導彈成功穿透敵人的反介入和區域封鎖傘的機會。一旦產生網絡效應,作戰管理系統就會指揮導彈的發射并觀察對手的反應,以在必要時重新發射另一枚導彈,并檢測更多額外的目標。導彈找到目標并摧毀它。一旦傳感器確認影響,作戰管理系統就會向與現有信息作戰工作線相一致的媒體傳播消息。同時,作戰管理系統會重新計算美國“友軍”運載平臺的彈藥可用性和回收率。這些數據用于優化未來打擊的彈藥使用,并為保障部隊建立補給優先順序清單。
隨著美國“友軍”的推進和軍團塑造縱深機動區和作戰縱深火力區,這一過程不斷重復。美國陸軍師利用暫時的優勢窗口和機動自由來推進并將對手帶入其有機武器系統的有效射程內。這為近距離和縱深機動區域的對抗創造了條件,從而改變了戰場邊界并重新啟動了競爭循環。
在美國陸軍第18空降團創造條件后,第3步兵師陣地機動進入附近區域,擊敗對手地面部隊。該地區是第一次軍事編隊爭奪“控制物理空間以支持戰役” 目標,在與對手近距離作戰。由于美國“友軍”地面部隊預計將在這個爭端空間進行獨立機動,因此擁有比對手更快的能力匯合對于推動節奏并保持主動權至關重要。地面機動部隊的目標是在臨時優勢窗口期間協調機動,以“擊敗敵軍、破壞敵方能力、物理控制空間以及保護民眾”。附近地區的對手依賴于由自主情報、監視和偵察 (ISR) 打擊系統、綜合防空系統和地面聯合兵種編隊組成的互聯網絡。將人工智能整合到決策周期中,大大加快了對手的行動節奏。為了獲得優勢地位,需要不斷中斷對手的能力,最好是在他們的指揮、控制和傳感器節點。
隨著第 3 步兵師部隊的機動,作戰管理系統不斷收集和比較數據,以構建一個共同的作戰圖,說明美國“友軍”和敵軍的組成和部署。根據數據,系統開始分析對手的防御網絡,以識別對手的傳感器、ISR 平臺和信息流。在此階段,地面部隊分散作戰,作戰管理系統側重于迫使對手暴露其能力的欺騙措施。一旦對手暴露了他們的系統,作戰管理系統就會將國家和戰區單位收集的偵察數據與鄰近單位情報和偵察能力收集的數據同步。然后它與相鄰單位和上級司令部的作戰管理系統協調,以消除交戰沖突。此操作可確保多個跨梯隊單位不繼續攻擊同一目標。
一旦上級司令部的作戰管理系統將權力下達給第 3 步兵師,該師的作戰管理系統就會掃描整個組織的能力,以建立一個成功可能性最大的傳感器與射手的連接。如果系統無法建立連接,或成功概率低于預定閾值,系統會將目標推回上級總部系統,以擴大可繼續攻克目標的可用聯合單位陣列并提高成功概率成功。當威脅單位可以用有機單位追擊時,師作戰管理系統會確認美國“友軍”的部署以清理地面,分析各種武器系統的彈藥狀態,并分配給確定的投送平臺。一旦傳感器周期完成,作戰管理系統就會向選定的武器系統發出信號以進行交戰。
釋放彈藥后,作戰系統會立即更新彈藥供應狀態,重置再生周期,向后勤作戰支援部隊發送補給請求,并跟蹤威脅直至其銷毀。這是一個需要幾秒鐘的循環,并且在滲透和分解過程中反復發生。隨著師部隊的推進,作戰管理系統在支持美國的各種媒體平臺上推送信息作戰信息。每一次積極的參與都伴隨著針對該地區人口統計的信息傳遞工作。隨著行動的進展,該系統不斷評估對手的信息活動并提出建議的反信息,使美國“友軍”在信息頻譜中保持主動權。
當美國“友軍”繼續在對手的反介入和區域拒止保護傘內展開對抗時,作戰管理系統會反復識別對手傳感器并建立冗余殺傷鏈來擊敗對手地面部隊。每次消滅對手ISR 傳感器時,系統都會評估破壞對敵方與美國“友軍”編隊交戰能力的影響。機動部隊利用隨后建立的臨時非覆蓋區域來推進其建制單位。同時,作戰管理系統重新啟動網絡、空間和無人機傳感器的融合以檢測新目標,并融合能力以建立一個新的臨時窗口期,可用于推進機動師地面部隊。
這些活動在幾秒鐘內發生,并且事件發生的速度遠遠超過人類的認知周期。隨著行動的進展,作戰管理系統的自主學習算法繼續分析和識別對手行為中的模式。因此,該系統可以實現與對手地面部隊及其防御努力的持續競爭循環。
美國對手整合和融合自主性和人工智能的意愿推動了美軍發展和使用對抗能力的需求。這些進展提出了在面臨對等威脅時快速連續執行多域融合的需求。由于跨多個領域融合能力需要分析大量信息,因此該過程將人為主導的同步過程推到了敵人的決策周期之外。此外,多域融合涉及建立冗余殺傷鏈。通過消除沖突建立一個單一的傳感器到射手銜接鏈是不夠的。相反,融合需要在必要時識別和使用可以繼續攻擊目標或提供保護工作的冗余能力。由于存在優勢窗口的時間框架不斷縮短,建立快速同步聯合能力的冗余殺傷鏈是一項關鍵且需要同步完成的工作。
總體而言,未來的作戰管理系統必須在聯合平臺上進行橫向和縱向鏈接,以滿足多域作戰需求,并具備秒級或毫秒級的協同作戰能力。此外,為了融合能力,人工智能引導的作戰管理系統可以在爭端地區補給環境縮小對抗中彈藥優化的能力差距。該系統通過持續評估最佳目標-彈藥組合并避免不必要地消耗彈藥以及過度殺傷來實現這一目標。不幸的是,目前開發指揮和控制平臺的方法主要是沿著服務的孤島進行的,這將減緩建立在未來作戰中融合能力所需技術框架的能力。
人工智能和自主性對作戰節奏的影響支持羅伯特·萊昂哈德的說法,即“時間越來越成為戰爭的關鍵維度。”人工智能與自主能力的結合使軍隊能夠大幅增加活動發生的頻率,進而推動序列的節奏并縮短機會之窗。當人工智能在沒有人的情況下在觀察決策-行動循環中引導自主系統時,這種關系會進一步加速。時間,以及比對手更快地觀察和行動的能力,成為執行匯合的關鍵因素,使美國“友軍”能夠獲得暫時的優勢位置。
自從計算機網絡、戰術數據鏈和衛星通信的普及以來,美國還沒有遇到過對手。目前在量子技術、人工智能和自主性領域的努力對美國各軍種在其各自的統治范圍內獨立運作的能力提出了挑戰。因此,正如美國陸軍的多域作戰 2028 概念所預期的那樣,在戰場上創造臨時可利用優勢的能力依賴于跨多個域融合聯合能力。目前,這一過程主要由協調小組執行,其主要任務是通過 "域聯合解決方案的階段性同步"來匯聚能力。然而,與同行競爭者進行融合的復雜性,其人工智能引導和自主武器系統將決策和同步循環縮短到幾分鐘或幾秒鐘,這需要開發新技術。 MDO 2028的設計師承認這一缺陷,以及任務的復雜性,并列出了融合的考慮,要求開發新的軍事技術來填補這一關鍵的空白。
因此,未來的 C2 系統需要為所有梯隊的指揮官提供盡可能接近完整的戰場空間內所有聯合單位的通用作戰圖。此外,這些系統需要快速傳輸偵察和目標數據,以使用動能和非動能手段繼續攻擊目標。然而,即使未來的C2系統能夠為指揮官和他們的參謀人員提供數據,使他們能夠在多個領域融合能力,但與在快速轉瞬即逝的機會窗口內任務相關的大量信息融合很快就超過了人類的認知能力。此外,其他因素,如彈藥優化要求和不同的能力再生窗口,進一步增加了在多域作戰中融合能力的復雜性。
目前為應對新出現的威脅所做的努力表明,美國各軍種在開發和部署國防部范圍內的能力方面仍然進展緩慢。美國軍隊正處于重組過程中,這為創建專注于打仗的系統提供了機會,而打仗需要嵌套和連接的C2系統,以促進快速交接和整合聯合使能器。如果現在不建立這些能力,將導致發展出一支名副其實的“多域部隊”,因為軍隊將不再具備2028發展目標所設想的那樣融合能力,而是退回到既定的解沖突和同步過程,這種程序太慢,效率太低,無法保持競爭力。
正如本文所說明的那樣,面對擁有人工智能引導和自主武器系統的同行威脅,保持競爭力的唯一途徑是發展類似的能力,在幾秒鐘內建立并執行冗余的傳感器到射手的連接。將人工智能整合到作戰管理過程中不是一個保持領域優勢的問題,而是確保美國軍隊能夠在對抗、利用和再對抗的連續循環中創造短暫的優勢窗口,這種對抗在所有作戰領域中以秒計。
機器學習(ML),從廣義上講,是一類自動優化參數以處理給定輸入并產生所需輸出的計算機算法。ML的一個經典例子是線性回歸,據此找到一條最適合(通過)一組點的線。最近的一個例子是分類任務,如用 "貓 "這樣的單字來標記一張百萬像素的圖像。
對于許多應用,ML完成了人類可以做得同樣好的任務。然而,ML在兩種情況下大放異彩:1)任務的數量巨大,例如數百萬;2)問題的維度超出了人類思維的理解。一個簡單的例子是同時實時監控成千上萬的安全攝像頭,尋找可疑的行為。也許一個ML方法可以發現異常事件,并只與人類觀察者分享這些視頻片段。更好的是,異常圖像可以被暫時貼上諸如 "1號入口處的蒙面入侵者 "之類的標簽,以幫助保安人員只關注相關的信息。
除了減少人類的負擔外,ML還可以將人類可能無法識別的復雜的相互聯系拼湊起來。例如,一個ML算法可以發現,在一百萬個銀行賬戶中,有五個賬戶的交易似乎是同步的,盡管它們沒有相互發送或接收資金,也沒有向共同的第三方發送或接收資金。
鑒于手持和固定設備的計算資源不斷增加,我們有必要想象一下,ML可以在哪些方面改變戰爭的打法。當然,ML已經對美國陸軍的科學研究產生了影響,但我們也可以很容易地想象到自主車輛和改進的監視等作戰應用。
本文件的主要目標是激勵美國陸軍和美國防部的人員思考ML可能帶來的結果,以及為實現這些結果,哪些研究投資可能是有成效的。
在ARL的許多研究項目中,機器學習目前正在被使用,或者可以被使用。我們列出了一些使用ML或可能從ML中受益的研究項目。我們列出的與ML相關的ARL研究工作絕非完整。
雖然從技術上講,機器學習自19世紀初高斯發明線性回歸以來就一直存在,但我們相信,ML的最新進展將以我們目前無法想象的方式影響軍隊。在本節中,我們概述了我們認為將得到加強的軍隊行動的許多領域,以及可能采用的ML方法的種類。
軍事情報包括信息收集和分析,因為它涉及到指揮官做出最佳決策所需的信息。由于收集的數據量越來越大,處理必須自動化。需要考慮的主要問題是數據的數量、速度、真實性和多樣性。大量的數據(又稱大數據)需要在許多計算節點上對數據進行智能分配。速度要求快速計算和網絡連接到數據流。真實性是對信息來源和異常檢測的信任問題。多樣性相當于使用許多不同的ML算法的不同訓練模型的應用。我們在本小節中概述了不同類型的數據和分析要求。
讓計算機從從各種媒體來源收集到的大型文本數據庫中提煉出重要的概念和文本部分,有很大的好處。最近報道的另一個ML突破是不同語言之間的精確文本翻譯。 軍隊的一個獨特挑戰是翻譯不常見的語言,因此專業翻譯人員較少。在人工通用智能(AGI)領域,一些團體聲稱,自然語言處理將是類似人類認知的基礎。
鑒于人類、傳感器和代理產生的數據的激增,一個很大的問題是,除了證明其收集的直接用途之外,這些數據還包含什么剩余價值。數據挖掘可以是統計學和機器學習的努力,以發現數據中的模式,否則人類操作者就會錯過。
傳統上,異常檢測是通過首先識別已知數據的群組和描述數據的分布來進行的。然后,當新的輸入被處理時,它們被識別為屬于或不屬于原始分布。如果它們在已知分布之外,就被認為是異常的。以下許多類型的異常檢測系統可能對軍隊有用。
網絡入侵檢測:超出常規的網絡流量。McPAD和PAYL是目前使用的軟件中的2個這樣的例子,它們使用了異常檢測。
生活模式異常:人們的視覺和生物統計學上的行為方式與常人不同,表明他們可能正在進行一些對抗性行動。
基于條件的維護:在當前生命周期中,材料/系統在其年齡段不典型的信號。
士兵異常:有理由相信士兵的生物識別技術不正常。
異物檢測:在已知物資數據庫中無法識別的物體的視覺效果。
自動目標識別(ATR)是一個非常成熟的領域,已經使用機器學習幾十年了。
1)目前深度學習的進展將在多大程度上增強ATR?
2)更復雜的算法是否需要更復雜/更耗電的機載計算?
ML是否能對目標的各種欺騙性的混淆行為具有魯棒性?
強化學習在多大程度上可以用來進行實時軌跡調整?
機器學習在機器人學中的應用也是一個巨大的領域。ML應用領域包括傳感、導航、運動和決策。目前,傳感將從計算機視覺的所有進展中受益。導航,除了使用標準的GPS之外,還可以從自我運動中受益,也就是基于自身感知的運動估計。運動可以被學習,而不是規劃,這不僅會導致更快的開發時間,而且還能在新的環境或受損的模式下重新適應(例如,失去四條腿中的一條)。最后,隨著機器人的數量超過人類操作員的數量,機器人將有必要自行決定如何執行其規定的任務。它將不得不做出這樣的決定:"由于電池電量不足,我是否要回到大本營?"或者 "我是否繼續前進一點,然后自我毀滅?"
除了機器人技術,人們最終希望任何系統在損壞或不能滿負荷工作時能夠自我糾正。這需要在某種程度上的智能,以自主診斷缺陷和問題,并利用其可用的資源糾正這些問題。
在通過機器學習來學習自主權的情況下,問題將是:"自主系統將如何應對X情況?" 這里的問題是,對于一個擁有潛在致命武力的系統,我們怎么能確定它只會正確合法地使用武力?我們推測,在機器學習的算法擁有使用致命武力的實際能力之前,必須對其進行廣泛的測試,即使它與人類的環形決策相聯系。
近年來,大量的研究都在研究使用機器學習來自主地玩各種視頻游戲。在某些情況下,報告的算法現在已經超過了人類玩游戲的水平。在其他情況下,仍然存在著處理長期記憶的挑戰。對于美國空軍來說,智能代理已經成功地在以戰斗為中心的飛行模擬器上進行了訓練,這些模擬器密切模仿現實生活。陸軍的問題包括以下內容。
智能代理能否附加到機器人平臺上?
智能在多大程度上可以通用于處理現實生活與視頻游戲中遇到的各種情況?
當我們可能不理解一個訓練有素的代理的邏輯時,我們能相信它的行動嗎?
代理在多大程度上能夠與人類合作?
在過去的十年里,機器學習在網絡安全方面發揮了不可或缺的作用。具體來說,ML可以用于異常檢測,檢測已知威脅的特定模式,并辨別網絡行為是否可能由惡意代理產生。隨著該領域的不斷加強,問題是ML是否能使安全比對手領先一步,因為對手可能利用ML來混淆檢測。
一個長期的設想是,軍隊使用的每一個機械系統都有一些關于系統當前和預測健康的內部感應。相關問題如下。
我們能從有限的傳感器中辨別出一個系統或系統組件的當前健康狀況嗎?
機載ML能否預測一個系統或系統部件在暴露于特定環境或彈道侮辱之后的健康狀況?
隨著基因組序列的數量繼續呈指數級增長,比較在現場獲得的序列所需的計算工作可能變得無法管理。機器學習可以通過對序列進行不同層次的分類來減少必要的比較。
93 近年來,機器學習已經在檢測各種組織中的惡性腫瘤方面取得了長足的進步。94 它同樣可以被用來描述創傷或創傷后應激障礙(PTSD)95,并制定治療計劃。
陸軍的一個重要組成部分集中在對行動、系統、研究和測試的分析上。傳統上,分析人員使用大量的工具,包括機器學習,以多維回歸、聚類和降維的形式。隨著深度學習的出現,一套新的工具應該是可能的,可以更有效地處理需要更復雜模型的大型數據集。例如,應該有可能從測試期間拍攝的視頻流中提取特征和物理屬性,這可能超過目前的標準做法。
自適應用戶界面(AUI)和情感計算。ML可以用來確定用戶的心理和/或情緒狀態,并提供適合這種狀態的界面。此外,可變的AUI可以服務于用戶的變化。例如,一些用戶可能喜歡音頻反饋而不是視覺反饋。
推薦系統。最流行的推薦系統之一是根據以前看過的電影的評分來選擇用戶想看的下一部電影(例如,所謂的 "Netflix問題")。對于軍隊來說,可以根據以前的使用情況和庫存核算的反饋來推薦后勤補給的情況。
搜索引擎/信息檢索。傳統上,搜索引擎返回文件的 "點擊率"。新的范式是以簡明的形式回答用戶的問題,而不是簡單的模式匹配。
情感分析。社交媒體上的流量和對環境進行訓練的各種傳感器不僅可以檢測關鍵的關鍵詞或特定物體的存在,還可以推斷出可能的攻擊的可能性。
有針對性的宣傳。傳統上,宣傳是通過散發傳單來完成的,如今,宣傳可以通過社交媒體來傳播。ML的角度是如何以最有說服力的信息向正確的人口群體進行宣傳。此外,重要的是快速檢測和顛覆來自對手針對我們自己的人員/人民的宣傳。
本研究的目標之一是確定當前研究中的差距,這些差距可能會限制ML在軍隊研究和行動中的全部潛力。本節借用了ARL運動科學家Brian Henz博士和Tien Pham博士(未發表)的戰略規劃工作。
傳統上,在一個特定領域采用ML的一半戰斗是弄清楚如何適應現有的工具和算法。對于陸軍所面臨的許多問題來說,這一點更為突出,與其他學術、商業或政府用途相比,這些問題可能是獨一無二的。任何數據分析員面臨的第一個問題是使數據適應他們想要使用的統計或ML模型。并非所有的數據都使用連續變量或者是一個時間序列。離散/標簽數據的管理可能非常棘手,因為標簽可能不容易被轉換成數學上的東西。在自然語言處理中的一個例子是,單詞經常被轉換為高維的單熱向量。另一個例子可能是如何將大量的維修報告轉換為對某一特定車輛在一段時間內的表現的預測。
此外,陸軍的要求超出了典型的商業部門的使用范圍,不僅需要檢測物體和人,還需要檢測他們的意圖和姿態。這將需要開發新的模型。另一個大的要求是可解釋性,正如DARPA最近的一個項目所概述的那樣:是什么因素導致ML算法做出一個特定的決定?在一個真實的事件中,如果一個ML算法在沒有人類驗證的情況下宣布一個重要目標的存在,我們能相信這一決定嗎?
隨著對計算要求高的ML任務的設想,開發人員正在使用多線程、并行和異構架構(GPU、多核)來加快計算速度。ML的分布式實現遠不如GPU版本常見,因為分布式計算中的節點間通信存在固有的網絡瓶頸,而且在單精度浮點性能方面,GPU相對于CPU有很大優勢。除了目前對GPU的強烈依賴,生物啟發式神經計算旨在尋找非馮-諾伊曼架構來更有效地執行ML,并可能更快。這方面的一個例子是IBM的神經形態芯片。97 未來的研究應該關注如何分配ML處理,使節點之間的網絡通信最小化。另外,像聚類這樣的無監督學習算法在多大程度上可以被映射到神經網絡中?
其他需要考慮的事情。
目前的ML軟件(特定的神經網絡)在一個小型的GPU集群中表現最好。
大多數基于非神經網絡的ML算法的并行性不高,或者根本就沒有并行。
另一個軍隊的具體挑戰是分析基本上沒有標記的數據集(例如,用無監督學習)。手動標注集群將是一種半監督學習的形式。
隨著進入偏遠地區或任何遠離基地的地區,軍隊必須限制系統的尺寸、重量和功率。此外,在 "激烈的戰斗 "中,時間是關鍵。例如,人們不能在遭到槍擊時等待作戰模擬的完成。最后,在其他商業發射器占主導地位的地區,或者在限制無線電通信以提高隱蔽性的情況下,網絡帶寬可能會受到很大限制。
在這種倍受限制的環境中,機器學習將需要有效地進行,而且往往是以一種孤立的方式進行。截然相反的條件是使用大型數據庫訓練大型神經網絡,這往往是最先進的機器學習功力的情況。商業部門正在開發自動駕駛汽車,據推測將使用低功耗的計算設備(如現場可編程門陣列、移動GPU)進行自主駕駛、道路/障礙物檢測和導航。然而,陸軍將有更多的要求,包括自主傳感器和執行器、態勢感知/理解、與人類的通信/合作,以及廣泛的戰場設備。這將需要多幾個因素的計算能力和特定算法的硬件,以實現最佳的小型化和低功耗。
在混亂的環境中,操作環境預計會有比通常密度更高的靜態和動態物體。此外,人們完全期待主動欺騙以避免被發現。我們也希望能夠開發出足夠強大的算法,至少能夠意識到欺騙,并相應地調低其確定性估計。
基于CNN的目標分類的突破可以部分歸功于每個物體類別的成千上萬個例子的可用性。在軍隊場景中,某些人和物體的數據可能是有限的。人們最終將需要one-hot99或multishot分類器,其中幾個有代表性的數據條目就足以學習一個新的類別。到目前為止,最好的選擇是 "知識轉移",通過調整以前訓練的模型的所有參數的子集來學習新的類別。我們的想法是,由于需要優化的參數較少,修改這些參數所需的數據也較少。
即使對于我們可以產生大量圖像的目標類別(例如,友好物體),我們也需要訓練自己的模型,以便從每個類別的潛在的數千張圖像中識別軍隊相關類別。軍隊還使用商業車輛中通常不存在的其他傳感模式(例如,熱能和雷達)。因此,需要為這些非典型的傳感設備訓練模型。從根本上說,非典型傳感設備可能需要新的神經網絡拓撲結構以達到最佳的準確性和緊湊性。
一個值得研究的有趣領域是將模型和模擬與機器學習相結合。有很多方法可以做到這一點。例如,ML可以用來推導出模擬的起始參數。此外,ML還可以用來處理模擬的輸出。一個耐人尋味的新領域是開發基于物理學或類似物理學的模擬,使用類似ML的模型/方程。一個這樣的應用是預測 "如果?"的情景。例如,"如果我跑過這棵樹呢?接下來會發生什么?"
機器學習在傳統上被認為是人工智能的硬性(即數學)表現形式。有可能最終,所有的人工智能任務都會被簡化為數學。然而,就目前而言,一些智能任務似乎更多的是基于推理或情感。對于之前描述的方法中的任務,ML并不能充分解決以下軟性人工智能的特點。
人類并不總是完全按邏輯推理,但他們也有能力將不完整的信息拼湊起來,做出 "最佳猜測 "的決定。幾十年來,對這種行為進行編碼一直是一個挑戰。
情緒似乎是驅動人類達到某些目的的動機/目標功能。例如,快樂可能會導致不活動或追求生產性的創造力。另一方面,恐懼則可能會導致忍氣吞聲。計算機是否需要情感來更有效地運作,還是說它們最好擁有100%的客觀性?這既是一個哲學問題,也是一個未來的研究方向。不過現在,毫無疑問的是,在人與代理人的團隊合作中,計算機需要準確地解釋人類的情感,以實現最佳的團體結果。
與人類的互動性是陸軍研究未來的首要關注點。一個類似的問題是,不同的計算機系統之間如何進行交流,而這些系統不一定是由同一個實驗室設計的。研究的一個領域是用計算機來教那些在這方面有困難的人進行社會交流。 再一次,對于人與代理的合作,代理將需要能夠參與社會互動,并在人類的陪伴下遵守社會規范。
創造力通常被認為是隨機合并的想法,與新的元素相結合,由一個鑒別功能決定新創造的項目的功能和/或美學。在某些方面,創造力已經被某些計算機實驗室所證明。例如,為了設計的目的,計算機可以被賦予某些方面的創造力。
人工智能的最終目標是將許多狹義的智能算法合并成一個統一的智能,就像人類的頭腦一樣。75鑒于許多狹義的人工智能任務已經比人類的某些任務要好,即使是早期的所謂人工通用智能(AGI)也可能具有一些超人的能力。AGI的一個主要目標是將目前由人類執行的某些任務自動化。
如果不提及許多哲學家的猜測,機器學習將最終能夠改進自己的編程,導致能力的指數級提高,也許會遠遠超過人類智能,那么機器學習的研究就不完整了。這些設想既是烏托邦式的104,也是烏托邦式的105。希望超級智能能夠解決世界上的許多問題。
在這項工作中,我們回顧了機器學習的不同類別,并描述了一些更常用的方法。然后,我們指出了一小部分關于ML在ARL中的應用的例子。最后,我們預測了ML在未來可以應用于軍隊的各個領域,并概述了為實現這一結果需要解決的一些挑戰。我們希望這份文件能夠激勵未來的研究人員和決策者繼續投資于研究和開發,以充分利用ML來幫助推動美國陸軍的發展。
?在日益復雜的軍事行動環境中,下一代兵棋推演平臺可以減少風險,降低作戰成本,并改善整體結果。基于具有多模態交互和可視化能力軟件平臺的新型人工智能(AI)兵棋推演方法,對于提供滿足當前和新興戰爭現實所需的決策靈活性和適應性至關重要。我們強調了未來作戰人-機器交互的三個發展領域:由人工智能引導的決策指導,高計算力下的決策過程,以及決策空間的真實呈現。這些領域的進展將使有效的人機協作決策得以發展,以滿足當今戰斗空間日益增長的規模和復雜性。
關鍵詞:決策、交互、兵棋推演、人工智能、增強/混合現實、可視化
在傳統的兵棋推演中,指揮官利用一個共同的基于地圖的作戰地形,并在軍事決策過程(MDMP,方框1)中模擬各種因素的組合如何產生行動方案(COA)、可能的反擊行動、資源使用估計和預測結果(美國陸軍,1997年,2014年,2015年)。在幾天或幾周的時間里,MDMP過程導致了一套精煉的COAs,它對作戰環境做出了一定的假設,包括地形、天氣以及戰區資產的可用性和能力(即塑造支持主要作戰行動的活動)。
方框1. 軍事決策過程(MDMP) | |
---|---|
MDMP是美國陸軍解決問題的理論方法,從接到任務開始,到生成作戰命令結束。MDMP被用作一種工具,幫助指揮人員審查眾多的友軍和敵軍的作戰行動。MDMP的7個步驟在規劃新任務、擴展行動和執行訓練演習所需的決策過程中灌輸徹底、清晰、合理的判斷、邏輯和專業知識(美陸軍,1997年,2015年)。 | |
指揮官在接到任務后啟動了MDMP。在MDMP的第1步中,所有的工作人員和關鍵的任務參與者都被告知任務和待定的規劃要求,包括進行MDMP的可用時間量。確定進行任務分析所需的工具,并收集與任務和作戰區有關的文件。步驟2,執行任務分析,建立對任務的全面理解,包括關鍵的事實和假設,形成擬議的任務說明和任務分析簡報,為制定COA做準備。 | |
MDMP的第3至第6步著重于制定COA以進行分析和比較。這些步驟包括:第3步,制定COA;第4步,COA分析(兵棋推演);第5步,COA比較;第6步,COA批準。COA是對一個已確定的問題的潛在解決方案。每個COA都要使用篩選標準來檢查其有效性,如在既定的時間框架、空間和資源限制內完成任務。COA的選擇過程通常涉及到兵棋推演,它試圖在考慮到友軍力量和敵人能力的情況下,將行動的順序流程可視化,同時考慮到行動區域內平民的影響和要求(美陸軍,2014)。戰術模擬(兵棋推演)方法的好處是突出了作戰行動的優勢和劣勢。這往往是一個反復的過程,對作戰行動方案進行評估,然后根據需要進行修改,直到出現一個或多個具有最高成功概率的作戰行動方案來完成任務目標。 | |
在一個具體的行動方案得到指揮部的批準后,MDMP的最后一步是制作行動指令,這是一份給下屬和鄰近單位的指令,旨在協調所有參與任務的組織的活動。這一步驟涉及到所有受命令傳播影響的組織之間的積極合作,并建立起對局勢的共同理解。 |
盡管MDMP幫助指揮官了解作戰環境和考慮作戰方法,但這個過程有很多局限性,如時間密集、假設僵化、跨場景訓練的機會有限,以及將人工智能(AI)指導納入決策過程的機會很少。傳統上,一項任務的成功與指揮部執行MDMP的能力直接相關。然而,鑒于當今多域作戰(MDO)的復雜性增加(Feickert,2021年),有大量的任務指揮系統和流程,與行動相關的所有活動的整合和同步變得越來越困難,甚至到了人為無法完成的地步。由于MDMP的缺陷而導致的規劃專業知識的缺乏,可能會導致不同步和不協調的行動,從而最終導致士兵的生命損失。
MDMP中沒有具體描述戰斗空間的可視化能力,但它顯然在決策過程中發揮著重要作用。最近,集成了先進可視化能力的新系統和新技術已經被開發出來,它們可以提高態勢感知,從而增強決策過程。美陸軍的例子包括Nett Warrior(Gilmore,2015),它使下馬戰士能夠直觀地看到附近的友軍和敵軍,同時根據當地的地形協同規劃戰術任務。盡管這項技術將無線電和數字地圖擴展到了下馬戰士,但它缺乏一個底層的人工智能引擎來提供決策幫助。戰斗空間可視化和交互平臺(BVI,前身為增強現實沙盤,ARES)是陸軍技術的另一個例子,它能夠為任務規劃提供分布式協作,具有從任意視角和廣泛選擇設備的共同作戰畫面的二維和三維可視化能力(Su等人,2021)。BVI架構的制定是為了拉入外部計算服務,如分析管道、模型和人工智能引擎。美陸軍研究實驗室正在努力將這些類型的服務納入BVI,包括用于加強決策支持的人工智能。
目前,MDMP并沒有將人工智能指導納入整體任務規劃方法中。美陸軍的自動規劃框架(APF)(Bailey,2017)開始通過將自主技術插入MDMP工作流程來解決人工智能輔助決策問題。指揮人員可以通過APF的數字規劃呈現、規劃創建和規劃監控工具,在任務規劃和COA開發期間獲得背景援助。任務執行和估計能力通過監測任務的規劃和實際進展,為改進決策跟蹤和支持活動提供自動協助。盡管APF為MDMP引入了基本的自動化水平,但它缺乏Nett Warrior和BVI所提供的先進的可視化和用戶互動能力。
提供地面部隊自動化和用戶可視化能力的是美陸軍最知名的兵棋推演平臺--半自動化部隊(OneSAF),為計算機生成的地面部隊提供建模和模擬能力(PEO_STRI, 2022)。OneSAF提供了半自動和全自動的軍事實體(即士兵、坦克、直升機和綜合單位)的建模,在類似真實世界的戰斗空間中以不同的保真度來支持特定的應用和場景。OneSAF主要用于訓練,并與目前的任務指揮系統具有互操作性。它可以使用多分辨率的地形和詳細的實體相關數據庫來模擬廣泛的作戰環境。然而,OneSAF對地形和實體系統的高保真建模的優勢使得它的設置和運行成本很高。它受到老化系統的限制,而且眾所周知,士兵需要大量的培訓來學習如何操作模擬,使用起來很困難(Ballanco,2019)。OneSAF的復雜功能并不適合開發人工智能能力,以實現快速和敏捷的戰士-機器決策。
除了MDMP和上面提到的陸軍平臺外,最近將人工智能納入決策過程的工作包括一些方法(Goecks等人,2021a),在模擬人類決策過程方面取得了一些成功。一般來說,人工智能在決策變量有限的問題上取得了一些成功,如資源分配(Surdu等人,1999)、飛行模擬器(Drubin,2020)和更簡單的場景。正在進行的挑戰包括需要提高人工智能的能力,以解決有多個行為者、不完整和可能沖突的信息、不斷變化的單位行動和環境屬性的復雜決策,以及需要將這些決策的后果在許多空間和時間尺度和領域內可視化。
以下各節描述了對MDMP的潛在改進。"未來軍事決策過程所需的進步"一節概述了支持MDO決策的三個研究領域,并以圖表形式描述了這些研究領域與軍事理論決策方法之間的關系。"未來軍事決策過程所需的進步 "一節中的小節對每個研究領域進行了更深入的討論。"展望推進人-人工智能團隊決策的交互技術 "一節概述了未來的作戰人員-機器接口(WMI)的發展方向,重點是與決策有關的人-人工智能團隊的跨學科研究。
軍事決策過程在支持MDO復雜決策方面的局限性,突出了在三個研究領域的改進需要。首先,有必要將人工智能產生的指導和輔助決策支持納入MDMP。這既包括進一步開發和整合人工智能到戰斗空間決策規劃,也包括進一步改善人工智能決策過程的可解釋性和透明度(Chen等人,2018)。第二,有必要在戰略層面以及戰術邊緣,盡可能地將決策分析與高性能計算(HPC)的力量結合起來。這將能夠利用HPC系統的力量來支持建模、分析和計算時間,同時整合和同步來自所有戰區領域的信息。最后,有必要利用先進的可視化技術,如混合現實技術,對決策空間進行更準確和互動表述。不是簡單地在一個固定的時間尺度上顯示地形的二維渲染,而是需要可視化不同領域的決策是如何相互作用的,并利用混合現實技術來提高理解的吞吐量,并產生平面顯示不可能的洞察力。
除了MDMP之外,其他更廣泛適用的支持戰斗性問題解決的軍事理論包括:DOTMLPF[例如,學說、組織、訓練、物資、領導、人員和設施;(美陸軍,2018年)],這是一個確定差距并為當前和未來作戰要求提出設計解決方案的框架;以及METT-TC[例如,任務、敵人、地形和天氣、部隊、可用時間和民事考慮;(美陸軍,2019年)],這是一個結構化框架,用于捕捉任務相關因素的狀態,以便在軍事行動期間進行共享評估。這些理論定義了MDO戰場的信息背景,構成了應用于上述三個研究領域的軍事決策的核心基礎。如圖1所示,在為人類和人工智能指揮開發復雜軍事決策空間的新表述時,研究進展和MDO相關理論相互借鑒、相互啟發、相互加強(美陸軍,2010)。
圖1. 新型作戰人員-機器交互(WMIs)和人工智能輔助決策所需的三個研究發展領域,以支持和加強基本的MDO理論[右下圖來源:Lebsack(2021)]。
需要新的人工智能支持的WMI,以利用人工智能決策方面正在取得的進展,并為復雜的適應性決策的人工智能學習作出貢獻。在簡化的戰斗空間中測試人工智能決策輔助工具是開發過程中重要的第一步,也是將人工智能納入更成熟的戰斗空間平臺(即BVI、OneSAF)的前奏。開發用于決策輔助實驗的人工智能測試平臺可以在MDO中產生能力越來越強的潛在COA建議。圖2顯示了陸軍開發的兩個人工智能測試平臺的例子。
圖2. 兩個ARL人工智能測試平臺的例子。左邊:ARL Battlespace(Hare等人,2021)( //github.com/USArmyResearchLab/ARL_Battlespace )。右邊:ARL的Simple Yeho測試平臺。圖片由C. Hung制作。
人工智能測試平臺能夠開發出匯集所有領域信息的AI,并計算出人類和AI智能體的風險和預期回報。圖2的左側顯示了ARL戰斗空間測試平臺(Hare等人,2021年),它是從頭開始開發復雜決策的新型人工智能的理想場所。它對戰斗空間的抽象強調了軍隊相關場景下的核心推理原則,在這種情況下,用蜜罐進行網絡欺騙。較小的網格空間使人工智能的學習和發展能夠集中在不確定性下的復雜推理,有多個友好和敵對的agent。圖2的右側顯示了ARL的Simple Yeho測試平臺,它提供了將人工智能開發與更多真實世界場景中的默契推理結合起來的能力,有多個基于地形的海拔高度、視線范圍、障礙物、樹葉(隱蔽)、道路和城市區域。紅色陰影和黑色線條表示任務的起點和終點、左右邊界以及人工智能建議的路線。這種額外的真實性使其能夠與MDO理論相結合,包括DOTMLPF和METT-TC,并使人工智能與自然的、機會主義的士兵行為共同發展。這兩個人工智能測試平臺都可以擴展為傳統和沉浸式混合現實WMI開發平臺。
使用漸進式和可擴展的人工智能測試平臺,可以調查現有人工智能的幾個基本限制,特別是對于具有不確定性的復雜和適應性決策,以及人類和AI智能體的協作和對抗。對多智能體的協作和對抗性決策進行建模可能特別復雜,因為其遞歸性質,其他智能體是模型的一部分(Goldman,1973;Grüning和Krueger,2021),需要對決策特征、個性化的價值、風險規避、記憶和注意力進行動態和不斷發展的估計。這些具有高度不確定性、復雜性和動態性的情況是人類擅長的領域,適當設計的交互界面和人工智能測試平臺的人機協作可以提供加速和更有效的決策。對于有效的團隊合作,新穎的WMI應該幫助作戰人員篩選復雜的信息,并幫助人工智能發現決策的隱含規則。下面,我們提供了關于人機協作如何有效的案例。
多域兵棋推演中需要的復雜決策是開發有效人工智能決策輔助工具的直接挑戰。最近人工智能在圍棋、國際象棋、Minecraft和大富翁等游戲中的成功(Silver等人,2017;Goecks等人,2021b;Haliem等人,2021)是基于對世界現有狀態有完整了解的游戲(即 "開放 "游戲),而兵棋推演平臺通常包括關于作戰環境的不完整(如星際爭霸)、不確定或欺騙性信息(Vinyals等人,2019)。不確定性也可能來自變化的物理學或其他環境規則,正如在《憤怒的小鳥》中所探索的那樣(Gamage等人,2021)。由于世界狀態、不同行動者的狀態以及所采取的行動不確定性,知識的缺乏使得人工智能agent難以計算未來行動的風險回報情況(Cassenti和Kaplan,2021)。不確定性也限制了人工智能估計其他行為者的風險回報概況的能力,而這是計算有效的博弈論策略所需要的。人工智能被可能的最優和近似最優選擇的廣度所淹沒(Lavine,2019),即由于信息有限而選擇錯誤的選項,這種情況并不罕見,因為人類在制定有效探索隱藏信息的策略時,采用啟發式方法進行有效的選擇和預測(Gardner,2019)。為了幫助發展人工智能的隱性知識和探索能力,新型的WMI需要有效地解釋和展示決策景觀,以使作戰人員能夠快速和自然地瀏覽可能的選擇,同時使人工智能能夠在不施加認知負擔的情況下從人類的決策中機會主義地學習(Lance等人,2020)。這種機會主義學習可以包括:例如,凝視跟蹤,以捕捉吸引人類興趣和意圖的視覺區域和未標記的目標。它們還可以包括建立在自然的士兵選擇行為基礎上的行動者批評方法,以改善人工智能對人類專家在不確定、不完全信息和欺騙的情況下如何優先考慮某些選擇的學習,這取決于任務相關的背景。
開發人工智能的WMI的另一個基本挑戰是如何有效地整合和顯示MDO中所有五個領域的信息,特別是空間和網絡,因為這些領域的信息具有不同的時空尺度(Gil等人,2018)。對于網絡,決策的規模和速度可能比人類處理和理解的能力更快,需要人類的輸入來指導半自動化的決策,以及實施進攻和防御性欺騙策略的人工智能。WMI需要能夠以這樣的方式顯示決策圖景,即可以解釋一小部分最優和接近最優的決策策略(例如,圖3中的決策樹)。這應該包括對關鍵agent在不確定情況下的未來狀態和風險回報情況的估計(Hare等人,2020),以使有效的博弈論決策能夠被共同開發和相互理解。
圖3. 在頂部,是BVI網絡戰術規劃器應用程序中友軍與敵軍戰爭場景的三維視圖。三維視圖提供了一個比二維視圖更真實的決策視角,例如,顯示友軍(藍色)和敵軍(紅色)機載預警系統(AEWs)和周圍地形的海拔。這使得快速審查可能的視線和相對于周圍地形的感應。下面是人工智能的導航決策樹,為人工智能計算的幾個關鍵選擇的風險/回報概況以及它們如何映射到地形上提供透明度。這種抽象的決策空間還可以整合非空間決策,例如網絡欺騙。虛線表示與友方AEW的通信聯系和對敵方AEW的可能干擾。圖片由C. Hung制作。
這些挑戰為有效的WMIs設計提供了參考。也就是說,我們需要有能力從不同的來源(包括從其他國家的決策輔助工具)提取信息,以及一個能夠承載整合這些信息的計算能力的架構,同時還要處理基礎的人工智能計算(用于學習和部署)。我們還需要共同開發一個界面和算法設計,以適時地利用人類和人工智能agent的優勢并減少其局限性。
在復雜的決策過程中,需要大量的計算能力來處理和記錄所有組件、實體和狀態空間。從積累的動態狀態空間的數據集中建立過去、現在和預測模型,需要利用HPC資源來產生分析性的見解,并在決策背景下創建有用的表述。
實施HPC分析工作流程的一種方法是使用持久性服務框架(PSF)。PSF是一個最近可用的分布式虛擬化解決方案,它可以通過一個基于網絡的前端實現對HPC服務的非傳統訪問,而不像傳統的HPC環境,計算節點在特定的時間段內以批處理模式分配給用戶。此外,PSF提供對數據、數據庫、容器化工具集和其他托管平臺的分布式連續訪問(Su等人,2021)。
在一個PSF方法的例子中,一個模擬引擎連接到PSF,用于記錄人類和人工智能做出的所有決定。這允許分析在任務規劃和COA開發過程中發生的決策行為,以及識別決策模式和戰略,以開發競爭性和現實的兵棋推演場景。一個戰斗空間可視化平臺可以托管在PSF上,并使用消息傳遞協議來更新所有連接的設備接口。來自模擬引擎的狀態信息可用于生成戰斗空間和參與作戰單位的圖形表示。
使用PSF方法并利用HPC資源,可以實施人工智能輔助決策機制,利用大數據攝取和分析,同時可供地理分布的用戶用于協作決策工作和 "永遠在線 "的個性化培訓和紅色團隊。連接到PSF托管服務器的各種混合現實顯示模式可以支持一系列作戰場景,從戰略層面的指揮和控制到作戰邊緣的更多移動戰術使用。
用圖形表示各級行動的軍事決策戰略需要新的可視化方法,這些方法可以應用于以規則變化、認知狀態、不確定性以及個人偏見和啟發式方法為特征的動態環境(Dennison等人,2020;Hung等人,2020;Raglin等人,2020)。戰斗空間的視覺表現應該在技術上盡可能準確和逼真,但又保持在人類可以理解和解釋的認知水平(Kase等人,2020;Larkin等人,2020;Hung等人,2021)。融合了混合現實技術的先進可視化方法有可能更好地表現多領域戰爭的變化特征及其不斷變化的威脅和動態環境。隨著最近混合現實可視化設備的技術進步,成本降低,硬件的可靠性和實用性顯著提高,混合二維和三維可視化方法現在已經成為可能。
由多個二維顯示器組成的混合現實方法增強了更先進的三維可視化能力,可以為指揮人員提供理解復雜的兵棋推演狀態空間所需的洞察力(Su等人,2021)。當需要一個共享的戰斗空間表示時,可以通過在不同的可視化模式上實現多個協調的視圖來實現協作的戰略規劃模式,以根據分布式指揮人員的輸入進行互動更新。
BVI(Garneau等人,2018)平臺表示地理空間地形信息和地圖圖像,允許指揮人員建立和修改戰術任務規劃和COA。作為一個數據服務器,BVI將地形和作戰數據分發給支持多種可視化模式的客戶端應用程序,包括頭戴式顯示器設備、基于網絡的界面、移動安卓平板設備和混合現實設備(例如,HoloLens 2、Oculus Quest)。
例如,圖3(頂部)顯示了位于加利福尼亞州圣貝納迪諾縣歐文堡國家訓練中心的高分辨率地形上的友軍與敵軍的兵棋推演場景(Wikipedia, 2021)。與MDMP期間經常使用的傳統2D地圖顯示相比,戰斗空間的3D視圖可以從多個觀察角度提供更豐富的用戶體驗。三維視圖,在BVI的網絡戰術計劃器(WTP)中,將地形和人工特征的空間信息以及由MIL-STD 2525C符號描繪的單位位置可視化(美國防部,2014)。可以想象,地理空間視角,如BVI提供的視角,支持決策者對動態戰斗空間環境的理解。與可導航的人工智能增強的決策空間(圖3,底部)搭配,組合的視角可以使人們更好地理解視覺空間依賴性、影響和因果關系、估計的風險和價值、不確定性以及復雜決策的欺騙性。將這種以地理空間和決策為中心的視角與人工智能相結合,可以提供必要的廣度,以協調物理行動與網絡和其他非空間領域的行動,跨越多個時間尺度,并具有快速適應變化的任務目標的靈活性。
人工智能和人-人工智能團隊的快速發展需要WMI同步發展。隨著新型人工智能對有價值的COA產生更好的預測,并能更好地處理復雜的決策,它們也必須利用人類的專業知識,學習如何處理具有高度不確定性、欺騙、隱性知識和博弈論的決策。相反,人工智能的推理必須既抽象又能與兵棋推演環境相聯系,以實現透明和信任,同時又不造成過度的認知負擔。基于三維混合現實的WMI可以利用和增強人類固有的三維認知和預測能力(Welchman等人,2005;Kamitani和Tong,2006;Kim等人,2014;Boyce等人,2019;Krokos等人,2019),如果設計得當,其交互將感覺自然,同時擴大顯示多個領域的信息的能力,同時使AI能夠適時地從用戶的決策中學習。
我們強調了三個關鍵的發展領域,即人工智能引導的決策指導,支持這種指導的計算基礎設施,以及決策透明度的混合現實表現的發展。這些領域的進步需要跨越許多不同學科的專業知識。新的人工智能發展需要融合神經科學、心理學和數學的思想,以克服復雜決策中長期存在的問題的瓶頸。這包括跨時間尺度的學習和變化環境下的災難性遺忘,以及更具體的兵棋推演問題,如具有不確定性、欺騙和博弈論的多Agent決策。計算基礎設施也需要發展,因為計算能力和數據框架對于在戰術邊緣產生人-人工智能團隊的共同操作圖來說都是必不可少的。為了有效地開發,應該通過一個共同的框架來抽象出專有的限制和軟件的依賴性,并為使用和故障排除提供清晰的文檔,以使學術界、政府和工業界更好地專注于解決人與人工智能的合作問題。這個通用框架應該包括有效的信息傳遞,同時提供靈活性和適應性,以滿足人工智能開發和人類用戶在訓練和實際使用環境中的需求。最后,交互技術的開發本身需要跨學科的協同專業技術。一個基礎性的問題是如何壓縮信息使之被用戶有效地理解,以及如何最好地利用用戶的互動來進行機會主義學習。人類的大腦并不處理所有的感官信息,而是對世界進行預測和假設,以便在信息不完整的環境下節約計算。一個有效的WMI應該同時預測潛在的決策結果以及個人用戶的期望和假設。此外,人工智能決策輔助工具必須估計用戶的默契,使其能夠提供最相關的信息和最有希望的選擇,這些信息來自整個作戰領域。
信息作戰和指揮與控制(C2)是美國陸軍可以向盟友和伙伴提供的兩種能力。在未來的作戰環境中,不僅要為動能作戰做準備,而且要為混合作戰和以信息為重點的戰爭做準備。這需要在復雜和默契推理的人工智能能力方面取得進展,在能夠提供持續訓練、分布式混合決策和大數據分析系統方面取得進展,以及在人與人工智能協作決策和機會主義學習方面取得進展,以實現人工智能的持續進步和人與人工智能的共同適應。這些進展中的每一項都需要跨學科的計劃性努力,以克服復雜的技術挑戰,創造新的決策原則、理論和理論方法,包括持續開發綜合測試平臺和技術,以實現政府、學術界和工業界的合作和協同發展。
該項目支持美國陸軍戰爭學院保持一個公認的領導者,并在與美國陸軍和全球陸軍應用有關的戰略問題上創造寶貴的思想。該項目于2018年由美國陸軍訓練與理論司令部總部要求,描述一個新的或修改過的作戰框架,以使陸軍部隊和聯合部隊在多域作戰(MDO)中對同行競爭者成功實現可視化和任務指揮。
由此主要形成一個在2019學年進行的學生綜合研究項目,該項目涉及4名美國陸軍戰爭學院學生和4名教員,由John A. Bonin博士領導。該項目研究了MDO的概念,即它如何影響任務指揮的理念和指揮與控制職能的執行。向MDO的過渡改變了陸軍指揮官和參謀人員在競爭連續體中進行物理環境作戰和信息環境作戰的傳統觀點。
該項目以第一次世界大戰期間美國陸軍引進飛機為案例,研究將新領域納入軍隊的挑戰。該項目還提供了對MDO的概述和分析,以及它正在改變我們的戰斗方式以及軍隊的角色和責任。這些變化將使聯合部隊能夠更有效地進行連續作戰,特別是在武裝沖突之下的競爭中。
向MDO的過渡將需要新的流程,該項目調查了多領域同步周期如何能帶來好處。物質系統、聯合專業軍事教育、聯合和陸軍理論以及總部人員結構將需要改變,因為領導人及其工作人員將需要不同的技能來在這個新環境中運作。
陸軍新興的多域作戰(MDO)概念對最近修訂的陸軍任務指揮理論提出了新的挑戰。美國已經有75年沒有與同行競爭者作戰了;因此,個別軍種在概念上側重于打自己的對稱領域戰爭,而較少注意在其他領域支持其他軍種。隨著技術的變化和國防預算的縮減,各軍種正在迅速失去通過純粹的存在和數量來控制其領域的能力和實力。因此,各軍種需要從不同領域獲得不對稱的優勢,以便在其領域作戰中取得成功。
陸軍的指揮和控制方法是任務指揮。這種方法要求指揮官有能力理解、可視化、溝通和評估關鍵決策、風險以及關鍵情報和信息要求。多域作戰的任務指揮將要求指揮官在多個領域以及指揮梯隊之間和內部保持單領域的卓越和知識。同樣重要的是,指揮官必須創造、確保并維持對其自身決策過程的共同認識。風險分析和關鍵的情報和信息需求過程是必要的,以確保指揮官能夠設定條件,賦予下屬領導權力,并在多個領域的范圍內影響分布式行動。因此,為了滿足這些新的要求,需要有新的框架來理解和調整多領域的指揮關系和人員結構。
這些新的框架將需要一個多領域的同步化進程,為指揮官提供一個確定新需求并為其提供資源的方法。與使用軍事決策程序或聯合規劃程序的傳統作戰程序不同,這兩種程序都側重于單一領域的規劃,而多領域同步程序則是在整個規劃和執行周期中,從指揮官和參謀部之間的持續合作中演變而來,跨越所有領域和環境。這種演變創造了對關鍵決策、相關風險以及指揮官認為至關重要的關鍵情報和信息要求的共同理解。
這項研究支持美國陸軍戰爭學院繼續保持在創造與陸軍和全球陸軍應用相關戰略問題寶貴思想方面的公認領導地位。該研究考察了MDO概念的應用,即它如何影響任務指揮的理念以及指揮和控制功能的執行。第一次世界大戰期間飛機的引入提供了一個與當前情況相似的背景,因為1918年的陸軍在如何為大規模的地面行動提供最佳的指揮和控制,以對抗同行的對手,以及如何整合空中對陸地的支持。當陸軍試圖了解如何在多個領域進行整合時,從約翰-J-潘興將軍對飛機的整合中得到的啟示可以說明問題。威廉-米切爾在戰時和戰后的角色說明了我們在試圖執行MDO時可能面臨的一些挑戰,例如在未來大規模地面作戰行動中保衛網絡和空間領域。
對MDO的概述和分析將提供陸軍對該概念的定義,并描述陸軍在競爭連續體中的作用。MDO概念將需要新的組織和人員框架來在沖突連續體的所有方面實施MDO。陸軍不能保持一個靜態的組織;陸軍必須既能在陸地領域贏得武裝戰斗,又能幫助塑造競爭以防止未來的沖突。
武裝沖突以下的行動歷來都是聯合部隊和陸軍的斗爭。陸軍在戰斗中指揮和控制的任務指揮方法將不足以組織在武裝沖突以下對對手的日常競爭。陸軍在競爭期間為聯合部隊執行重要的任務,特別是在信息環境中,這些任務在MDO下將會擴大。
目前的作戰流程專注于單一領域,對于支持特定領域以外的功能適用性有限。我們必須有新的流程,允許所有領域的資產同步,以優化我們的效率,同時將這些資產的風險降到最低。盡管適用于所有級別的指揮部,但擬議的流程主要集中在高級行動和戰略層面所需的規劃和數據收集。
從單一領域到多領域的重點變化,使得聯合部隊和陸軍的理論必須進行修訂和更新。聯合專業軍事教育課程和聯合學說將需要進行調整,以教導下一代領導人如何跨域整合。僅僅了解其他部門是不夠的;指揮官和參謀人員需要了解其他領域的能力如何支持他們的工作,以及他們在支持其他領域方面的要求是什么。長期以來,聯合部隊只是名義上的聯合,每個領域都在為贏得自己的戰斗而戰斗。MDO概念使聯合部隊能夠優化其有限的資源,既能應對危機,又能在最好的情況下防止競爭中的危機發生。
表3-1. 陸戰、空戰、海戰和信息戰的特點
圖3-3. 陸軍的指揮與控制方法。ADP 6-0
圖3-4. 多域作戰框架
圖3-5. 信息環境框架下的多域作戰