題目: Hyperbolic Heterogeneous Information Network Embedding
摘要: 異構信息網絡嵌入(Heterogeneous information network, HIN)以將其投射到低維空間為目標,已經引起了相當多的研究關注。現有的HIN嵌入方法主要是在歐幾里得空間中保留內部網絡結構和語義相關性。然而,一個基本的問題是歐幾里得空間是否是HIN的合適的或內在的等距空間?。近年來的研究認為,復雜網絡的底層可能具有雙曲幾何,因為底層的雙曲幾何可以自然地反映復雜網絡的一些特性,如層次結構和冪律結構。在本文中,我們首次嘗試將HIN嵌入到雙曲空間中。我們分析了兩個實際HIN的結構,發現HIN中也存在冪律分布等性質。為此,我們提出了一種新的雙曲異構信息網絡嵌入模型。具體地說,為了捕獲節點之間的結構和語義關系,我們采用元路徑引導隨機游走對每個節點的序列進行采樣。然后利用雙曲空間中的距離作為近似度量。雙曲距離能滿足三角不等式,并能很好地保持HIN中的傳遞性。我們的模型使節點及其鄰域具有小的雙曲線距離。進一步推導出有效的優化策略,迭代更新雙曲嵌入。實驗結果表明,該模型不僅在網絡重構和鏈路預測任務上具有優越的性能,而且在HIN中通過可視化顯示了捕獲層次結構的能力。
題目: Hyperbolic Attention Network
摘要: 最近的方法已經成功地證明了在雙曲空間中學習淺層網絡參數的優勢。我們將雙曲幾何引入到用于計算不同神經網絡結構的注意力機制的嵌入中,從而擴展了這一工作。通過改變object表示的嵌入幾何形狀,可以在不增加模型參數的情況下能更有效地利用嵌入空間。更重要的是,由于查詢的語義距離以指數的速度增長,雙曲幾何與歐幾里得幾何相反—可以編碼那些object而沒有任何干擾。我們的方法在總體上對WMT' 14(英語到德語)的神經機器翻譯、圖學習(合成和現實世界圖任務)和視覺問答(CLEVR)3個任務得到了提升,同時保持神經表征的簡潔。
題目: Hyperbolic Graph Attention Network
摘要: 圖神經網絡(GNN)在圖處理方面表現出了優越的性能,近年來引起了人們的廣泛關注。然而,大多數現有的GNN模型主要是為歐幾里得空間中的圖設計的。最近的研究已經證明,圖數據顯示非歐幾里得潛在的解剖學。不幸的是,到目前為止,很少有研究GNN在非歐幾里得的設置。為了彌補這一缺陷,本文首次對雙曲空間中具有注意機制的GNN進行了研究。雙曲GNN的研究有一些獨特的挑戰:由于雙曲空間不是向量空間,不能進行向量操作(如向量的加法、減法和標量乘法)。為了解決這個問題,我們使用回旋向量空間,它提供了一個優雅的代數形式的雙曲幾何,以轉換圖的特征;在此基礎上,我們提出了基于雙曲接近的注意力聚合機制。此外,由于雙曲空間中的數學運算比歐幾里得空間中的更為復雜,我們進一步設計了一種新的利用對數和指數映射的加速策略來提高模型的效率。通過與其他最先進的基線方法的比較,發現在四個真實數據集上的綜合實驗結果證明了我們提出的雙曲圖注意力網絡模型的性能。
題目: Heterogeneous Graph Attention Network
摘要: 圖神經網絡作為一種基于深度學習的功能強大的圖表示技術,表現出了優越的性能,引起了廣泛的研究興趣。然而,對于包含不同節點和鏈接類型的異構圖,圖神經網絡還沒有充分考慮到這一點。異構性和豐富的語義信息給異構圖的圖神經網絡設計帶來了很大的挑戰。最近,深度學習領域最令人興奮的進展之一是注意力機制,其巨大的潛力在各個領域都得到了很好的展示。本文首先提出了一種基于分層關注的異構圖神經網絡,包括節點級關注和語義級關注。具體來說,節點級注意的目的是學習節點與其基于元路徑的鄰居之間的重要性,而語義級注意能夠學習不同元路徑之間的重要性。通過對節點級和語義級注意的學習,可以充分考慮節點和元路徑的重要性。然后將基于元路徑的鄰域的特征分層聚合,生成節點嵌入。在三個真實世界的異構圖上的廣泛實驗結果不僅顯示了我們所提出的模型的優越性能,而且也顯示了它對圖分析的潛在良好的可解釋性。
題目: Low-Dimensional Hyperbolic Knowledge Graph Embeddings
摘要: 知識圖譜(KG)嵌入通過學習實體和關系的低維表示,以預測缺失事實。KGs通常具有層次結構和邏輯模式,必須在嵌入空間中保留這些模式。對于分層數據,雙曲嵌入方法已顯示出高保真度和簡潔表示的優勢。然而,現有的雙曲嵌入方法不能解釋KGs中豐富的邏輯模式。在本工作中,我們引入了一類雙曲KG嵌入模型,可以同時捕獲層次和邏輯模式。我們的方法結合雙曲反射和旋轉注意力模型復雜的關系模式。在標準KG基準上的實驗結果表明,我們的方法在低維的平均倒數(MRR)方面比預先的歐幾里得和雙曲的工作提高了6.1%。此外,我們觀察到不同的幾何變換捕捉不同類型的關系,而基于注意的變換則推廣到多重關系。在高維情況下,我們的方法在WN18RR和YAGO3-10上分別獲得了49.6%和57.7%的最先進的MRR。
知識圖譜(KG)嵌入通過學習實體和關系的低維表示來預測缺失的事實。KGs通常表現出層次結構和邏輯模式,必須在嵌入空間中保留這些模式。對于層次數據,雙曲線嵌入方法已經顯示出高保真和精簡表示的前景。然而,現有的雙曲線嵌入方法并不能解釋KGs中豐富的邏輯模式。在本文中,我們介紹了一類雙曲線KG嵌入模型,該模型同時捕獲層次模式和邏輯模式。我們的方法結合了雙曲線反射和旋轉,并注意到模型的復雜關系模式。在標準KG基準上的實驗結果表明,我們的方法在低維平均倒數秩(MRR)方面比以前的基于歐幾里德和雙曲線的方法提高了6.1%。此外,我們觀察到不同的幾何變換捕獲不同類型的關系,而基于注意的變換泛化為多個關系。在高維情況下,我們的方法可以得到最新的MRRs, WN18RR為49.6%,YAGO3-10為57.7%。
論文題目: MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding
摘要: 大量真實世界的圖或網絡本質上是異構的,涉及節點類型和關系類型的多樣性。異構圖嵌入是將異構圖的豐富結構和語義信息嵌入到低維節點表示中。現有的模型通常在異構圖中定義多個元數據來捕獲復合關系并指導鄰居選擇。但是,這些模型要么忽略節點內容特性,要么沿著元路徑丟棄中間節點,要么只考慮一個元路徑。為了解決這三個局限性,我們提出了一種新的集合圖神經網絡模型來提高最終性能。具體來說,MAGNN使用了三個主要組件,即,節點內容轉換封裝輸入節點屬性,元內聚合合并中間語義節點,元間聚合合并來自多個元的消息。在三個真實世界的異構圖數據集上進行了大量的節點分類、節點聚類和鏈路預測實驗,結果表明MAGNN的預測結果比最先進的基線更準確。