可解釋性是當下機器學習研究特點之一。來自復旦大學的研究生朱明超,將業界《Interpretable Machine Learning》(可解釋機器學習)翻譯成了中文。
可解釋機器學習:打開黑盒之謎(238頁書籍下載)
這本書最初是由德國慕尼黑大學博士Christoph Molnar耗時兩年完成的,長達250頁,是僅有的一本系統介紹可解釋性機器學習的書籍。
機器學習雖然對改進產品性能和推進研究有很大的潛力,但無法對它們的預測做出解釋,這是當前面臨的一大障礙。本書是一本關于使機器學習模型及其決策具有可解釋性的書。本書探索了可解釋性的概念,介紹了簡單的、可解釋的模型,例如決策樹、決策規則和線性回歸,重點介紹了解釋黑盒模型的、與模型無關的方法,如特征重要性和累積局部效應,以及用Shapley值和LIME解釋單個實例預測。本書對所有的解釋方法進行了深入說明和批判性討論,例如它們如何在黑盒下工作、它們的優缺點是什么、如何解釋它們的輸出。本書將解答如何選擇并正確應用解釋方法。本書的重點是介紹表格式數據的機器學習模型,較少涉及計算機視覺和自然語言處理任務。
本書適合機器學習從業者、數據科學家、統計學家和所有對使機器學習模型具有可解釋性感興趣的人閱讀。
這本書由復旦大學朱明超完成它的翻譯和校正工作,目前已經開源放到GitHub網頁上,《可解釋的機器學習》。作者Christoph Molnar 在其后也發到了推特上。
“可解釋”是這本書的核心論題。作者Molnar認為,可解釋性在機器學習甚至日常生活中都是相當重要的一個問題。建議機器學習從業者、數據科學家、統計學家和任何對使機器學習模型可解釋的人閱讀本書。
Molnar表示,雖然數據集與黑盒機器學習解決了很多問題,但這不是最好的使用姿勢,現在模型本身代替了數據成為了信息的來源,但可解釋性可以提取模型捕捉到的額外信息。當我們的日常生活中全都是機器和算法時,也需要可解釋性來增加社會的接受度。畢竟要是連科學家都研究不透“黑盒”,怎樣讓普通人完全信任模型做出的決策呢?
這本書的重點是機器學習的可解釋性。你將學習簡單的、可解釋的模型,如線性回歸、決策樹和決策規則等。后面幾章重點介紹了解釋黑盒模型的模型無關的一般方法,如特征重要性和累積局部效應,以及用 Shapley 值和 LIME 解釋單個實例預測。
對各種解釋方法進行了深入的解釋和批判性的討論。它們是如何工作的?優點和缺點是什么?如何解釋它們的輸出?本書將使你能夠選擇并正確應用最適合你的機器學習項目的解釋方法。你閱讀本書后,內化知識還使你能夠更好地理解和評估arxiv.org上發表的有關可解釋性的新論文。
這本書中用許多平實的語言,結合各類現實生活中的例子介紹了相關的概念,還配了參考鏈接可以進一步學習了解。
《可解釋的機器學習》該書總共包含 7 章內容。章節目錄如下:
第一章:前言 第二章:可解釋性 第三章:數據集 第四章:可解釋的模型 第五章:模型無關方法 第六章:基于樣本的解釋 第七章:水晶球 傳送門 GitHub://github.com/MingchaoZhu/InterpretableMLBook
學習使用Python分析數據和預測結果的更簡單和更有效的方法
Python機器學習教程展示了通過關注兩個核心機器學習算法家族來成功分析數據,本書能夠提供工作機制的完整描述,以及使用特定的、可破解的代碼來說明機制的示例。算法用簡單的術語解釋,沒有復雜的數學,并使用Python應用,指導算法選擇,數據準備,并在實踐中使用訓練過的模型。您將學習一套核心的Python編程技術,各種構建預測模型的方法,以及如何測量每個模型的性能,以確保使用正確的模型。關于線性回歸和集成方法的章節深入研究了每種算法,你可以使用書中的示例代碼來開發你自己的數據分析解決方案。
機器學習算法是數據分析和可視化的核心。在過去,這些方法需要深厚的數學和統計學背景,通常需要結合專門的R編程語言。這本書演示了機器學習可以如何實現使用更廣泛的使用和可訪問的Python編程語言。
使用線性和集成算法族預測結果
建立可以解決一系列簡單和復雜問題的預測模型
使用Python應用核心機器學習算法
直接使用示例代碼構建自定義解決方案
機器學習不需要復雜和高度專業化。Python使用了更簡單、有效和經過良好測試的方法,使這項技術更容易為更廣泛的受眾所接受。Python中的機器學習將向您展示如何做到這一點,而不需要廣泛的數學或統計背景。
【導讀】可解釋性是當下機器學習研究特點之一。最近,來自復旦大學的研究生朱明超,將業界《Interpretable Machine Learning》(可解釋機器學習)翻譯成了中文。
可解釋機器學習:打開黑盒之謎(238頁書籍下載)
這本書最初是由德國慕尼黑大學博士Christoph Molnar耗時兩年完成的,長達250頁,是僅有的一本系統介紹可解釋性機器學習的書籍。
這本書最初是由Christoph Molnar耗時兩年完成的《Interpretable Machine Learning》,長達250頁,在公開至今該書得到密切關注,這是在可解釋性領域可以找到的僅有的一本書。
這本書由復旦大學朱明超完成它的翻譯和校正工作,目前已經開源放到GitHub網頁上,《可解釋的機器學習》。作者Christoph Molnar 在其后也發到了推特上。
“可解釋”是這本書的核心論題。作者Molnar認為,可解釋性在機器學習甚至日常生活中都是相當重要的一個問題。建議機器學習從業者、數據科學家、統計學家和任何對使機器學習模型可解釋的人閱讀本書。
Molnar表示,雖然數據集與黑盒機器學習解決了很多問題,但這不是最好的使用姿勢,現在模型本身代替了數據成為了信息的來源,但可解釋性可以提取模型捕捉到的額外信息。當我們的日常生活中全都是機器和算法時,也需要可解釋性來增加社會的接受度。畢竟要是連科學家都研究不透“黑盒”,怎樣讓普通人完全信任模型做出的決策呢?
這本書的重點是機器學習的可解釋性。你將學習簡單的、可解釋的模型,如線性回歸、決策樹和決策規則等。后面幾章重點介紹了解釋黑盒模型的模型無關的一般方法,如特征重要性和累積局部效應,以及用 Shapley 值和 LIME 解釋單個實例預測。
對各種解釋方法進行了深入的解釋和批判性的討論。它們是如何工作的?優點和缺點是什么?如何解釋它們的輸出?本書將使你能夠選擇并正確應用最適合你的機器學習項目的解釋方法。你閱讀本書后,內化知識還使你能夠更好地理解和評估arxiv.org上發表的有關可解釋性的新論文。
這本書中用許多平實的語言,結合各類現實生活中的例子介紹了相關的概念,還配了參考鏈接可以進一步學習了解。
《可解釋的機器學習》該書總共包含 7 章內容。章節目錄如下:
傳送門 GitHub://github.com/MingchaoZhu/InterpretableMLBook
簡介: 機器學習可解釋性的新方法以驚人的速度發布。與所有這些保持最新將是瘋狂的,根本不可能。這就是為什么您不會在本書中找到最新穎,最有光澤的方法,而是找到機器學習可解釋性的基本概念的原因。這些基礎知識將為您做好使機器學??習模型易于理解的準備。
可解釋的是使用可解釋的模型,例如線性模型或決策樹。另一個選擇是與模型無關的解釋工具,該工具可以應用于任何監督的機器學習模型。與模型不可知的章節涵蓋了諸如部分依賴圖和置換特征重要性之類的方法。與模型無關的方法通過更改機器學習的輸入來起作用建模并測量輸出中的變化。
本書將教您如何使(監督的)機器學習模型可解釋。這些章節包含一些數學公式,但是即使沒有數學知識,您也應該能夠理解這些方法背后的思想。本書不適用于嘗試從頭開始學習機器學習的人。如果您不熟悉機器學習,則有大量書籍和其他資源可用于學習基礎知識。我推薦Hastie,Tibshirani和Friedman(2009)撰寫的《統計學習的要素》一書和Andrewra Ng在Coursera3上開設的“機器學習”在線課程,著手進行機器學習。這本書和課程都是免費的!在本書的最后,對可解釋機器學習的未來前景持樂觀態度。
目錄: