亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

 機器學習有很多名稱,如機器學習、人工智能、模式識別、數據挖掘、數據同化和大數據等等。它在許多科學領域都有發展,比如物理學、工程學、計算機科學和數學。例如,它被用于垃圾郵件過濾、光學字符識別(OCR)、搜索引擎、計算機視覺、自然語言處理(NLP)、廣告、欺詐檢測、機器人技術、數據預測、材料發現、天文學。這使得有時在文獻中很難找到一個特定問題的解決方案,僅僅是因為不同的單詞和短語用于同一個概念。

這本書旨在緩解這一問題。一個共同的概念,但已知在幾個學科不同的名稱,是描述使用數學作為共同的語言。讀者會發現索引對他們所知的特定主題有用。該索引是全面的,使它很容易找到所需的信息。希望這本書能成為有用的參考書,并成為任何使用機器學習技術的人書架上的必備品

這本書的重點是為什么——只有當一個算法是成功的被理解的時候,它才能被正確的應用,并且結果是可信的。算法經常被并排講授,卻沒有顯示出它們之間的異同。這本書解決了共性,并旨在給一個徹底和深入的處理和發展直覺,同時保持簡潔。

對于任何使用機器學習技術的人來說,這本有用的參考書應該是必備的。

課件:

付費5元查看完整內容

相關內容

“機器學習是近20多年興起的一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多門學科。機器學習理論主要是設計和分析一些讓 可以自動“ ”的算法。機器學習算法是一類從數據中自動分析獲得規律,并利用規律對未知數據進行預測的算法。因為學習算法中涉及了大量的統計學理論,機器學習與統計推斷學聯系尤為密切,也被稱為統計學習理論。算法設計方面,機器學習理論關注可以實現的,行之有效的學習算法。很多 問題屬于 ,所以部分的機器學習研究是開發容易處理的近似算法。” ——中文維基百科

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

這本教科書通過提供實用的建議,使用直接的例子,并提供相關應用的引人入勝的討論,以一種容易理解的方式介紹了基本的機器學習概念。主要的主題包括貝葉斯分類器,最近鄰分類器,線性和多項式分類器,決策樹,神經網絡,和支持向量機。后面的章節展示了如何通過“推進”的方式結合這些簡單的工具,如何在更復雜的領域中利用它們,以及如何處理各種高級的實際問題。有一章專門介紹流行的遺傳算法。

這個修訂的版本包含關于工業中機器學習的實用應用的關鍵主題的三個全新的章節。這些章節研究了多標簽域,無監督學習和它在深度學習中的使用,以及歸納邏輯編程的邏輯方法。許多章節已經被擴展,并且材料的呈現已經被增強。這本書包含了許多新的練習,許多解決的例子,深入的實驗,和獨立工作的計算機作業。

//link.springer.com/book/10.1007/978-3-319-63913-0#about

付費5元查看完整內容

通過機器學習的實際操作指南深入挖掘數據

機器學習: 為開發人員和技術專業人員提供實踐指導和全編碼的工作示例,用于開發人員和技術專業人員使用的最常見的機器學習技術。這本書包含了每一個ML變體的詳細分析,解釋了它是如何工作的,以及如何在特定的行業中使用它,允許讀者在閱讀過程中將所介紹的技術融入到他們自己的工作中。機器學習的一個核心內容是對數據準備的強烈關注,對各種類型的學習算法的全面探索說明了適當的工具如何能夠幫助任何開發人員從現有數據中提取信息和見解。這本書包括一個完整的補充教師的材料,以方便在課堂上使用,使這一資源有用的學生和作為一個專業的參考。

機器學習的核心是一種基于數學和算法的技術,它是歷史數據挖掘和現代大數據科學的基礎。對大數據的科學分析需要機器學習的工作知識,它根據從訓練數據中獲得的已知屬性形成預測。機器學習是一個容易理解的,全面的指導,為非數學家,提供明確的指導,讓讀者:

  • 學習機器學習的語言,包括Hadoop、Mahout和Weka
  • 了解決策樹、貝葉斯網絡和人工神經網絡
  • 實現關聯規則、實時和批量學習
  • 為安全、有效和高效的機器學習制定戰略計劃

通過學習構建一個可以從數據中學習的系統,讀者可以在各個行業中增加他們的效用。機器學習是深度數據分析和可視化的核心,隨著企業發現隱藏在現有數據中的金礦,這一領域的需求越來越大。對于涉及數據科學的技術專業人員,機器學習:為開發人員和技術專業人員提供深入挖掘所需的技能和技術。

付費5元查看完整內容

書名: Mining of Massive Datasets

前言

這本書是由Jure Leskovec和Anand Rajaraman幾年來為斯坦福大學四分之一課程開發的材料發展而來的。名為《網絡挖掘》的CS345A課程被設計成一門高級研究生課程,盡管它已經成為高級本科生的必修課和興趣所在。當Jure Leskovec加入斯坦福大學時,我們對材料進行了大量的重組。他介紹了一門新的網絡分析課程CS224W,并在CS345A中加入了新的材料,重新編號為CS246。三位作者還介紹了一個大型數據挖掘項目課程CS341。這本書現在包含了所有三門課程的內容。

主要內容:

在最高級別的描述中,這本書是關于數據挖掘的。但是,它側重于對非常大的數據進行數據挖掘,也就是說,數據大到無法裝入主內存。由于對大小的強調,我們的許多示例都是關于Web或來自Web的數據的。此外,該書采用了算法的觀點:數據挖掘是將算法應用于數據,而不是使用數據來訓練某種機器學習引擎。主要議題包括:

  1. 分布式文件系統和map-reduce作為創建并行算法的工具,可以成功地處理大量數據。
  2. 相似度搜索,包括minhashing和localitysensitive hashing的關鍵技術。
  3. 數據流處理和專門的算法,用于處理快速到達的數據,這些數據必須立即處理,否則就會丟失。
  4. 搜索引擎的技術,包括谷歌的PageRank,鏈接垃圾郵件檢測,以及hubs-and-authorities的方法。
  5. 頻繁項集挖掘,包括關聯規則、市場籃子、a -先驗算法及其改進。
  6. 算法聚類非常大,高維數據集。
  7. Web應用程序的兩個關鍵問題:管理廣告和推薦系統。
  8. 用于分析和挖掘非常大的圖的結構的算法,特別是社會網絡圖。
  9. 通過降維獲得大數據集重要屬性的技術,包括奇值分解和潛在語義索引。
  10. 機器學習算法,可以應用于非常大的數據,如感知機,支持向量機,梯度下降。
付費5元查看完整內容

本書通過提供真實的案例研究和示例,為使用Python庫進行機器學習提供了堅實的基礎。它涵蓋了諸如機器學習基礎、Python入門、描述性分析和預測分析等主題。包括高級機器學習概念,如決策樹學習、隨機森林、增強、推薦系統和文本分析。這本書在理論理解和實際應用之間采取了一種平衡的方法。所有的主題都包括真實世界的例子,并提供如何探索、構建、評估和優化機器學習模型的逐步方法。

付費5元查看完整內容
北京阿比特科技有限公司