亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要

獲取大型復雜系統的過程通常以成本和進度超支為特征。為了研究這個問題的原因,我們可以在幾個不同的時間尺度上查看一個復雜系統的獲取。在更精細的時間尺度上,人們可能會研究采購過程的不同階段,從整個系統工程過程的復雜細節到設計團隊之間的溝通,再到各個設計師如何解決問題。在最大的時間尺度上,人們可以將采購過程視為一系列行動,即招標、投標和拍賣、合同以及最終構建和部署系統,而無需解決每個步驟中出現的細節。

在這項工作中,我們研究了多個尺度的采集過程。第一,我們為構建和部署階段的系統工程開發了一個博弈論模型。我們將系統和子系統工程師之間的交互建模為委托代理問題。我們開發了一個一次性的系統工程過程,并獲得了最能激勵子系統工程師最大化預期系統級效用的最佳傳遞函數。委托代理模型的核心是將代理的努力映射到系統的性能(質量)的質量函數。因此,我們通過將設計過程建模為順序決策問題來構建隨機質量函數。其次,我們開發和評估了一個收購過程模型,該模型解釋了各方的戰略行為。我們根據政府資助的項目來構建我們的模型,并假設以下步驟。首先,政府發布招標書。然后,私營公司在投標過程中提出他們的建議,中標者與政府簽訂合同。合同描述了系統要求和滿足這些要求的相應貨幣交易。獲勝公司致力于提供滿足要求的系統。這可以假設為政府與投標公司的博弈。我們研究了收購過程中的不同參數如何影響投標人的行為,從而影響政府的效用。使用強化學習,我們尋求學習該博弈中相關參與者的最優策略。特別是,我們研究如何要求,成本加成和激勵型合約等類型、投標人數量、問題復雜性等都會影響采購程序。此外,我們研究了私營公司的投標策略以及合同類型如何影響他們的戰略行為。

付費5元查看完整內容

相關內容

摘要

建模和仿真有助于德國武裝部隊后勤的數字化,必須提供靈活性和穩健性等因素,以識別后勤鏈中的風險和弱點。 ESG,作為一家擁有多年軍事經驗的德國軍事技術公司,我們展示了成功的仿真和分析項目(例如,“以歐洲戰斗機為例,預測德國空軍的作戰能力”或“基于仿真的醫療救援鏈分析”),并提出進一步的行動方向,例如基于仿真的分析,以優化軍事供應鏈中的加法生產或自主系統的最佳概念。通過對軍事供應鏈使用后勤仿真,可以檢查和優化其穩健性和可持續性。這種基于數據的決策支持方法(工具 AnyLogic,德國聯邦國防軍基于仿真的分析指南和模型檔案)。它聚焦于一個關鍵問題,例如“在某些參數/因素/影響下,系統的材料運行準備情況如何更高概率的為在未來發展,以及什么可以提高系統的性能?”如本講座所述那樣提供各種優勢。

圖2-1 模型開發流程

圖2-2 系統結構

付費5元查看完整內容

摘要

自主系統的開發者需要通過測試來訓練和驗證他們的算法。最終用戶在決定如何有效利用系統時也可以使用這些數據。模擬是在真實環境中進行實驗的另一種選擇,它更安全,成本更低,并允許執行可重復和可控的實驗。傳統上,機器人專家使用的模擬器專注于與系統相關的細節,同時簡化了與環境、通信和資產間關系相關的方面。作為替代方案,CMRE提出了一個海事仿真框架(MSF),可與機器人中間件(即MOOS和ROS)互操作,采用了一種硬件和軟件循環仿真方法,允許模擬通常被簡化的重要外部因素。這些擴展元素包含內容可以發現自主系統的開發人員可能不知道的交互,從而提高開發中的系統的健壯性。這項工作的目的是建立一個可配置和可擴展的仿真框架,以訓練和測試海事系統的自主行為,以協助系統開發者和支持最終用戶的操作決策。

該框架由高級體系結構(HLA)中的專用模擬器、聯邦成員模擬環境、平臺動態、傳感仿真、通信和直觀的可視化組成。提出的框架提供了一種模擬情況,包括復雜的海上操作的挑戰,以水下領域為重點,提供了比傳統方法更全面和現實的能力。到目前為止,MSF已經被用于支持地雷對抗(MCM)和反潛戰(ASW)任務中自主系統算法的發展,具有單個或多個車輛配置。

付費5元查看完整內容

摘要

步兵模擬(IWARS)是一個實體級的戰斗模擬,通常用于估計使用不同裝備(包括手榴彈和榴彈發射器)造成的作戰效能差異。當一枚模擬手榴彈在IWARS中爆炸時,對附近人員的影響是通過查詢一個高分辨率模型預先計算出的喪失能力的概率值來確定的。這個值取決于許多因素,因此需要一個大的查詢表,可能會超過數據庫的最大容量。為了解決這個問題,創建了一個神經網絡輸入選項,讓分析師有機會使用高度壓縮的數據而不犧牲準確性或運行時間。以前的壓縮技術要么不太準確,要么提供較低的壓縮率。
這項研究是在2019財年進行的,是題為 "機器學習技術協助生成項目級性能估計,用于班級和士兵級作戰評估 "的研究的一部分。該研究的另一半將在另一份報告中討論。在這一半的研究中,梯度增強的決策樹被用來成功地預測人類主題專家(SMEs)的代理決定。(當所要求的系統沒有數據時,一個類似的系統通常被用作代用。) 訓練有素的決策樹模型可以用來為未來的數據請求建議代理,減少滿足這些請求所需的時間并提高所提供數據的準確性。

簡介

背景

步兵模擬(IWARS)是一個實體級的戰斗模擬,重點是下馬的士兵、班和排,通常被陸軍用來估計使用不同裝備造成的作戰效率的差異。特別是,IWARS被用來比較不同手榴彈和榴彈發射器的有效性[1, 2, 3],幫助指導這些系統的開發和采購。

問題陳述

當一個模擬的手榴彈在IWARS中爆炸時,對附近人員的影響是通過查詢一個高分辨率模型預先計算出來的喪失能力的概率(P(I))值來確定的。P(I)值取決于許多因素,包括目標的姿態、防彈衣和任務(攻擊或防御),以及彈藥的下落角度、爆炸高度、爆炸到目標的范圍、爆炸到目標的方位角和爆炸后的時間。由于有這么多的因素,P(I)查詢表可能非常大。事實上,一個高分辨率的查詢表往往太大,無法裝入IWARS數據庫的最大容量約150兆字節。
為了解決這個問題,分析人員可以將IWARS數據庫分成更小的部分。例如,對12種新型空爆手榴彈的分析可以通過建立12個IWARS數據庫來進行,每種手榴彈一個數據庫。如果描述一種手榴彈的殺傷力數據太大,或者在特定情況下需要一種以上的手榴彈,但只有一種手榴彈的殺傷力數據可以放入一個數據庫,那么這種策略就會失敗。此外,即使這種策略是可行的,也有缺點:任何額外的數據庫變化都必須被鏡像12次,而且數據庫的大小會降低IWARS和數據庫編輯工具的速度。
另外,分析人員可以通過使用低分辨率的P(I)數據來規避數據庫的大小限制。這通常是通過刪除某些突發高度和突發到目標的范圍,并將突發到目標的方位角組的P(I)值平均化來實現的。這降低了模擬的準確性,也降低了對結果的信心。

目的

本文的目的是記錄這個問題的一個新的解決方案,這個方案在所有情況下都有效,而且幾乎沒有精度損失或模型運行時間的增加。它可以描述如下:
1.訓練人工神經網絡來學習P(I)值。然后,神經網絡的參數值將對原始P(I)數據進行編碼,從而對其進行壓縮。
2.在IWARS中重新創建這些神經網絡,以便在需要時估計P(I)值。

圖1:具有三個隱藏層的人工神經網絡的圖形和代數表示。
付費5元查看完整內容

摘要

超屬性通常用于計算機安全中,以定義信息流策略和其他要求,這些要求對多個計算之間的關系進行推理。在本文中,我們研究了一類新的超屬性,其中單個計算路徑由多智能體系統中的智能體聯盟策略來選擇。我們介紹了 HyperATL*,這是計算樹邏輯的擴展,帶有路徑變量和策略量詞。我們的邏輯可以表達策略超屬性,例如并發系統中的調度程序具有避免信息泄漏的策略。 HyperATL? 對于指定異步超屬性特別有用,即在不同計算路徑上的執行速度取決于調度程序選擇的超屬性。與其他最近用于規范異步超屬性的邏輯不同,我們的邏輯是第一個允許對完整邏輯進行可判定模型檢查的邏輯。我們提出了一種基于交替自動機的 HyperATL? 模型檢查算法,并通過提供匹配的下界證明了我們的算法是漸近最優的。我們已經為 一部分HyperATL? 實現了一個原型模型檢查器,能夠檢查小型程序的各種安全屬性。

付費5元查看完整內容

摘要

幾十年來,政治科學家和國家層面的軍方政策制定者一直在戰略層面使用博弈論,但對其在作戰層面的使用幾乎沒有評論。傳統上,三個主要挑戰阻礙了規劃人員和分析人員在作戰層面使用博弈論,即復雜的作戰環境、參與者的動態交互以及大多數陸軍參謀人員不具備使用復雜數學技能。

這本專著表明,這些挑戰是可以克服的,博弈論可以在規劃過程中提供新穎的見解。美陸軍參謀部規劃人員可以在作戰層面有效地使用基本博弈論和簡單的數學來了解作戰環境、了解行動者及其動機,并在軍事決策過程中比較行動方案。本專著展示了如何避免高級博弈論用于解決理論問題的繁瑣數學程序,而是專注于使用基本博弈論在規劃過程中提供價值。它通過回顧博弈論在戰略層面的應用、教授基本博弈論和涵蓋一些基本博弈概念來展示博弈論的實用性。然后,它考察了一場歷史性的行動,以展示博弈論的使用將如何達到另一個推薦行動方案和結果,也許會改變歷史進程。最后,它通過將博弈論應用于軍事決策過程、任務分析和行動制定過程的兩個步驟的練習,提供了使用博弈論的指南。

引言

幾十年來,戰略規劃者和政策制定者在戰略層面有效地應用了博弈論,但軍事從業者往往不在作戰層面使用它。當約翰·馮·諾依曼和奧斯卡·摩根斯坦在 1940 年代初在蘭德公司工作期間發展博弈論時,他們尋求一種數學方法來為沖突領域,特別是經濟沖突提供解決方案。他們于 1944 年發表了開創性的著作《博弈論與經濟行為》

博弈論允許通過將場景建模為簡化的博弈來分析決策。博弈論試圖定義參與者、策略——或可供他們選擇的選項——以及博弈結果的預期回報。它試圖澄清由于參與者的選擇而導致的不確定性。它的主要用途是它認識到結果是通過多個參與者的互動共同決定的,而不僅僅是一個人自己決定的結果,它允許分析對手可能會做什么。由于這些原因,政策制定者和戰略家使用博弈論來理解戰略問題,例如核對手、貿易慣例、內戰解決和裁軍以及缺乏國際合作,從而制定政策建議以幫助解決這些問題

作戰層面的規劃者是否可以有效地應用博弈論仍然是一個懸而未決的問題。在作戰層面使用博弈論的批評者強調了動態交互的復雜性。他們指出,培訓軍官了解博弈論的基本概念并將操作層面問題的復雜性提煉成基本博弈需要大量時間。

本專著認為博弈論提供了一個有價值的框架,最適用于在軍事決策過程的任務分析和行動發展步驟過程中理解環境中的參與者。博弈論旨在提供對情況的理解。這需要了解參與者及其潛在計劃或戰略動機。博弈論提供了一種理性的方法來研究行動者如何制定他們的策略和他們的動機基礎。由此,指揮官和參謀人員可以獲得理解,然后疊加其他因素,包括行動方案和潛在結果。它提供了一種合理而直接的方法來簡化復雜的問題。因此,博弈論為作戰規劃者提供了另一種工具,可用于了解作戰環境。

本專著重點介紹博弈論在戰略層面的歷史應用、當前的規劃過程學說和相關框架,以回答作戰規劃者能否在作戰層面有效地使用博弈論。這本專著主要通過囚徒困境分析博弈論在戰略層面的應用,將其應用于冷戰、國際貿易和價格戰期間的降價。 1777 年的新澤西戰役為應用博弈論和理解喬治華盛頓將軍和查爾斯康沃利斯將軍之間的競爭環境提供了一個歷史例子。最后,它演示了如何以及在何處將博弈論工具實施到美國陸軍當前使用的規劃過程中。所使用的博弈論是一種基本的應用方法,而不是過于復雜和無用的高級學術博弈論。簡單的博弈可以使復雜的操作情況變得清晰。該研究回顧了陸軍規劃學說,以專注于了解作戰環境和問題。任務分析旨在了解環境中的參與者以及他們之間沖突的根源。這 3 項研究的重點是深入了解對抗性和中立的參與者、激勵措施、潛在的行動方案和回報。該專著追溯了博弈論的戰略應用和作戰應用之間的差異,以了解哪些要素是一致的,同時說明了差異。最后,它將討論如何克服實施中的潛在挑戰

博弈論在軍事決策過程中的應用

規劃人員可以在軍事決策過程中使用博弈論工具,特別是在任務分析期間,以不同的視角理解作戰環境和行動發展過程,以檢查未發現的假設。博弈論工具不是替代軍事決策過程中現有的步驟和工具,而是對其進行補充。戰地手冊 6-0 解釋說,指揮官和參謀人員使用任務分析來更好地了解作戰環境和部隊面臨的問題。接下來,規劃人員使用任務分析來制定假設以填補知識空白。最后,考慮到博弈論理解競爭的本質,任務分析也有助于理解友軍和敵軍如何互動。行動方案制定過程提供了一種客觀的方式來看待多個潛在計劃。在上面的歷史例子中,華盛頓將軍和康沃利斯將軍需要了解他們的潛在行動以及他們認為 30 名敵方指揮官可能會做什么。在某種程度上,歷史例子中的將軍們可以在他們的行動發展過程中使用博弈論來檢查他們的假設。開發從敘述性或定性評估開始,然后轉向帶有每個計劃的加權分數的可量化評估。博弈論允許另一種觀點來評估潛在的計劃。以下思想實驗提供了一個示例,說明工作人員如何在任務規劃期間使用一些博弈論工具。

演習如下:美國討論在一個靠近對手的友好國家增加軍事存在,這旨在阻止對手入侵友好國家。軍團工作人員了解國家決策者關于在一個地區增加軍事存在的辯論。此外,他們知道如果國家領導層追求升級,軍團是升級的一個因素。工作人員致力于了解作戰環境并了解國家層面的優先事項和激勵措施,以便他們可以就選項提出更高的建議并為預期的行動方案做好準備。其次,他們努力了解敵人的動機和行動計劃。敵人還面臨著增加其在該地區的軍事存在或維持現狀的前景。兩國都擁有核武器,都不想進行全面戰爭。最后,兩個大國都可以遷移的地區的人口不希望被外國勢力占領。國家決策者面臨的戰略決策具有操作層面的影響。

如上所述,任務分析提供了對情況和問題的理解。在任務分析過程中,工作人員開始對行動者的動機和動機有所了解。戰場情報準備是任務分析的關鍵步驟。參謀人員對友軍和敵軍如何在環境中相互作用做出假設。由此,工作人員開發了每個參與者在即將到來的操作中可以使用的潛在選項。此外,情報準備步驟確定了指揮官和參謀人員的知識差距。這些差距導致了獲取信息的情報需求的發展。正如文獻回顧中所述,人們根據他們擁有的信息做出決策,并預測競爭對手的行為。這些步驟不會取代或否定軍事決策過程的任何步驟,它們只是關于如何以及在何處實施博弈論工具的建議。

鑒于這種情況,參謀人員開始制定敵人的行動方案。當應用于博弈矩陣時,這些行動方案成為敵人的策略。敵人可以用他們的一個師或軍將該地區軍事化,也可以選擇不軍事化。是否軍事化的選擇為敵人創造了兩種不同的戰略。第二步著眼于每個策略的結果。如果雙方都軍事化,那么他們將面臨戰爭。如果雙方都沒有軍事化,那么他們就維持現狀。如果一個國家軍事化而另一個國家不軍事化,那么軍事化的國家就會在沒有爭議的環境中這樣做。表11顯示了這種情況的結果。

表11:定性結果

第三步要求參謀人員查看敵人的動機,然后對他們的選擇進行定性分析。敵人想在美國不決定將該地區軍事化的情況下將該地區軍事化。這為他們創造了一個無可爭議的環境。其次,他們既不看重自己也不看重美國將該地區軍事化,這是現狀。第三個可取的結果是美國軍事化,而敵人沒有,這意味著美國擁有無可爭議的軍事化。最后,如果美國也進行軍事化,敵人不想升級為戰爭,也不想將該地區軍事化。工作人員現在可以根據偏好對敵人的行動路線進行排序。作戰和情報人員可以利用收集資產并制定收集計劃,以確定有關敵人計劃的任何指標,例如在該地區集結部隊。信息收集計劃有助于回答信息需求并協助進行有效規劃。

工作人員現在進入行動開發過程。生成選項步驟概述了指揮官和參謀人員可用的選項。工作人員制定了可以切實擊敗敵人行動方案的選項,然后確定它們的優先級。工作人員還產生了兩個廣泛的選項。他們可以軍事化,也可以不軍事化。由于每個參與者的策略,工作人員現在可以對他們的行動方案進行排序。指揮官和參謀更愿意維持現狀。如果美國采取行動將該地區軍事化,它可能會擾亂地方、國家政府和民眾。因此,美國對該地區的軍事化和一個不軍事化的敵人是次要的選擇。這種選擇意味著美國擁有無可爭議的軍事化,但正如所述,當地政府感到不安。第三,排名是美國不軍事化,但敵人軍事化,給了他們無可爭議的優勢。最后,美國不希望發生戰爭,如果美國和敵人都進行軍事化,就會發生戰爭。

接下來,工作人員將博弈發展為矩陣或戰略形式。首先,他們進行定性分析,說明每次交戰的可能結果,見表 12。然后參謀人員從每個指揮官的角度對結果進行排序,以生成定量分析和回報,如表 13 所示。該表顯示了回報敵方第一,美國第二。使用倒序排列,最低數字的收益表示排后的選項,數字越大,表示首選的選項。每個戰斗人員都是近鄰,因此參謀人員認為交戰將有利于主動一方。

表12 :定性分析

表13:定量結果

這兩種的價值在于員工進行分析以掌握對潛在未來結果的理解。它提供了一個簡潔的可交付產品,參謀計劃人員可以在一張紙上將其交給指揮官或參謀長,以供將來參考或思考,因為指揮官和參謀人員開始在軍事決策過程的未來步驟中權衡選項。這種分析為員工提供了一個思考他們正在做什么以及他們的計劃可能產生什么結果。這是舍恩所說的實踐中反思的一個例子。正如他所說,它允許人們在執行任務時思考他們正在做什么,然后塑造他們所做的事情。

下一步要求參謀人員將可用選項縮小到只有指揮官可用的可信選項。參謀部尋找指揮官永遠不會使用任何主導策略。敵方指揮官沒有任何主導策略,并且兩種策略都可供他使用。但美國永遠不會在博弈中選擇軍事化,因為無論敵人選擇什么,不軍事化都會主導博弈。表 14 以粗體突出顯示哪個選項在美國占主導地位。例如,如果敵人決定軍事化,如果它決定軍事化,美國將獲得 1 的回報,否則將獲得 2 的回報。因此,在這種情況下,美國會選擇不進行軍事化。同樣,如果敵人不軍事化,那么如果它軍事化,美國將獲得三倍的回報,如果它不軍事化,美國將獲得四倍的回報,美國將再次選擇不進行軍事化。因此,工作人員將其排除在外。

表14:以粗體突出顯示的美國的收益

既然參謀人員了解美國沒有軍事化的動機,它就可以看看敵人可能會采取什么行動作為回應。敵人知道美國不想軍事化,并尋求使其結果最大化。因此,敵人選擇軍事化,因為這比不軍事化帶來更好的回報。這達到了納什均衡,即敵人軍事化并獲得四分之二的回報,而美國不軍事化并獲得三分之二的回報。表 15 顯示了圈出的所得納什均衡。

表15:軍事化為主

但現實生活中的情況并不總是一致的。一方通常首先采取行動,迫使另一方做出決定。在上述情況下,美國正在努力應對將該地區軍事化的決定。然后他們的決定迫使敵人做出決定。下一步著眼于在順序移動游戲中情況如何展開,以及納什均衡在決策分析中是否發生變化。順序博弈見表 16。該表首先顯示了敵人的收益,其次是美國的收益。

表16:順序多次博弈

參與者對每個結果的選擇和回報保持不變。唯一的區別是美國先行動,敵人必須做出反應。工作人員必須使用子博弈分析來分析這個博弈及其結果。敵人有第二步,因此分析從他們的預期步驟開始。這兩個參與者都知道,如果美國選擇軍事化,敵人將選擇不軍事化,因為兩個人的回報比一個人要好。如果美國選擇不軍事化,敵人會想要軍事化,因為四比三好。鑒于美國的選擇,上面的表 16 通過圈出每個敵人的首選選擇來表明這種行為。既然美國知道敵人會根據美國的選擇做出哪些選擇,他們就會在兩者之間做出選擇。美國選擇軍事化,知道敵人不會軍事化,從而為美國帶來三倍的回報。美國軍事化總比不軍事化并獲得兩個回報要好,因為知道敵人會選擇軍事化。因此,納什均衡變成了美國軍事化和敵人不軍事化,敵方兩分,美國三分,見表 17。

表17:納什均衡

序列博弈導致的納什均衡與同步博弈不同,為什么?每場比賽都會導致一方軍事化,而另一方不軍事化。在同步博弈中,敵人通過軍事化獲得了最有利的回報,美國知道這一點,因此選擇不軍事化。然而,在順序博弈中,美國先決勝負。如果他們不軍事化,他們將獲得最高的回報,而敵人也選擇不軍事化。兩國都不會軍事化,因為如果美國不軍事化,敵人就有動機進行軍事化。美國意識到這一點,因此認為他們的下一個最佳選擇是軍事化,因為它知道敵人不會軍事化,因為這會迫使兩個參與者之間發生戰爭。這個游戲提供了一個先發優勢的例子。如果敵人先選擇,他們也會有軍事化的動機

序列多次博弈反映了更現實的情況。但是運行這兩種類型的博弈為工作人員了解動機和潛在行動提供了分析價值。工作人員可以看到排序操作如何改變結果。如上所述,使用這種方法的價值在于分析。工作人員可以按照矩陣形式對每個結果進行簡要說明。然后他們可以看到他們的選擇之一不是一個可行的選擇。然后,他們查看了定量評估并確定可以使用平衡結果。所進行的定性分析重申了 Thomas Schelling 的觀點,即博弈論的數學并不總能解決沖突,不應過度依賴數學。而是對問題的思考增加了價值。

結論

博弈論提供了一種分析工具來看待競爭情況。它使分析師能夠了解潛在的行動計劃、激勵措施以及回報或結果。此外,它可以突出信息差距和需要進一步理解的領域。在 20 世紀中葉,戰略層面的規劃者用它來更好地了解美國和蘇聯之間在使用核武器和原子戰方面的競爭。國防部以外的分析師使用它來了解競爭公司之間的貿易爭端和降價。

在作戰層面,博弈論允許對潛在計劃、激勵和結果進行相同類型的分析和理解。這本專著審視了博弈論的歷史并探索了基本的博弈論,確立了博弈論在分析沖突情況方面的有用性。文獻回顧揭示了博弈論的優勢和劣勢,這為如何最好地利用它以最大限度地發揮其潛力提供了信息。檢查諸如核局勢和國際貿易等戰略層面的決策為以前的努力如何有效地應用博弈論提供了背景。博弈論在特倫頓和普林斯頓的美國獨立戰爭中的應用與指揮官們所追求的不同,展示了使用博弈論如何提供獨特的見解,這對于像康沃利斯這樣經驗豐富的將軍來說并不明顯。最后,該專著展示了軍團級別的參謀人員如何使用博弈論來理解戰略級別的決策如何影響作戰級別的行動,比較了同步博弈和序列博弈的實用性。最后一部分提供了一個基本框架,工作人員可以通過將博弈論應用于任務分析和行動開發過程來解決操作問題。

博弈論的使用不僅限于軍事決策過程。博弈論非常適合國防部和美國陸軍目前使用的現有規劃流程。規劃人員可以在聯合作戰設計過程和陸軍設計方法中使用博弈論工具。具體來說,在聯合設計期間,博弈論工具最適合理解戰略指導和理解作戰環境。在軍隊設計期間,它最適合構建作戰環境和理解問題。博弈論是參謀人員或計劃團隊的工具包中的另一個有用工具。當通過軍事決策過程或設計過程應用時,博弈論分析與其他工具很好地結合在一起,可以更好地了解作戰環境。

付費5元查看完整內容

隨著機器學習模型越來越多地用于做出涉及人類的重大決策,重要的是,這些模型不能因為種族和性別等受保護的屬性而歧視。然而,模型持有人并不是受到歧視性模型傷害的首當其沖的人,因此模型持有人修復歧視性模型的自然動機很少。因此,如果其他實體也能發現或減輕這些模型中的不公平行為,將對社會有益。只需要對模型進行查詢訪問的黑盒方法非常適合這個目的,因為它們可以在不知道模型的全部細節的情況下執行。

在這篇論文中,我考慮了三種不同形式的不公平,并提出了解決它們的黑盒方法。第一個是代理使用,模型的某些組件是受保護屬性的代理。其次是個體公平性的缺乏,這使模型不應該做出任意決定的直覺觀念形式化。最后,模型的訓練集可能不具有代表性,這可能導致模型對不同的保護組表現出不同程度的準確性。對于這些行為中的每一個,我提出使用一個或多個方法來幫助檢測模型中的此類行為或確保缺乏此類行為。這些方法只需要對模型的黑箱訪問,即使模型持有者不合作,它們也能有效地使用。我對這些方法的理論和實驗分析證明了它們在這種情況下的有效性,表明它們是有用的技術工具,可以支持對歧視的有效回應。

付費5元查看完整內容

大型對抗性不完全信息博弈的均衡發現

不完全信息博弈模型是指具有私有信息的多個主體之間的交互作用。在這種情況下,一個典型的目標是接近一個均衡,在這個均衡中,所有主體的策略都是最優的。本文描述了大型對抗不完全信息博弈均衡計算方面的若干進展。這些新技術使人工智能智能體首次有可能在全規模撲克游戲中擊敗頂級人類專業人員。幾十年來,撲克一直是人工智能和博弈論領域的一大挑戰。

我們首先介紹了反事實后悔最小化(CFR)的改進,這是一種收斂于雙方零和博弈納什均衡的迭代算法。我們描述了CFR的新變種,使用折現來顯著加快收斂速度。這些新的CFR變體現在是大型對抗非完全信息博弈的最先進的均衡發現算法。我們還介紹了第一種熱啟動CFR的通用技術。最后,我們介紹理論健全的剪枝技術,可以在大型博弈中數量級地加速收斂。

接下來,我們將描述通過自動抽象和函數近似將CFR擴展到大型游戲的新方法。特別地,我們介紹了第一個在不完全信息博弈中離散連續動作空間的算法。我們將其擴展到求解具有連續動作空間博弈的算法中。

之后,我們介紹了Deep CFR,一種使用神經網絡函數近似而不是基于bucketing的抽象形式。Deep CFR是第一個可擴展到大型游戲的non-tabular形式的CFR,它使CFR能夠在幾乎沒有領域知識的情況下成功部署。最后,我們提出了一種新的不完全信息博弈搜索技術,以確保智能體的搜索策略不會被對手利用。方法,它在計算上比以前的方法要代價要少得多。最最后,我們提出了一種在訓練和測試時結合強化學習和搜索的算法ReBeL。它朝著彌合完全信息游戲和不完全信息游戲研究之間的差距邁出了重要的一步。

付費5元查看完整內容
北京阿比特科技有限公司