亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

強化學習定義了僅通過行動和觀察來學習做出好的決策的代理所面臨的問題。為了成為有效的問題解決器,這些代理必須能有效地探索廣闊的世界,從延遲的反饋中分配信用,并歸納出新的經驗,同時要利用有限的數據、計算資源和感知帶寬。抽象對所有這些努力都是必要的。通過抽象,代理可以形成其環境的簡潔模型,以支持一個理性的、自適應的決策者所需要的許多實踐。在這篇論文中,我提出了強化學習中的抽象理論。首先,我提出了執行抽象過程的函數的三個要求:它們應該1)保持近似最優行為的表示,2) 有效地被學習和構造,3) 更低的規劃或學習時間。然后,我提出了一套新的算法和分析,闡明了代理如何根據這些需求學習抽象。總的來說,這些結果提供了一條通向發現和使用抽象的部分路徑,將有效強化學習的復雜性降到最低。

強化學習問題如下。RL代理通過以下兩個離散步驟的無限重復與環境進行交互:

  1. 代理收到觀察和獎勵。
  2. 代理從這種交互中學習并執行一個動作。 這個過程如圖1.2所示。在這種互動過程中,agent的目標是做出決策,使其獲得的長期報酬最大化。

論文余下組織如下: 第1部分。在第2章中,我提供了關于RL(2.1節)以及狀態抽象(2.2節)和動作抽象(2.3節)的必要背景知識。

第2部分。下一部分將專注于狀態抽象。我提出了新的算法和三個緊密相連的分析集,每一個目標是發現滿足引入的需求的狀態抽象。在第3章中,我開發了一個形式化的框架來推理狀態抽象,以保持近似最優的行為。這個框架由定理3.1總結,它強調了值保持狀態抽象的四個充分條件。然后,在第4章中,我將這一分析擴展到終身RL設置,在終身RL設置中,代理必須不斷地與不同的任務交互并解決不同的任務。本章的主要觀點是介紹了用于終身學習設置的PAC狀態抽象,以及澄清如何有效計算它們的結果。定理4.4說明了保證這些抽象保持良好行為的意義,定理4.5說明了有多少以前已解決的任務足以計算PAC狀態抽象。我著重介紹了模擬實驗的結果,這些結果說明了所介紹的狀態抽象類型在加速學習和計劃方面的效用。最后,第五章介紹了信息論工具對狀態抽象的作用。我提出了狀態抽象和率失真理論[283,43]和信息瓶頸方法[318]之間的緊密聯系,并利用這種聯系設計新的算法,以高效地構建狀態抽象,優雅地在壓縮和良好行為表示之間進行權衡。我以各種方式擴展了這個算法框架,說明了它發現狀態抽象的能力,這些狀態抽象提供了良好行為的樣本高效學習。

第3部分。然后我轉向行動抽象。在第6章中,我展示了Jinnai等人的分析[144],研究了尋找盡可能快地做出計劃的抽象動作的問題——主要結果表明,這個問題通常是NP困難的(在適當簡化的假設下),甚至在多項式時間內很難近似。然后,在第7章中,我解決了在規劃中伴隨高層次行為構建預測模型的問題。這樣的模型使代理能夠估計在給定狀態下執行行為的結果。在本章中,我將介紹并分析一個用于這些高級行為的新模型,并證明在溫和的假設下,這個簡單的替代仍然是有用的。我提供的經驗證據表明,新的預測模型可以作為其更復雜的對等物的適當替代者。最后,在第8章中,我探討了抽象行動改善探索過程的潛力。我描述了Jinnai等人開發的一種算法[145],該算法基于構建可以輕松到達環境所有部分的抽象行動的概念,并證明該算法可以加速對基準任務的探索。

第4部分。最后,我轉向狀態動作抽象的聯合過程。在第9章中,我介紹了一個將狀態和動作抽象結合在一起的簡單機制。使用這個方案,然后我證明了哪些狀態和動作抽象的組合可以在任何有限的MDP中保持良好的行為策略的表示,定理9.1總結了這一點。接下來,我將研究這些聯合抽象的反復應用,作為構建分層抽象的機制。在對層次結構和底層狀態動作抽象的溫和假設下,我證明了這些層次結構也可以保持全局近最優行為策略的表示,如定理9.3所述。然后,我將在第十章中總結我的思考和今后的方向。

總的來說,這些結果闡明了強化學習的抽象理論。圖1.4展示了本文的可視化概述。

付費5元查看完整內容

相關內容

博士論文是由攻讀博士學位的研究生所撰寫的學術論文。它要求作者在博士生導師的指導下,選擇自己能夠把握和駕馭的潛在的研究方向,開辟新的研究領域。由此可見,這就對作者提出了較高要求,它要求作者必須在本學科的專業領域具備大量的理論知識,并對所學專業的理論知識有相當深入的理解和思考,同時還要具有相當水平的獨立科學研究能力,能夠為在學科領域提出獨創性的見解和有價值的科研成果。因而,較之學士論文、碩士論文,博士論文具有更高的學術價值,對學科的發展具有重要的推動作用。

本課程關注控制理論和強化學習的理論介紹,側重于連續狀態空間以及物理世界和機器人技術的應用。我們強調計算效率的算法和可證明的界。特別關注RL中非隨機控制和遺憾最小化的新方法。我們將與該領域的經典方法論進行比較和對比。

本課程的練習和項目將需要用python編寫代碼。

這門課程對所有學生開放,但要求有很強的數學背景。

//sites.google.com/view/cos59x-cct/home

深度學習的先驅、圖靈獎獲得者Yann Lecun教授有一種非常簡潔明了地抓住問題癥結的氣質。2020年2月左右,他在巴巴多斯研討會上說,

“控制=梯度強化學習”。

強化學習和控制理論的關鍵區別在于它們所操作的空間。強化學習的范圍通常位于離散狀態空間(如圍棋、國際象棋),而控制理論通常處理涉及物理和連續空間(如機器人)的問題。物理學和結構環境的知識使我們能夠利用差分信息。

后者允許我們使用強大的數學優化和凸松弛技術來設計高效的算法。這是自適應非隨機控制理論的主題,也是本課程的主題。

付費5元查看完整內容

這是我2004年,2006年和2009年在斯坦福大學教授的概率理論博士課程的講義。本課程的目標是為斯坦福大學數學和統計學系的博士生做概率論研究做準備。更廣泛地說,文本的目標是幫助讀者掌握概率論的數學基礎和在這一領域中證明定理最常用的技術。然后將此應用于隨機過程的最基本類的嚴格研究。

為此,我們在第一章中介紹了測度與積分理論中的相關元素,即事件的概率空間與格-代數、作為可測函數的隨機變量、它們的期望作為相應的勒貝格積分,以及獨立性的重要概念。

利用這些元素,我們在第二章中研究了隨機變量收斂的各種概念,并推導了大數的弱定律和強定律。

第三章討論了弱收斂的理論、分布函數和特征函數的相關概念以及中心極限定理和泊松近似的兩個重要特例。

基于第一章的框架,我們在第四章討論了條件期望的定義、存在性和性質,以及相關的規則條件概率分布。

第五章討論了過濾、信息在時間上的級數的數學概念以及相應的停止時間。關于后者的結果是作為一組稱為鞅的隨機過程研究的副產品得到的。討論了鞅表示、極大不等式、收斂定理及其各種應用。為了更清晰和更容易的表述,我們在這里集中討論離散時間的設置來推遲與第九章相對應的連續時間。

第六章簡要介紹了馬爾可夫鏈的理論,概率論的核心是一個龐大的主題,許多教科書都致力于此。我們通過研究一些有趣的特殊情況來說明這類過程的一些有趣的數學性質。

在第七章中,我們簡要介紹遍歷理論,將注意力限制在離散時間隨機過程的應用上。我們定義了平穩過程和遍歷過程的概念,推導了Birkhoff和Kingman的經典定理,并強調了該理論的許多有用應用中的少數幾個。

第八章建立了以連續時間參數為指標的右連續隨機過程的研究框架,引入了高斯過程族,并嚴格構造了布朗運動為連續樣本路徑和零均值平穩獨立增量的高斯過程。

第九章將我們先前對鞅和強馬爾可夫過程的處理擴展到連續時間的設定,強調了右連續濾波的作用。然后在布朗運動和馬爾可夫跳躍過程的背景下說明了這類過程的數學結構。

在此基礎上,在第十章中,我們利用不變性原理重新構造了布朗運動作為某些重新標定的隨機游動的極限。進一步研究了其樣本路徑的豐富性質以及布朗運動在clt和迭代對數定律(簡稱lil)中的許多應用。

//statweb.stanford.edu/~adembo/stat-310b/lnotes.pdf

付費5元查看完整內容

與經典的監督學習不同,強化學習(RL)從根本上是交互式的: 一個自主的智能體必須學習如何在一個未知的、不確定的、可能是對抗的環境中表現,通過與環境的積極互動來收集有用的反饋,以提高其序列決策能力。RL代理還將干預環境: 代理做出決策,進而影響環境的進一步演化。

由于它的普遍性——大多數機器學習問題可以看作是特殊情況——RL很難。由于沒有直接的監督,RL的一個主要挑戰是如何探索未知的環境并有效地收集有用的反饋。在最近的RL成功案例中(如視頻游戲中的超人表現[Mnih et al., 2015]),我們注意到它們大多依賴于隨機探索策略,如“貪婪”。同樣的,策略梯度法如REINFORCE [Williams, 1992],通過向動作空間注入隨機性進行探索,希望隨機性能導致良好的動作序列,從而獲得高總回報。理論RL文獻已經開發出了更復雜的算法來進行有效的探索(例如,[Azar等人,2017]),然而,這些接近最優算法的樣本復雜度必須根據底層系統的關鍵參數(如狀態和動作空間的維數)呈指數級增長。這種指數依賴性阻礙了這些理論上優雅的RL算法在大規模應用中的直接應用。總之,如果沒有進一步的假設,無論在實踐上還是在理論上,RL都是困難的。

在本文中,我們試圖通過引入額外的假設和信息源來獲得對RL問題的支持。本文的第一個貢獻是通過模仿學習來提高RL樣本的復雜度。通過利用專家的示范,模仿學習極大地簡化了探索的任務。在本論文中,我們考慮了兩種設置:一種是交互式模仿學習設置,即在訓練期間專家可以進行查詢;另一種是僅通過觀察進行模仿學習的設置,在這種設置中,我們只有一組由對專家狀態的觀察組成的演示(沒有記錄專家行為)。我們在理論和實踐中研究如何模仿專家,以減少樣本的復雜性相比,純RL方法。第二個貢獻來自于無模型的強化學習。具體來說,我們通過構建一個從策略評估到無后悔在線學習的總體約簡來研究策略評估,無后悔在線學習是一個活躍的研究領域,具有良好的理論基礎。這樣的約減創造了一個新的算法族,可以在生成過程的非常弱的假設下證明正確的策略評估。在此基礎上,對行動空間和參數空間兩種無模型勘探策略進行了理論和實證研究。這項工作的第三個貢獻來自基于模型的強化學習。我們提供了基于模型的RL方法和一般無模型的RL方法之間的第一個指數樣本復度分離。然后,我們提供了基于PAC模型的RL算法,可以同時實現對許多有趣的MDPs的采樣效率,如表列MDPs、因子MDPs、Lipschitz連續MDPs、低秩MDPs和線性二次控制。通過將最優控制、模型學習和模仿學習結合在一起,我們還提供了一個更實用的基于模型的RL框架,稱為雙重策略迭代(DPI)。此外,我們給出了一個通用的收斂分析,將現有的近似策略迭代理論推廣到DPI。DPI對最近成功的實用RL算法如ExIt和AlphaGo Zero進行了概括和提供了第一個理論基礎[Anthony et al., 2017, Silver et al., 2017],并為統一基于模型的RL方法和無模型的RL方法提供了一種理論健全和實踐高效的方法。

//www.ri.cmu.edu/publications/towards-generalization-and-efficiency-in-reinforcement-learning/

付費5元查看完整內容

機器人研究的一個長期目標是創建能夠從零開始自動學習復雜控制策略的算法。將這種算法應用到機器人上的挑戰之一是表示的選擇。強化學習(RL)算法已經成功地應用于許多不同的機器人任務中,如帶有機器人手臂的cup中的Ball-in-a-Cup任務和各種機器人世界杯機器人足球啟發的領域。然而,RL算法仍然存在訓練時間長、所需訓練數據量大的問題。為狀態空間、行動空間和策略選擇合適的表示可以大大減少所需的訓練時間和所需的訓練數據。

本文主要研究機器人的深度強化學習。具體來說,狀態空間、動作空間和策略表示的選擇如何減少機器人學習任務的訓練時間和樣本復雜度。特別集中注意兩個主要領域: 1)通過張量狀態-動作空間表示 2)多狀態表示的輔助任務學習

第一個領域探索了在環境變化中改進機器人策略遷移的方法。學習策略的成本可能很高,但是如果策略可以在類似的環境中傳輸和重用,那么訓練成本可以平攤。遷移學習是一個被廣泛研究的領域,涉及多種技術。在這篇論文中,我們著重設計一個易于傳輸的表示。我們的方法將狀態空間和動作空間映射為多維張量,設計成當環境中機器人和其他對象的數量變化時保持固定維數。我們還提出了全卷積Q-Network (FCQN)策略表示,這是一種特殊的網絡架構,與張量表示相結合,允許跨環境大小進行零距離傳輸。我們在模擬的單代理和多代理任務上演示了這種方法,靈感來自于RoboCup Small - Size League (SSL)和Atari Breakout的修改版本。我們還表明,在真實世界的傳感器數據和機器人中使用這樣的表示和模擬訓練策略是可能的。

第二個領域考察了一個機器人深度RL狀態表示的優勢如何彌補另一個機器人深度RL狀態表示的劣勢。例如,我們經常想要利用機器人可用的傳感器來學習任務,其中包括像攝像機這樣的高維傳感器。最近的Deep RL算法可以通過圖像進行學習,但是數據的數量對于真實的機器人來說是難以接受的。或者,可以使用任務完成所需的最小集創建狀態。這樣做的好處是:1)減少策略參數的數量,2)刪除不相關的信息。然而,提取這些特征通常會在工程、額外硬件、校準和實驗室之外的脆弱性方面有很大的成本。我們在仿真和現實世界的多個機器人平臺和任務上演示了這一點。我們證明它在模擬的RoboCup小型聯賽(SSL)機器人上工作。我們還演示了這樣的技術允許在真實的硬件上從零開始學習,通過機器人手臂執行一個球在一個杯子的任務。

//www.ri.cmu.edu/publications/robot-deep-reinforcement-learning-tensor-state-action-spaces-and-auxiliary-task-learning-with-multiple-state-representations/

付費5元查看完整內容

隨著開放科學和開放資源的雙重運動將越來越多的科學過程帶入數字領域,科學本身的元科學研究(包括數據科學和統計)出現了新的機會。未來的科學很可能看到機器在處理、組織甚至創造科學知識方面發揮積極作用。為了使這成為可能,必須進行大量的工程努力來將科學工件轉化為有用的計算資源,并且必須在科學理論、模型、實驗和數據的組織方面取得概念上的進展。本論文的目標是將數據科學的兩大主要產物——統計模型和數據分析——數字化和系統化。使用來自代數的工具,特別是分類邏輯,在統計和邏輯的模型之間進行了精確的類比,使統計模型在邏輯意義上被視為理論的模型。統計理論,作為代數結構,服從機器表示,并配備了形式化不同統計方法之間的關系的形態。從數學轉向工程,設計和實現了一個軟件系統,用于以Python或R程序的形式創建數據分析的機器表示。表示的目的是捕獲數據分析的語義,獨立于實現它們的編程語言和庫。

//arxiv.org/abs/2006.08945

付費5元查看完整內容

決策理論是現代人工智能和經濟學的基礎。本課程主要從統計學的角度,也從哲學的角度,為決策理論打下堅實的基礎。本課程有兩個目的:

  • 深入了解統計決策理論、實驗設計的自動化方法,并將其與人類決策聯系起來。
  • 通過開發算法和智能代理的實驗,將該理論應用到強化學習和人工智能的實際問題中。

課程可分為兩部分。

  • 第一部分,我們介紹了主觀概率和效用的概念,以及如何用它們來表示和解決決策問題。然后討論未知參數的估計和假設檢驗。最后,我們討論了順序抽樣、順序實驗,以及更一般的順序決策。

  • 第二部分是不確定性下的決策研究,特別是強化學習和專家咨詢學習。首先,我們研究幾個有代表性的統計模型。然后,我們給出了使用這些模型做出最優決策的算法的概述。最后,我們來看看學習如何根據專家的建議來行動的問題,這個領域最近在在線廣告、游戲樹搜索和優化方面有很多應用。

付費5元查看完整內容

強化學習(RL)是一種流行的處理順序決策任務的范式,其中agent只有有限的環境反饋。盡管在過去的三十年里取得了許多進步,但是在許多領域的學習仍然需要大量的與環境的交互,這在現實的場景中是非常昂貴的。為了解決這個問題,遷移學習被應用于強化學習,這樣在一個任務中獲得的經驗可以在開始學習下一個更困難的任務時得到利用。最近,有幾項研究探索了如何將任務(或數據樣本本身)排序到課程中,以便學習一個可能很難從頭學起的問題。在本文中,我們提出了一個課程學習的強化學習框架,并利用它來調查和分類現有的課程學習方法的假設、能力和目標。最后,我們使用我們的框架來發現開放的問題,并為未來的RL課程學習研究提出方向。

付費5元查看完整內容

摘要:

本文將優化描述為一個過程。在許多實際應用中,環境是如此復雜,以致于無法制定一個全面的理論模型,并使用經典算法理論和數學優化。采取一種穩健的方法是必要的,也是有益的,方法是應用一種不斷學習的優化方法,在觀察到問題的更多方面時從經驗中學習。這種將優化視為一個過程的觀點在各個領域都很突出,并在建模和系統方面取得了一些驚人的成功,現在它們已經成為我們日常生活的一部分。

作者介紹:

Elad Hazan是普林斯頓大學計算機科學教授。他于2015年從Technion畢業,當時他是該校運籌學副教授。他的研究重點是機器學習和優化的基本問題的算法設計和分析。他的貢獻包括合作開發用于訓練學習機器的AdaGrad算法,以及第一個用于凸優化的次線性時間算法。他曾(兩次)獲得2012年IBM Goldberg最佳論文獎,以表彰他對機器學習的次線性時間算法的貢獻。2008年,他還獲得了歐洲研究理事會(European Research Council)的一筆撥款、瑪麗?居里(Marie Curie)獎學金和谷歌研究獎(兩次)。他是計算學習協會的指導委員會成員,并擔任COLT 2015的項目主席。

//www.cs.princeton.edu/~ehazan/

付費5元查看完整內容
北京阿比特科技有限公司