【導讀】人工智能領域的國際頂級會議 AAAI 2019 即將于 1 月 27 日至 2 月 1 日在美國夏威夷舉行。AAAI2019第一天的關于可解釋人工智能的Tutorial引起了人們極大的關注,這場Tutorial詳細闡述了解釋黑盒機器學習模型的術語概念以及相關方法,是構建可解釋模型的重要指南.
AI系統--我如何信任它們?
在現實生活中,每一個決策,無論是由機器還是低級員工又或是首席執行官做出的,為了達到提高整體的業務水平的目的,都要通過定期的審查,來解釋他們的決定。這就產生了人工智能的新興分支,稱為“可解釋的人工智能”(XAI)。
什么是可解釋的AI(XAI)?
XAI是人工智能的一個新興分支,用于解釋人工智能所做出的每一個決策背后的邏輯。下圖是對一個完整AI決策流程的簡單描述。
AAAI 2019 tutorial: 可解釋AI –從理論到動機,應用和局限性
一、本教程希望為以下問題提供答案:
什么是可解釋的AI (XAI)?
什么是可解釋的AI(簡稱XAI),即人工智能社區的各種流程 (Machine Learning, Logics, Constraint Programming, Diagnostics)的解釋是什么?解釋的度量標準是什么?
我們為什么要在意?
為什么可解釋的人工智能很重要?甚至在某些應用中至關重要?解釋人工智能系統的動機是什么?
它在哪里至關重要?
在現實世界中,哪些應用程序需要解釋如何大規模部署AI系統?
它是如何工作的?
在計算機視覺和自然語言處理中,最前沿的解釋技術是什么?對于哪種數據格式、用例、應用程序、行業,哪些方法效果好,哪些方法效果不好?
我們學到了什么?
部署現有可解釋AI系統的經驗教訓和局限性是什么?在向人類解釋的過程中學到了什么?
接下來的發展是什么?
可解釋AI未來的發展方向是什么?
二、概述
人工智能的未來在于使人們能夠與機器協作解決復雜的問題。與任何有效的協作一樣,這需要良好的溝通,信任,清晰和理解。 可解釋AI(XAI,eXplainable AI)旨在通過將符號人工智能與傳統機器學習的最佳結合來應對這些挑戰。多年來,人工智能的各個不同社區都在研究這一主題,它們有著不同的定義、評估指標、動機和結果。本教程簡要介紹了可解釋AI到目前為止的工作,并調研了人工智能社區在機器學習和符號人工智能相關方法方面所完成的工作。
在本教程的第一部分中,我們將介紹AI解釋的不同方面。然后我們將本教程的重點放在兩個具體的方法上:(i)使用機器學習的可解釋AI和(ii)使用基于圖(graph)的知識表示和機器學習結合的可解釋AI。對于這兩者,我們深入探討了該方法的具體細節,現有技術以及后續步驟的研究挑戰。本教程的最后一部分概述了可解釋AI的實際應用。
三、大綱
【介紹】
人工智能解釋的廣泛介紹。這將包括從理論和應用的角度描述和激發對可解釋AI技術的需求。在這一部分中,我們還總結了先決條件,并介紹了本教程其余部分所采用的不同視角。
【可解釋AI】
人工智能的各個領域(優化,知識表示和推理,機器學習,搜索和約束優化,規劃,自然語言處理,機器人和視覺)的解釋概述,使每個人對解釋的不同定義保持一致。本教程將涵蓋大多數定義,但只會深入以下領域:(i)可解釋的機器學習,(ii)具有知識圖和ML的可解釋AI。
【可解釋機器學習】
在本節中,我們將解決可解釋的機器學習pipeline的廣泛問題。我們描述了機器學習社區中可解釋性的概念,并通過描述一些流行的可解釋性模型來繼續。本節的核心是對不同類別的黑箱問題進行分析,從黑箱模型講解到黑箱結果講解,最后是黑箱檢查。
【用知識圖譜和ML解釋AI】
在本教程的這一部分中,我們將從兩個不同的角度闡述基于圖的知識庫的解釋力:
用語義網和邏輯解釋AI
我們展示了支持語義web的模式豐富的、基于圖的知識表示范式是如何實現有效解釋的。本節還將重點介紹從大型異構知識庫中表示和推斷有效解釋的邏輯和推理方法。
基于知識圖譜的機器學習
在本節中,我們將重點討論知識圖嵌入模型,即將知識圖中的概念編碼為連續低維向量的神經架構。這些模型已經被證明對許多機器學習任務有效,特別是知識庫的完成。我們解釋了這些模型的基本原理和架構,并從它們的不可預測性以及如何增強第三方模型的可解釋性的角度對它們進行了考察。
【應用】
我們展示了應用解釋技術的真實示例。我們關注一些使用案例:i)具有內置解釋功能的可解釋的航班延誤預測系統; ii)基于知識圖的語義推理,預測和解釋企業項目風險層次的大范圍合同管理系統;iii) 500多個城市的大型組織員工異常報銷的識別、解釋和預測的費用體系。
Tutorial的講者
PPT下載鏈接://pan.baidu.com/s/1dyjGJyhqS3-E77DysIkgHQ 提取碼:aq79
【導讀】國際萬維網大會(The Web Conference,簡稱WWW會議)是由國際萬維網會議委員會發起主辦的國際頂級學術會議,創辦于1994年,每年舉辦一屆,是CCF-A類會議。WWW 2020將于2020年4月20日至4月24日在中國臺灣臺北舉行。本屆會議共收到了1129篇長文投稿,錄用217篇長文,錄用率為19.2%。這周會議已經召開。來自美國Linkedin、AWS等幾位學者共同給了關于在工業界中可解釋人工智能的報告,講述了XAI概念、方法以及面臨的挑戰和經驗教訓。
人工智能在我們的日常生活中扮演著越來越重要的角色。此外,隨著基于人工智能的解決方案在招聘、貸款、刑事司法、醫療和教育等領域的普及,人工智能對個人和職業的影響將是深遠的。人工智能模型在這些領域所起的主導作用已經導致人們越來越關注這些模型中的潛在偏見,以及對模型透明性和可解釋性的需求。此外,模型可解釋性是在需要可靠性和安全性的高風險領域(如醫療和自動化交通)以及具有重大經濟意義的關鍵工業應用(如預測維護、自然資源勘探和氣候變化建模)中建立信任和采用人工智能系統的先決條件。
因此,人工智能的研究人員和實踐者將他們的注意力集中在可解釋的人工智能上,以幫助他們更好地信任和理解大規模的模型。研究界面臨的挑戰包括 (i) 定義模型可解釋性,(ii) 為理解模型行為制定可解釋性任務,并為這些任務開發解決方案,最后 (iii)設計評估模型在可解釋性任務中的性能的措施。
在本教程中,我們將概述AI中的模型解譯性和可解釋性、關鍵規則/法律以及作為AI/ML系統的一部分提供可解釋性的技術/工具。然后,我們將關注可解釋性技術在工業中的應用,在此我們提出了有效使用可解釋性技術的實踐挑戰/指導方針,以及在幾個網絡規模的機器學習和數據挖掘應用中部署可解釋模型的經驗教訓。我們將介紹不同公司的案例研究,涉及的應用領域包括搜索和推薦系統、銷售、貸款和欺詐檢測。最后,根據我們在工業界的經驗,我們將確定數據挖掘/機器學習社區的開放問題和研究方向。
【簡介】近些年來,可解釋的人工智能受到了越來越多的關注。隨著人工智能模型變得越來越復雜和不透明,可解釋性變得越來越重要。最近,研究人員一直在以用戶為中心研究和處理可解釋性,尋找可信任、可理解、明確的來源和上下文感知的可解釋性。在這篇論文中,我們通過調研人工智能和相關領域中有關可解釋性的文獻,并利用過去的相關研究生成了一系列的可解釋類型。我們定義每種類型,并提供一個示例問題,來闡述對這種解釋方式的需求。我們相信,這一系列的解釋類型將有助于未來的系統設計人員獲得可靠的需求和確定各種需求的優先級,并進一步幫助生成能夠更好地符合用戶和情景需求的解釋。
介紹
人工智能(AI)領域已經從單純的基于符號和邏輯的專家系統發展到使用統計和邏輯推理技術的混合系統。可解釋性人工智能的進展與人工智能方法的發展緊密相關,例如我們在早期的論文“可解釋的知識支持系統的基礎”中所涉及的類別,涵蓋了專家系統、語義web方法、認知助手和機器學習方法。我們注意到這些方法主要處理可解釋性的特定方面。例如,由專家系統產生的解釋主要用于提供推理所需的痕跡、來源和理由。這些由認知助理提供的模型能夠調整它們的形式以適應用戶的需求,并且在機器學習和專家系統領域,解釋為模型的功能提供了一種“直覺”。
【導讀】2020 年 2 月 7 日-2 月 12 日,AAAI 2020 于美國紐約舉辦。AAAI2020關于可解釋人工智能的Tutorial引起了人們極大的關注,這場Tutorial詳細闡述了解釋黑盒機器學習模型的術語概念以及相關方法,涵蓋基礎、工業應用、實際挑戰和經驗教訓,是構建可解釋模型的重要指南.
可解釋AI:基礎、工業應用、實際挑戰和經驗教訓
?
地址: //xaitutorial2020.github.io/
Tutorial 目標 本教程的目的是為以下問題提供答案:
什么是可解釋的AI (XAI)
我們為什么要關心?
哪里是關鍵?
它是如何工作的?
我們學到了什么?
下一個是什么?
概述
人工智能的未來在于讓人們能夠與機器合作解決復雜的問題。與任何有效的協作一樣,這需要良好的溝通、信任、清晰和理解。XAI(可解釋的人工智能)旨在通過結合象征性人工智能和傳統機器學習來解決這些挑戰。多年來,所有不同的AI社區都在研究這個主題,它們有不同的定義、評估指標、動機和結果。
本教程簡要介紹了XAI迄今為止的工作,并調查了AI社區在機器學習和符號化AI相關方法方面所取得的成果。我們將激發XAI在現實世界和大規模應用中的需求,同時展示最先進的技術和最佳實踐。在本教程的第一部分,我們將介紹AI中解釋的不同方面。然后,我們將本教程的重點放在兩個特定的方法上: (i) XAI使用機器學習和 (ii) XAI使用基于圖的知識表示和機器學習的組合。對于這兩種方法,我們將詳細介紹其方法、目前的技術狀態以及下一步的限制和研究挑戰。本教程的最后一部分概述了XAI的實際應用。
Freddy Lecue博士是加拿大蒙特利爾泰勒斯人工智能技術研究中心的首席人工智能科學家。他也是法國索菲亞安提波利斯溫姆斯的INRIA研究所的研究員。在加入泰雷茲新成立的人工智能研發實驗室之前,他曾于2016年至2018年在埃森哲愛爾蘭實驗室擔任人工智能研發主管。在加入埃森哲之前,他是一名研究科學家,2011年至2016年在IBM research擔任大規模推理系統的首席研究員,2008年至2011年在曼徹斯特大學(University of Manchester)擔任研究員,2005年至2008年在Orange Labs擔任研究工程師。
目錄與內容
第一部分: 介紹和動機
人工智能解釋的入門介紹。這將包括從理論和應用的角度描述和激發對可解釋的人工智能技術的需求。在這一部分中,我們還總結了先決條件,并介紹了本教程其余部分所采用的不同角度。
第二部分: 人工智能的解釋(不僅僅是機器學習!)
人工智能各個領域(優化、知識表示和推理、機器學習、搜索和約束優化、規劃、自然語言處理、機器人和視覺)的解釋概述,使每個人對解釋的各種定義保持一致。還將討論可解釋性的評估。本教程將涵蓋大多數定義,但只深入以下領域: (i) 可解釋的機器學習,(ii) 可解釋的AI與知識圖和機器學習。
第三部分: 可解釋的機器學習(從機器學習的角度)
在本節中,我們將處理可解釋的機器學習管道的廣泛問題。我們描述了機器學習社區中解釋的概念,接著我們描述了一些流行的技術,主要是事后解釋能力、設計解釋能力、基于實例的解釋、基于原型的解釋和解釋的評估。本節的核心是分析不同類別的黑盒問題,從黑盒模型解釋到黑盒結果解釋。
第四部分: 可解釋的機器學習(從知識圖譜的角度)
在本教程的這一節中,我們將討論將基于圖形的知識庫與機器學習方法相結合的解釋力。
第五部分: XAI工具的應用、經驗教訓和研究挑戰
我們將回顧一些XAI開源和商業工具在實際應用中的例子。我們關注一些用例:i)解釋自動列車的障礙檢測;ii)具有內置解釋功能的可解釋航班延誤預測系統;(三)基于知識圖譜的語義推理,對企業項目的風險層進行預測和解釋的大范圍合同管理系統;iv)識別、解釋和預測500多個城市大型組織員工異常費用報銷的費用系統;v)搜索推薦系統說明;vi)解釋銷售預測;(七)貸款決策說明;viii)解釋欺詐檢測。