亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

屬性網絡嵌入的目的是結合網絡的拓撲結構和節點屬性學習低維節點表示。現有的大多數方法要么通過網絡結構傳播屬性,要么通過編碼-解碼器框架學習節點表示。然而,基于傳播的方法傾向于選擇網絡結構而不是節點屬性,而編碼-解碼器方法傾向于忽略近鄰之外的長連接。為了解決這些限制,同時得到這兩個方面的優點,我們設計了交叉融合層的無監督屬性網絡嵌入。具體來說,我們首先構建兩個獨立的視圖來處理網絡結構和節點屬性,然后設計跨融合層來實現兩視圖之間靈活的信息交換和集成。交叉融合層的關鍵設計目標有三方面:1)允許關鍵信息沿著網絡結構傳播;2)在傳播過程中對每個節點的局部鄰域進行異構編碼;3)加入額外的節點屬性通道,使屬性信息不被結構視圖所掩蓋。在三個數據集和三個下游任務上的大量實驗證明了該方法的有效性。

//cs.nju.edu.cn/yuanyao/static/wsdm2021.pdf

付費5元查看完整內容

相關內容

網絡搜索和數據挖掘國際會議(WSDM)是關于Web上的搜索和數據挖掘研究的主要會議之一。WSDM在Web和社會Web上發布與搜索和數據挖掘相關的原始的、高質量的論文,著重于搜索和數據挖掘實用而有原則的新模型、算法設計和分析、經濟影響,以及對準確性和性能的深入實驗分析。 官網地址:

題目: 屬性異質信息網絡上的半監督雙聚類

期刊: Information Processing & Management (Volume 57, Issue 6)

論文代碼: //github.com/yuduo93/SCCAIN

異質信息網絡上的節點聚類被用于許多實際應用。早先的方法獨立地針對指定類型的節點進行結構相似性度量而忽視了不同類型節點之間的關聯關系。本文研究同時聚合不同類型節點的問題,其目的是挖掘異質節點之間的潛在關聯,并同時針對不同類型的節點進行聚類劃分。該問題主要面臨兩個方面的挑戰:1. 節點之間的相似性/相關性不僅和結構信息相關,同時也和離散/連續的節點屬性相關;2. 聚類和相似性度量往往是相互促進的。為解決以上問題,本文首先利用多條元路徑和節點屬性,設計了一種融合結構和屬性的可學習的整體相關性度量方法。繼而,本文提出了屬性異質網絡半監督雙聚類方法SCCAIN,基于約束的正交非負矩陣三分解對不同類型的節點同時進行聚類。最后,我們設計了一種端到端的優化框架,可以聯合優化相關性度量和雙聚類。在三個真實數據上的實驗驗證了模型的有效性。

付費5元查看完整內容

異構網絡的表示學習方法為每個節點產生一個低維向量嵌入,通常在所有涉及節點的任務中都是固定的。許多現有的方法關注于以一種與下游應用程序無關的方式獲取節點的靜態向量表示。然而,在實踐中,下游任務(如鏈接預測)需要特定的上下文信息,這些信息可以從與節點相關的子圖中提取出來,作為任務的輸入。為了解決這一挑戰,我們提出了SLiCE,這是一個使用整個圖的全局信息和局部注意驅動機制來學習上下文節點表示的靜態表示學習方法的框架。我們首先通過引入高階語義關聯和屏蔽節點以自監督的方式預訓練我們的模型,然后針對特定的鏈接預測任務微調我們的模型。我們不再通過聚合所有通過元路徑連接的語義鄰居的信息來訓練節點表示,而是自動學習不同元路徑的組合,這些元路徑表征了特定任務的上下文,而不需要任何預先定義的元路徑。SLiCE在幾個公開可用的基準網絡數據集上顯著優于靜態和上下文嵌入學習方法。通過廣泛的評價,我們也證明了上下文學習的可解釋性、有效性和SLiCE的可擴展性。

付費5元查看完整內容

基于深度學習的半監督學習(SSL)算法在醫學圖像分割方面取得了很有前途的結果,并可以通過利用未標記的數據減輕醫生昂貴的標注。然而,現有文獻中的大多數SSL算法都傾向于通過干擾網絡和/或數據來規約模型訓練。考慮到多/雙任務學習涉及到具有固有的預測擾動的各個級別的信息,我們在這項工作中提出了一個問題:我們能夠顯式地構建任務級別的正則化,而不是隱式地構建用于SSL的網絡和/或數據級別的擾動和轉換嗎?為了回答這個問題,我們首次提出了一個新的雙任務一致性半監督框架。具體地說,我們使用一個雙任務深度網絡來聯合預測一個像素級分割圖和一個幾何感知的目標集表示。通過可微任務轉換層將水平集表示轉換為近似分割映射。同時,我們在水平集導出的分割圖和直接預測的分割圖之間引入了一種雙任務一致性正則化,用于標記和未標記數據。在兩個公共數據集上的大量實驗表明,我們的方法可以通過合并未標記數據極大地提高性能。同時,我們的框架優于最先進的半監督醫學圖像分割方法。代碼可以在//github.com/Luoxd1996/DTC找到。

付費5元查看完整內容

圖神經網絡(GNN)已被證明是圖分析的強大工具。關鍵思想是沿著給定圖的邊遞歸地傳播和聚合信息。盡管它們取得了成功,但是,現有的GNN通常對輸入圖的質量很敏感。真實世界的圖通常是噪聲和包含任務無關的邊緣,這可能導致在學習的GNN模型中泛化性能次優。本文提出一種參數化拓撲去噪網絡PTDNet,通過學習丟棄任務無關邊來提高GNNs的魯棒性和泛化性能。PTDNet通過使用參數化網絡懲罰稀疏圖中的邊數來刪除與任務無關的邊。考慮到整個圖的拓撲結構,采用核范數正則化對稀疏圖施加低秩約束,以便更好地泛化。PTDNet可以作為GNN模型的關鍵組件,以提高其在各種任務中的性能,如節點分類和鏈路預測。在合成數據集和基準數據集上的實驗研究表明,PTDNet可以顯著提高GNNs的性能,并且對于噪聲較大的數據集性能增益更大。

//personal.psu.edu/dul262/PTDNet/WSDM2021_PTDNet_camera_ready.pdf

付費5元查看完整內容

近年來,許多在線平臺(如亞馬遜和淘寶網)都取得了巨大成功。在線平臺上的用戶行為是動態變化的,且會隨著時間而發展。序列推薦的主要目標就是從用戶歷史行為中捕捉關鍵的信息,并基于此準確表征用戶興趣進而提供高質量的推薦[1,2,3]。已有研究人員基于深度學習提出很多序列推薦的模型,此外還有研究人員結合豐富的上下文信息(如商品屬性)一起進行用戶興趣建模,實驗表明,上下文信息對于提高推薦效果很重要。

盡管現有方法在一定程度上已被證明有效,但它們有兩個可能會影響推薦效果的缺陷。首先,他們主要依靠“下一個物品推薦”(Next Item Prediction)損失函數來學習整個模型。在使用上下文信息時,也仍然只使用這一個優化目標。已有研究表明,這種優化方法很容易受到數據稀疏性等問題的影響。此外,它們過分強調最終的推薦性能,而上下文數據和序列數據之間的關聯或融合卻沒有在數據表示中被很好地捕獲。多個領域的實驗結果表明[4,5,6],更有效的數據表示方法(例如,預先訓練的上下文信息嵌入)已成為改善現有模型或體系結構性能的關鍵因素。因此,有必要重新考慮學習范式并開發更有效的序列推薦系統。

為了解決上述問題,我們借鑒了自監督學習的思想來改進序列推薦的方法。自監督學習是一個新興的學習范式,旨在讓模型從原始數據的內在結構中學習。自監督學習的一般框架是首先從原始數據中構建新的監督信號,然后通過這些額外設計的優化目標來對模型進行預訓練。如之前討論的,有限的監督信號和低效的數據表示是現有的神經序列推薦方法的兩個主要問題。幸運的是,自監督學習似乎為解決這兩個問題提供了解決方案:它通過內在數據相關性來設計輔助訓練目標以提供豐富的自監督信號,并通過預訓練的方法增強數據表示。對于序列推薦,上下文信息以不同的形式存在,包括物品,屬性,子序列和序列。開發統一表征這種數據相關性的方法并不容易。對于這個問題,我們借鑒最近提出的互信息最大化(Mutual Information Maximization, MIM)方法,其已被證明可以有效捕獲原始輸入的不同視圖(或部分)之間的相關性。

基于以上,我們提出了一種基于自監督學習方法的序列推薦模型(Self-Supervised Learning Sequential Recommendation, S3-Rec)。基于自注意力機制的體系結構[3],我們首先使用設計的自監督訓練目標對模型進行預訓練,然后根據推薦任務對模型進行微調。此工作的主要新穎之處在預訓練階段,我們基于MIM的統一形式精心設計了四個自監督的優化目標,分別用于捕獲物品-屬性間,序列-物品間,序列-屬性間和序列-子序列間的相關性。因此,S3-Rec能夠以統一的方式來表征不同粒度級別或不同形式數據之間的相關性,并且也可以靈活地適應新的數據類型或關聯模式。通過這樣的預訓練方法,我們可以有效地融合各種上下文數據,并學習屬性感知的上下文化的數據表示。最后,將學習到的表示輸入推薦模型,并根據推薦任務對其進行優化。

為了驗證S3-Rec的有效性,我們在6個不同領域的真實數據集上進行了充分的實驗。實驗結果表明,S3-Rec超過了目前的SOTA,并且在訓練數據非常有限的情況表現得尤為明顯。另外S3-Rec還可以有效得適應其他類別的神經體系結構,例如GRU[1]和CNN[2]。我們的主要貢獻概括如下:(1)據我們所知,這是首次采用MIM進行自監督學習來改善序列推薦任務的工作;(2)我們提出了4個自監督優化目標來最大化不同形式或粒度的上下文信息的互信息;(3)在6個數據集上的充分實驗證明了我們方法的有效性。

付費5元查看完整內容

本文研究如何更好聚合網絡拓撲信息和特征信息。中心思想是,構造了結構圖,特征圖(feature graph),以及兩者的組合來提取特定的和通用的嵌入,并使用注意機制來學習嵌入的自適應重要性權重。實驗發現,AM-GCN可以從節點特征和拓撲結構中提取自適應地提取相關的信息,對應不同的參數取值。 //arxiv.org/abs/2007.02265

摘要:圖卷積網絡(GCNs)在處理圖數據和網絡數據的各種分析任務方面得到了廣泛的應用。然而,最近的一些研究提出了一個問題,即GCNs是否能夠在一個信息豐富的復雜圖形中優化地整合節點特征和拓撲結構。在本文中,我們首先提出一個實驗研究。令人驚訝的是,我們的實驗結果清楚地表明,當前的GCNs融合節點特征和拓撲結構的能力遠遠不是最優的,甚至是令人滿意的。由于GCNs無法自適應地學習拓撲結構與節點特征之間的一些深層次關聯信息,這一弱點可能會嚴重阻礙GCNs在某些分類任務中的能力。我們能否彌補這一缺陷,設計出一種新型的GCNs,既能保留現有GCNs的優勢,又能大幅度提高拓撲結構和節點特征融合的能力?為了解決這個問題,我們提出了一種自適應多通道半監督分類圖卷積網絡。其核心思想是同時從節點特征、拓撲結構及其組合中提取具體的和常見的嵌入,并利用注意機制學習嵌入的自適應重要度權值。我們在基準數據集上進行的大量實驗表明,AM-GCN從節點特征和拓撲結構中提取了最多的相關信息,顯著提高了分類精度。

付費5元查看完整內容

題目: Adaptive Graph Encoder for Attributed Graph Embedding

簡介: 從圖拓撲和節點特征中學習向量表示的屬性圖嵌入是圖分析的一項艱巨任務。近年來,基于圖卷積網絡(GCN)的方法在此任務上取得了很大的進步。但是,現有的基于GCN的方法具有三個主要缺點。首先,我們的實驗表明圖卷積濾波器和權重矩陣的糾纏將損害性能和魯棒性。其次,我們證明了這些方法中的圖卷積濾波器是廣義拉普拉斯平滑濾波器的特例,但它們并未保留最佳的低通特性。最后,現有算法的訓練目標通常是恢復與現實應用并不總是一致的鄰接矩陣或特征矩陣,為了解決這些問題,我們提出了一種新型的屬性圖嵌入框架Adaptive Graph Encoder(AGE)。 AGE由兩個模塊組成:(1)為了更好地減輕節點特征中的高頻噪聲,AGE首先應用了精心設計的拉普拉斯平滑濾波器。 (2)AGE采用了自適應編碼器,該編碼器迭代地增強了濾波后的特征,以實現更好的節點嵌入。我們使用四個公共基準數據集進行實驗,以驗證AGE在節點群集和鏈接預測任務上的作用。實驗結果表明,AGE在這些任務上始終優于最新的圖形嵌入方法。

付費5元查看完整內容
北京阿比特科技有限公司