亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

主題: Explainable Reinforcement Learning: A Survey

摘要: 可解釋的人工智能(XAI),即更透明和可解釋的AI模型的開發在過去幾年中獲得了越來越多的關注。這是由于這樣一個事實,即AI模型隨著其發展為功能強大且無處不在的工具而表現出一個有害的特征:性能與透明度之間的權衡。這說明了一個事實,即模型的內部工作越復雜,就越難以實現其預測或決策。但是,特別是考慮到系統像機器學習(ML)這樣的方法(強化學習(RL))在系統自動學習的情況下,顯然有必要了解其決策的根本原因。由于據我們所知,目前尚無人提供可解釋性強化學習(XRL)方法的概述的工作,因此本調查試圖解決這一差距。我們對問題進行了簡短的總結,重要術語的定義以及提議當前XRL方法的分類和評估。我們發現a)大多數XRL方法通過模仿和簡化一個復雜的模型而不是設計本質上簡單的模型來起作用,并且b)XRL(和XAI)方法通常忽略了方程的人為方面,而不考慮相關領域的研究像心理學或哲學。因此,需要跨學科的努力來使所生成的解釋適應(非專家)人類用戶,以便有效地在XRL和XAI領域中取得進步。

付費5元查看完整內容

相關內容

 是研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。 人工智能是計算機科學的一個分支。

主題: Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey

摘要: 如今,深度神經網絡已廣泛應用于對醫療至關重要的任務關鍵型系統,例如醫療保健,自動駕駛汽車和軍事領域,這些系統對人類生活產生直接影響。然而,深層神經網絡的黑匣子性質挑戰了其在使用中的關鍵任務應用,引發了引起信任不足的道德和司法問題。可解釋的人工智能(XAI)是人工智能(AI)的一個領域,它促進了一系列工具,技術和算法的產生,這些工具,技術和算法可以生成對AI決策的高質量,可解釋,直觀,人類可理解的解釋。除了提供有關深度學習當前XAI格局的整體視圖之外,本文還提供了開創性工作的數學總結。我們首先提出分類法,然后根據它們的解釋范圍,算法背后的方法,解釋級別或用法對XAI技術進行分類,這有助于建立可信賴,可解釋且自解釋的深度學習模型。然后,我們描述了XAI研究中使用的主要原理,并介紹了2007年至2020年XAI界標研究的歷史時間表。在詳細解釋了每種算法和方法之后,我們評估了八種XAI算法對圖像數據生成的解釋圖,討論了其局限性方法,并提供潛在的未來方向來改進XAI評估。

付費5元查看完整內容

深度學習在許多領域都取得了重大突破和進展。這是因為深度學習具有強大的自動表示能力。實踐證明,網絡結構的設計對數據的特征表示和最終的性能至關重要。為了獲得良好的數據特征表示,研究人員設計了各種復雜的網絡結構。然而,網絡架構的設計在很大程度上依賴于研究人員的先驗知識和經驗。因此,一個自然的想法是盡量減少人為的干預,讓算法自動設計網絡的架構。因此,這需要更深入到強大的智慧。

近年來,大量相關的神經結構搜索算法(NAS)已經出現。他們對NAS算法進行了各種改進,相關研究工作復雜而豐富。為了減少初學者進行NAS相關研究的難度,對NAS進行全面系統的調查是必不可少的。之前的相關調查開始主要從NAS的基本組成部分: 搜索空間、搜索策略和評估策略對現有工作進行分類。這種分類方法比較直觀,但是讀者很難把握中間的挑戰和標志性作品。因此,在本次調查中,我們提供了一個新的視角:首先概述最早的NAS算法的特點,總結這些早期NAS算法存在的問題,然后為后續的相關研究工作提供解決方案。并對這些作品進行了詳細而全面的分析、比較和總結。最后,提出了今后可能的研究方向。

概述

深度學習已經在機器翻譯[1-3]、圖像識別[4,6,7]和目標檢測[8-10]等許多領域展示了強大的學習能力。這主要是因為深度學習對非結構化數據具有強大的自動特征提取功能。深度學習已經將傳統的手工設計特征[13,14]轉變為自動提取[4,29,30]。這使得研究人員可以專注于神經結構的設計[11,12,19]。但是神經結構的設計很大程度上依賴于研究者的先驗知識和經驗,這使得初學者很難根據自己的實際需要對網絡結構進行合理的修改。此外,人類現有的先驗知識和固定的思維范式可能會在一定程度上限制新的網絡架構的發現。

因此,神經架構搜索(NAS)應運而生。NAS旨在通過使用有限的計算資源,以盡可能少的人工干預的自動化方式設計具有最佳性能的網絡架構。NAS- RL[11]和MetaQNN[12]的工作被認為是NAS的開創性工作。他們使用強化學習(RL)方法得到的網絡架構在圖像分類任務上達到了SOTA分類精度。說明自動化網絡架構設計思想是可行的。隨后,大規模演化[15]的工作再次驗證了這一想法的可行性,即利用演化學習來獲得類似的結果。然而,它們在各自的方法中消耗了數百天的GPU時間,甚至更多的計算資源。如此龐大的計算量對于普通研究者來說幾乎是災難性的。因此,如何減少計算量,加速網絡架構的搜索[18-20,48,49,52,84,105]就出現了大量的工作。與NAS的提高搜索效率,NAS也迅速應用領域的目標檢測(65、75、111、118),語義分割(63、64、120),對抗學習[53],建筑規模(114、122、124),多目標優化(39、115、125),platform-aware(28日34、103、117),數據增加(121、123)等等。另外,如何在性能和效率之間取得平衡也是需要考慮的問題[116,119]。盡管NAS相關的研究已經非常豐富,但是比較和復制NAS方法仍然很困難[127]。由于不同的NAS方法在搜索空間、超參數技巧等方面存在很多差異,一些工作也致力于為流行的NAS方法提供一個統一的評估平臺[78,126]。

隨著NAS相關研究的不斷深入和快速發展,一些之前被研究者所接受的方法被新的研究證明是不完善的。很快就有了改進的解決方案。例如,早期的NAS在架構搜索階段從無到有地訓練每個候選網絡架構,導致計算量激增[11,12]。ENAS[19]提出采用參數共享策略來加快架構搜索的進程。該策略避免了從頭訓練每個子網,但強制所有子網共享權值,從而大大減少了從大量候選網絡中獲得性能最佳子網的時間。由于ENAS在搜索效率上的優勢,權值共享策略很快得到了大量研究者的認可[23,53,54]。不久,新的研究發現,廣泛接受的權重分配策略很可能導致候選架構[24]的排名不準確。這將使NAS難以從大量候選架構中選擇最優的網絡架構,從而進一步降低最終搜索的網絡架構的性能。隨后DNA[21]將NAS的大搜索空間模塊化成塊,充分訓練候選架構以減少權值共享帶來的表示移位問題。此外,GDAS-NSAS[25]提出了一種基于新的搜索架構選擇(NSAS)損失函數來解決超網絡訓練過程中由于權值共享而導致的多模型遺忘問題。

在快速發展的NAS研究領域中,類似的研究線索十分普遍,基于挑戰和解決方案對NAS研究進行全面、系統的調研是非常有用的。以往的相關綜述主要根據NAS的基本組成部分: 搜索空間、搜索策略和評估策略對現有工作進行分類[26,27]。這種分類方法比較直觀,但不利于讀者捕捉研究線索。因此,在本次綜述查中,我們將首先總結早期NAS方法的特點和面臨的挑戰。基于這些挑戰,我們對現有研究進行了總結和分類,以便讀者能夠從挑戰和解決方案的角度進行一個全面和系統的概述。最后,我們將比較現有的研究成果,并提出未來可能的研究方向和一些想法。

付費5元查看完整內容

深度神經網絡(DNN)是實現人類在許多學習任務上的水平的不可缺少的機器學習工具。然而,由于其黑箱特性,很難理解輸入數據的哪些方面驅動了網絡的決策。在現實世界中,人類需要根據輸出的dna做出可操作的決定。這種決策支持系統可以在關鍵領域找到,如立法、執法等。重要的是,做出高層決策的人員能夠確保DNN決策是由數據特征的組合驅動的,這些數據特征在決策支持系統的部署上下文中是適當的,并且所做的決策在法律上或倫理上是可辯護的。由于DNN技術發展的驚人速度,解釋DNN決策過程的新方法和研究已經發展成為一個活躍的研究領域。在定義什么是能夠解釋深度學習系統的行為和評估系統的“解釋能力”時所存在的普遍困惑,進一步加劇了這種復雜性。為了緩解這一問題,本文提供了一個“領域指南”,為那些在該領域沒有經驗的人提供深度學習解釋能力指南: i)討論了研究人員在可解釋性研究中增強的深度學習系統的特征,ii)將可解釋性放在其他相關的深度學習研究領域的背景下,iii)介紹了定義基礎方法空間的三個簡單維度。

付費5元查看完整內容

【導讀】元學習旨在學會學習,是當下研究熱點之一。最近來自愛丁堡大學的學者發布了關于元學習最新綜述論文《Meta-Learning in Neural Networks: A Survey》,值得關注,詳述了元學習體系,包括定義、方法、應用、挑戰,成為不可缺少的文獻。

近年來,元學習領域,或者說“學會學習的學習”,引起了人們極大的興趣。與傳統的人工智能方法(使用固定的學習算法從頭開始解決給定的任務)不同,元學習的目的是改進學習算法本身,考慮到多次學習的經驗。這個范例提供了一個機會來解決深度學習的許多傳統挑戰,包括數據和計算瓶頸,以及泛化的基本問題。在這項綜述中,我們描述了當代元學習的景觀。我們首先討論元學習的定義,并將其定位于相關領域,如遷移學習、多任務學習和超參數優化。然后,我們提出了一個新的分類法,對元學習方法的空間進行了更全面的細分。我們綜述了元學習的一些有前途的應用和成功案例,包括小樣本學習、強化學習和體系架構搜索。最后,我們討論了突出的挑戰和未來研究的有希望的領域。

//arxiv.org/abs/2004.05439

概述

現代機器學習模型通常是使用手工設計的固定學習算法,針對特定任務從零開始進行訓練。基于深度學習的方法在許多領域都取得了巨大的成功[1,2,3]。但是有明顯的局限性[4]。例如,成功主要是在可以收集或模擬大量數據的領域,以及在可以使用大量計算資源的領域。這排除了許多數據本質上是稀有或昂貴的[5],或者計算資源不可用的應用程序[6,7]。

元學習提供了另一種范式,機器學習模型可以在多個學習階段獲得經驗——通常覆蓋相關任務的分布——并使用這些經驗來改進未來的學習性能。這種“學會學習”[8]可以帶來各種好處,如數據和計算效率,它更適合人類和動物的學習[9],其中學習策略在一生和進化時間尺度上都得到改善[10,9,11]。機器學習在歷史上是建立在手工設計的特征上的模型,而特征的選擇往往是最終模型性能的決定因素[12,13,14]。深度學習實現了聯合特征和模型學習的承諾[15,16],為許多任務提供了巨大的性能改進[1,3]。神經網絡中的元學習可以看作是集成聯合特征、模型和算法學習的下一步。神經網絡元學習有著悠久的歷史[17,18,8]。然而,它作為推動當代深度學習行業前沿的潛力,導致了最近研究的爆炸性增長。特別是,元學習有可能緩解當代深度學習[4]的許多主要批評,例如,通過提供更好的數據效率,利用先驗知識轉移,以及支持無監督和自主學習。成功的應用領域包括:小樣本圖像識別[19,20]、無監督學習[21]、數據高效[22,23]、自導向[24]強化學習(RL)、超參數優化[25]和神經結構搜索(NAS)[26, 27, 28]。

在文獻中可以找到許多關于元學習的不同觀點。特別是由于不同的社區對這個術語的使用略有不同,所以很難定義它。與我們[29]相關的觀點認為,元學習是管理“沒有免費午餐”定理[30]的工具,并通過搜索最適合給定問題或問題族的算法(歸納偏差)來改進泛化。然而,從廣義上來說,這個定義可以包括遷移、多任務、特征選擇和模型集成學習,這些在今天通常不被認為是元學習。另一個關于元學習[31]的觀點廣泛地涵蓋了基于數據集特性的算法選擇和配置技術,并且很難與自動機器學習(AutoML)[32]區分開來。在這篇論文中,我們關注當代的神經網絡元學習。我們將其理解為算法或歸納偏差搜索,但重點是通過端到端學習明確定義的目標函數(如交叉熵損失、準確性或速度)來實現的。

因此,本文提供了一個獨特的,及時的,最新的調查神經網絡元學習領域的快速增長。相比之下,在這個快速發展的領域,以往的研究已經相當過時,或者關注于數據挖掘[29、33、34、35、36、37、31]、自動[32]的算法選擇,或者元學習的特定應用,如小樣本學習[38]或神經架構搜索[39]。

我們討論元學習方法和應用。特別是,我們首先提供了一個高層次的問題形式化,它可以用來理解和定位最近的工作。然后,我們在元表示、元目標和元優化器方面提供了一種新的方法分類。我們調查了幾個流行和新興的應用領域,包括少鏡頭、強化學習和架構搜索;并對相關的話題如遷移學習、多任務學習和自動學習進行元學習定位。最后,我們討論了尚未解決的挑戰和未來研究的領域。

未來挑戰:

-元泛化 元學習在不同任務之間面臨著泛化的挑戰,這與傳統機器學習中在不同實例之間進行泛化的挑戰類似。

  • 任務分布的多模態特性
  • 任務族
  • 計算代價
  • 跨模態遷移和異構任務

總結

元學習領域最近出現了快速增長的興趣。這帶來了一定程度的混亂,比如它如何與鄰近的字段相關聯,它可以應用到什么地方,以及如何對它進行基準測試。在這次綜述中,我們試圖通過從方法學的角度對這一領域進行徹底的調查來澄清這些問題——我們將其分為元表示、元優化器和元目標的分類;從應用的角度來看。我們希望這項調查將有助于新人和實踐者在這個不斷增長的領域中定位自己,并強調未來研究的機會。

付費5元查看完整內容

題目: Natural Language Processing Advancements By Deep Learning: A Survey

摘要: 自然語言處理(NLP)幫助智能機器更好地理解人類語言,實現基于語言的人機交流。算力的最新發展和語言大數據的出現,增加了使用數據驅動方法自動進行語義分析的需求。由于深度學習方法在計算機視覺、自動語音識別,特別是NLP等領域的應用取得了顯著的進步,數據驅動策略的應用已經非常普遍。本綜述對得益于深度學習的NLP的不同方面和應用進行了分類和討論。它涵蓋了核心的NLP任務和應用,并描述了深度學習方法和模型如何推進這些領域。我們并進一步分析和比較不同的方法和最先進的模型。

付費5元查看完整內容

題目: Threats to Federated Learning: A Survey

簡介:

隨著數據孤島的出現和隱私意識,訓練人工智能(AI)模型的傳統集中式方法面臨著嚴峻的挑戰。在這種新現實下,聯邦學習(FL)最近成為一種有效的解決方案。現有的FL協議設計已顯示出存在漏洞,系統內部和外部系統的攻擊者都可以利用這些漏洞來破壞數據隱私。因此,讓FL系統設計人員了解未來FL算法設計對隱私保護的意義至關重要。當前,沒有關于此主題的調查。在本文中,我們 彌合FL文學中的這一重要鴻溝。通過簡要介紹FL的概念以及涵蓋威脅模型和FL的兩種主要攻擊的獨特分類法:1)中毒攻擊 2)推理攻擊,本文提供了對該重要主題的易于理解的概述。我們重點介紹了各種攻擊所采用的關鍵技術以及基本假設,并討論了未來研究方向,以實現FL中更強大的隱私保護。

目錄:

付費5元查看完整內容

強化學習(RL)研究的是當環境(即動力和回報)最初未知,但可以通過直接交互學習時的順序決策問題。RL算法最近在許多問題上取得了令人印象深刻的成果,包括游戲和機器人。 然而,大多數最新的RL算法需要大量的數據來學習一個令人滿意的策略,并且不能用于樣本昂貴和/或無法進行長時間模擬的領域(例如,人機交互)。朝著更具樣本效率的算法邁進的一個基本步驟是,設計適當平衡環境探索、收集有用信息的方法,以及利用所學策略收集盡可能多的回報的方法。

本教程的目的是讓您認識到探索性開發困境對于提高現代RL算法的樣本效率的重要性。本教程將向觀眾提供主要算法原理(特別是,面對不確定性和后驗抽樣時的樂觀主義)、精確情況下的理論保證(即表格RL)及其在更復雜環境中的應用,包括參數化MDP、線性二次控制,以及它們與深度學習架構的集成。本教程應提供足夠的理論和算法背景,以使AI和RL的研究人員在現有的RL算法中集成探索原理,并設計新穎的樣本高效的RL方法,能夠處理復雜的應用,例如人機交互(例如,會話代理),醫學應用(例如,藥物優化)和廣告(例如,營銷中的終身價值優化)。在整個教程中,我們將討論開放的問題和未來可能的研究方向。

付費5元查看完整內容

題目

基于學習的序列決策算法的公平性綜述論文,Fairness in Learning-Based Sequential Decision Algorithms: A Survey

關鍵字

序列決策,機器學習,預測,公平性

簡介

決策過程中的算法公平性已經被廣泛研究,在不穩定的環境下,對分類等任務進行一次性決策。然而,在實踐中,大多數決策過程都是順序的,過去的決策可能會對未來的數據產生影響。特別是當決策影響到生成用于未來決策的數據的個人或用戶時。在這項調查中,我們回顧了現有文獻的數據驅動順序決策的公平性。我們將關注兩類順序決策:(1)過去的決策對潛在用戶群沒有影響,對未來數據也沒有影響;(2)過去的決策對潛在用戶群有影響,因此對未來數據也有影響,進而影響未來的決策。在每種情況下,都要研究各種公平干預措施對底層人口的影響。

作者

Xueru Zhang and Mingyan Liu

付費5元查看完整內容
北京阿比特科技有限公司