亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

美國陸軍作戰能力發展司令部陸軍研究實驗室正在研究行為,建立數據集,并開發異常分類和解釋的技術,其中自主智能體生成自然語言描述和對可能包含異常屬性的環境的解釋。這項技術將支持在不確定條件下的決策,以及士兵和機器人隊友在網絡限制的情況下,在未知或危險的環境中完成探索性的導航任務(例如,自然災害后的搜索和救援)的彈性自主機動。在本報告中詳細介紹了貢獻:借鑒視覺異常檢測的相關工作,設計了一個異常分類法;設計了兩個在虛擬環境中進行的實驗,這些環境被操縱以顯示基于分類法的異常屬性;為異常檢測和解釋任務收集了一個小型人類語音和人類-機器人對話的語料庫;最后,設計了一個新的注釋模式,并將其應用于語料庫的一個子集。

圖1. 帶有實例樣本的類的異常分類法。矩形框包含了類的類型(例如,實體的 "顏色"),橢圓是類屬性的實例或例子(例如,"粉色小貓")。

引言

美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL),正在研究行為,建立數據集,并開發異常分類和解釋的技術,其中自主代理生成自然語言描述和對可能包含異常屬性的環境的解釋。這項技術將支持在不確定條件下的決策,以及士兵和機器人隊友在網絡受限的情況下,在未知或危險的環境中完成探索性的導航任務(例如,自然災害后的搜索和救援)的有彈性的自主操作。自動生成的自然語言解釋將促進在篩選大量低質量或重復的視覺數據時遇到的信息過載問題,迅速引起對非典型情況的注意。

將異常情況檢測的任務放在士兵由于可能對他們有危險的條件而無法穿越環境的場景中。此外,由于可用帶寬的限制和約束,接收環境的圖像或實時流可能是不可行的。因此,機器人隊友的作用就變成了在空間中導航,并通過簡潔和信息豐富的自然語言陳述或文本報告向士兵傳達信息。這種設想中的異常情況檢測技術的成功部署必須能夠:

  • 識別環境中與預期相矛盾的方面;
  • 詳細說明為什么這種方面是矛盾的,并提供預期狀態;
  • 推斷出至少一種可能導致偏差的合理可能性;以及
  • 推斷出至少一種合理的可能性,即由于偏差而可能發生的情況。

由ARL主持并通過國家安全創新網絡X-Force獎學金招募的兩名實習生組成的團隊花了10周時間探索這個問題的空間。在本報告中詳細介紹了貢獻:借鑒視覺異常檢測的相關工作,設計了一個異常分類法(第2和第3節);設計了兩個在虛擬環境中進行的實驗,根據分類法,這些實驗被操縱以表現出異常屬性(第4節);為異常檢測和解釋任務收集了一個人類語音和人類-機器人對話的小型語料庫(第5節);最后,設計了一個新的注釋模式,并將其應用于我們語料庫的一個子集(第6節)。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

創造能夠適應人類同行的人工智能隊友的一個必要步驟是開發能夠向人工智能系統表達人類目標和意圖的計算建模方法。用各種各樣的方法來實現這個目標是可能的,從提供過去數據的純粹預測的模型到僅基于理論的生成模型。一種有希望的方法是所謂的從示范中學習的方法(Argall等人,2009;Ravichandar等人,2020),這種研究主旨是利用示范數據,如專家執行任務的行為,并訓練模型(通常被稱為 "智能體")來執行專家的任務。在本報告中,我們采用了從示范中學習的方法來模擬和預測模擬機器人在避免碰撞的團隊任務中的行為。具體來說,我們采用了逆向強化學習(IRL)(Ng和Russell,2000年;Arora和Doshi,2021年),這是一種從演示中推斷獎勵函數的方法。

這項任務是基于一個研究性的視頻游戲,被用來研究人類-自主性的團隊合作(Adamson等人,2017年),涉及一個由人類玩家和一個人工智能agent共同控制的機器人。在沒有玩家輸入的情況下,人工智能agent控制機器人,但玩家可以在任何時候推翻agent,類似于現實世界中與自動駕駛助手一起駕駛的情況。這項任務對旨在模擬人類意圖的示范學習方法提出了挑戰,因為觀察到的任務行為來自兩個示范者的控制:一個是人類,一個是自動駕駛。例如,人類的行為可能是由對自己的目標的理解和對人工智能的目標的估計產生的。此外,當人工智能處于控制狀態時,所有關于人類的信息都是他們不提供輸入的,人類對人工智能的選擇的同意程度是隱藏的。

我們對這一特定任務的關注是由我們的團隊正在進行的工作所激發的,即利用激發這一任務的研究視頻游戲從參與者那里收集數據。最終,我們將嘗試模擬真實的人在長時間內的行為--每天玩180天--以促進適應性AI代理的發展。這里描述的工作是對一種方法的驗證,這種方法將推動我們的團隊實現這一目標;然而,這種方法具有足夠的通用性,其核心概念可以應用于其他地方。

付費5元查看完整內容

“美國陸軍2030”概念的出現結合了新的概念、編隊和技術,需要在各級戰爭中進行大量實驗。陸軍作為美國資源的保管者,必須向高級領導人提供關鍵信息,以便就陸軍應該如何改變做出決定。在一個技術提高了陸軍、聯合部隊、盟友和潛在對手的能力的世界里,這些變化是必要的。下面的文章旨在幫助指揮官和參謀部了解陸軍如何設計和執行實驗。

為什么美國陸軍實驗對作戰部隊很重要?

美國陸軍進行實驗是為了確保領導人能夠運用有限的資源來達到2030年的陸軍,甚至進一步達到2040年的陸軍。在人員、戰備和現代化的優先事項中,陸軍領導層對概念、編隊和技術的可能性和可行性有必要的理解和認識是至關重要的。這三者的結合必須實現一支能夠提供超強的潛在對手能力的部隊。對于一支必須始終關注戰備狀態的作戰部隊來說,實驗提供了一個驗證哪些能力可以提高戰備狀態的場所。其中一個關鍵部分是讓今天的作戰部隊的士兵和組織對這些潛在的變化提供反饋。這為參與的作戰部隊提供了影響陸軍未來的能力,同時提供了一個額外的訓練場所。

什么是陸軍實驗?

國防部實驗指導手冊將實驗描述為 "在測量的條件下測試一個假設,以探索操縱擬議的作戰概念、技術或條件的未知效果。" 在陸軍作戰實驗中,士兵們在野外環境中參與新技術、新概念和新組織。訓練有素的數據采集員和作戰分析員觀察這些實驗。這些觀察員在定量和定性分析的基礎上提出問題和假設。觀察完成后,收集人員將他們的數據提供給陸軍高級領導人,以協助他們確定未來部隊可能采用的能力。

作戰實驗與演習的區別

陸軍進行演習和實驗的方式有許多區別和結果。首先,演習可以提高戰備狀態,有訓練目標,有主要的訓練對象,并且有 "自由發揮 "的場景。陸軍單位進行演習是為了提高戰備狀態。根據一個單位的基本任務清單,指揮官確定訓練目標。訓練目標驅動著場景、參與單位和其他實現戰備目標的必要因素。在演習中,參與單位是主要的訓練對象。這方面的一個例子是在聯合戰備訓練中心(JRTC)的演習中,主要的訓練對象是旅戰斗隊的指揮官。在演習中,有大量的自由發揮。例如,對方部隊(OPFOR)可能被指示做一些特定的事情,以便讓各單位做出選擇和回應。

陸軍經驗教訓實踐社區為大多數重大演習計劃收集活動。根據演習的訓練目標,這些收集活動可能包括對特定重點領域或一般經驗教訓的觀察。陸軍經驗總結團體組成了收集小組,由于OPFOR和參與單位之間的自由發揮,可能會也可能不會收集到預期的數據。演習的成功如果基于訓練對象所學到的東西。觀察、洞察力和收集到的教訓數據屬于演習中的單位。

陸軍實驗與陸軍演習明顯不同。實驗的設計是基于贊助組織需要學習什么來推動未來的決策。贊助組織就需要回答的問題提出活動問題。實驗設計者將這些問題進一步分解為基本分析要素(EEAs),以幫助陸軍了解必須收集和分析什么來充分回答事件問題。通常,實驗有學習目標,有廣泛的領域需要答案來推動進展。此外,設計者會將學習目標分解為學習需求。學習需求是由任務分析和問題分解過程中發現的任務或定向活動所確定的問題。最終的狀態是滿足學習需求和各種可以用來完成的方法,包括文獻回顧、研究、運籌學技術和實驗。最后,設計者制定性能和有效性的衡量標準,以提供有意義的結果來告知領導者。實驗設計者利用這些步驟的結果來制定方案、所需組織、設備要求和其他項目。

在實驗中,陸軍通過收集的數據和由此產生的分析為未來的決策提供依據來定義成功。實驗資源的關鍵是確保數據收集和分析要素(如電子系統、人員、數據庫、數據收集卡等),這是獲得數據以進行后期分析的必要條件。自由發揮,或參與者做出選擇的能力,在實驗中是有限的,以使必要的聯系發生和被測量。例如,將特定的傳感器與特定的網絡和應用聯系起來,然后再與特定的射手聯系起來。實驗設計者這樣做是為了實驗各種元素一起工作如何提高反應能力。

在實驗中,收集者/分析者根據收集者的觀察分析得出教訓,以回答學習需求。在可能的情況下,這些問題在性能或有效性方面進行衡量,以提供可衡量的數據。這可能是基于技術能力的定量數據或基于操作有效性的定性數據。這些數據通常支持概念、物資和組織的發展。實驗負責人在不同的地方公布實驗結果。為了整合實驗數據,未來和概念中心正在開發Forge。Forge是一個 "結構模塊化的日期環境,促進了現代化進程的同步和整合,使陸軍現代化企業協作和共同運作的進展圖"。用戶可以訪問Forge來查找最終的實驗報告。Forge提供了一種能力,可以看到計劃的實驗,以及他們的學習需求和結果。經驗教訓社區可以使用Forge來了解分析家們提出的問題。根據經驗教訓社區在操作和訓練中看到的情況,社區可能能夠完善和/或幫助回答一些學習需求。

以“融合項目”為例

融合項目21(PC21)是上述內容的一個很好的例子。AFC根據需要學習的內容設計了PC21。陸軍的跨職能團隊(CFTs)和能力發展整合局(CDIDs)以及其他機構根據他們需要回答的問題提交了學習需求,以便為高級領導人的決策提供信息。在PC21中,有兩個關鍵領域的實驗需要解決。第一個是單個技術的性能。第二個問題是基于這些技術結合后如何提高作戰部隊的能力。為了解決這些問題,未來與概念中心和聯合現代化司令部(JMC)開發了用例作為實驗場所。設計者使用特定的領域,如傳感器到射手或綜合空中和導彈防御來開發用例。JMC制定了執行檢查清單(EXCHECKs),逐步描述了預期發生的情況。EXCHECK是收集數據的關鍵部分,以收集每個行動,為以后的分析提供基礎。PC21進行了多次迭代,以觀察和測量變化。觀察收集器進行了根本原因分析,以確定哪些因素促成了實驗中發生的事件。然后,對這些單獨技術的分析與對它們與其他技術的使用分析相結合,以發現它們如何能夠提高部隊的有效性。

了解需要學習的內容并集中收集努力是PC21成功的關鍵。由研究與分析中心(TRAC)、美國陸軍測試與評估司令部(ATEC)、陸軍作戰能力發展司令部(DEVCOM)分析中心(DAC)以及CFTs和CDIDs組成的PC21數據收集與分析(DC&A)團體將學習需求細化為分析的基本要素。DC&A進一步將分析的基本要素分解為性能和效果的衡量標準。這提供了必要的基線數據要求,以顯示收集者在實驗中必須追求的目標。DC&A研究了如何收集這些數據要求。對于定量數據,電子能力可以收集一些數據。在不可能的情況下,數據收集者收集具體的時間或其他數字元素,供以后分析。數據收集員和分析員收集額外的定性數據,如士兵和領導對技術效用的想法,或通過調查、熱洗和其他投入使用的潛在技術。數據收集員和分析員將收集到的原始數據輸入陸軍實驗資源數據庫(AERDR)。AERDR為所有陸軍實驗數據提供了一個數據庫。然后,代表PC21數據收集和分析界各要素的分析人員能夠使用這些數據,得出他們輸入實驗報告的結論。在未來,實驗發起人將在Forge發布這些類型的報告,供陸軍和聯合伙伴使用。高級領導人可以使用分析的結果來決定各種技術的發展方向。未來的 "聚合項目 "實驗將進一步納入概念和編隊。

結論

陸軍實驗對于向未來部隊提供能力超配至關重要。像 "融合項目 "這樣的實驗提供了一個場所,作戰部隊可以對未來能力提供反饋。這種反饋對于為高級領導人做出資源決策提供信息至關重要。作戰部隊指揮官對實驗的設計和收集的理解有助于他們更好地理解他們在這個過程中的關鍵作用。

付費5元查看完整內容

本報告全面總結了作為機器人語言項目的一部分所做出的貢獻,該項目是由美國陸軍作戰能力發展司令部陸軍研究實驗室牽頭,與南加州大學創意技術研究所和卡內基梅隆大學的研究人員合作開展的一項為期五年的倡議。特別是,本報告描述了在 "用智能系統進行共同理解和解釋的自然行為 "項目下資助的成就。這項研究的目標是為人們使用語言與機器人交流提供更自然的方式。愿景是使機器人能夠與人類隊友進行來回對話,機器人可以提供狀態更新,并在適當的時候要求澄清。為此,我們進行了四個分階段的實驗,在這些實驗中,人類參與者向遠程的機器人發出導航指令,而機器人的對話和導航過程最初由人類實驗者控制。在實驗過程中,自動化被逐步引入,直到對話處理完全由一個在以前的實驗中收集的數據上訓練出來的分類器驅動。

機器人語言項目的新貢獻包括:1)這種多階段的方法來收集無約束的自然語言,作為機器學習算法的訓練數據,以支持對話互動;2)收集對話和機器人數據的語料庫,并策劃成SCOUT語料庫(理解交易的情景語料庫);3)一系列完全自動化的、 3)一系列全自動的概念驗證系統,顯示了所采取的方法的技術前景,4)作為項目一部分創建的算法,現在構成了陸軍聯合理解和對話接口能力的基礎,使士兵和自主系統之間的對話互動成為可能,以及5)通過對話-AMR(抽象意義表示)形式主義在人類-機器人對話的指令語義方面的創新。

圖1 指揮官向機器人發出口頭指令,機器人的能力由兩個向導來執行,分別代表對話管理和機器人導航的能力。

引言

這項研究的重點是通過采用對話作為交流模式,使士兵與智能體的互動,特別是與機器人等具身智能體的互動,既安全又更有效。對話,特別是使用自然語言的來回口頭對話,比傳統的圖形用戶界面有許多好處。其中,對話使智能體能夠在指令不明確時提示人類隊友進行澄清,并在任務完成后提供狀態更新。自然語言對話可以幫助實現智能智能體作為士兵身邊的隊友的愿景,提供士兵今天在完成任務時使用的直觀的無約束的交流模式。

以收集與智能體的自然對話為目標,我們希望采用一種實驗方法,使我們能夠解決以下問題: 1)智能體如何作為隊友與人類進行有效的交流,以完成共同的任務? 2)當人類指導機器人等智能體時,交流的協議如何能以智能體可以使用的形式,從人類那里引出自然的多樣性交流策略?為了回答這些問題,我們與陸軍大學附屬研究中心南加州大學創意技術研究所(USC ICT)的研究人員合作,通過實驗確定如何將開發智能虛擬人的方法適應于機器人。雖然物理機器人平臺是我們的主要任務,但我們的目標是確定可以推廣到各種可以從對話中受益的軟件智能體的方法。

在南加州大學ICT的SimSensei項目中,研究人員使用了一種我們稱之為數據驅動的 "Wizard-of-Oz"(DWoZ)的方法來觀察人類如何與他們認為是自主的虛擬化身聊天。實際上,他們在屏幕上看到的頭像是由人類 "巫師 "實驗者控制的。在與南加州大學ICT的合作中,我們的目標是評估這些貢獻是否可以擴展到自主系統,即地面機器人,以支持與人類隊友的合作搜索和導航任務。該項目由美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的資助項目 "與智能系統共同理解和解釋的自然行為 "贊助,對外稱為 "機器人語言 "項目,由一系列實驗組成,執行多階段實驗的設想,其中向導代表人工智能(AI)組件,在后期階段 "自動消失"。操作上的假設是,像移動機器人這樣的物理智能體的對話系統可以通過基于DWoZ的對話收集來訓練。

這項研究對對話、人機交互、人類因素和自然語言處理領域的新貢獻如下:

  • 一種多階段的、經驗性的方法來收集機器學習算法的訓練數據,以支持與指向物理世界的智能體(如移動機器人)的對話互動(第4和第5節)。

  • 一個對話和機器人數據的語料庫(Situated Corpus of Understanding Transactions [SCOUT]),作為告知智能體在協作搜索和導航任務中如何回應人類隊友的基礎(6.1節)。

  • 在研究過程中開發的一系列完全自動化、端到端的概念驗證系統,顯示了使用DWoZ方法與智能體進行自然對話互動的技術前景(第6.2節)。

  • 作為項目的一部分而創建的算法,現在構成了陸軍聯合理解和對話界面(JUDI)能力的基礎,使士兵和自主系統之間的對話互動得以實現(第6.3節)。

  • 一套新穎的注釋方案,對指導智能體和控制機器人行為的向導實驗者之間的對話交流的結構、內容和語義進行建模(第6.4節)。

本報告的其余部分組織如下。第2節提供了相關工作的基本概述。第3節將先前的研究和本項目之前進行的預試驗研究與DWoZ設計的選定配置聯系起來。第4節概述了任務和實驗設置。第5節對實驗及其結果進行了高水平的描述。最后,第6節討論了項目的影響,第7節是衡量標準,第8節是總結性意見。

付費5元查看完整內容

創造能夠適應人類的人工智能隊友的一個必要步驟是,開發能夠向人工智能系統表達人類目標和意圖的計算建模方法。用各種各樣的方法來實現這個目標是可能的,從基于過去數據的純粹預測模型到僅基于理論的生成模型。一種有希望的方法是所謂的從示范中學習的方法(Argall等人,2009;Ravichandar等人,2020),這種研究主旨是利用示范數據,如專家執行任務的行為,并訓練模型(通常被稱為 "智能體")來執行專家的任務。在本報告中,我們采用了從示范中學習的方法來模擬和預測模擬機器人在避撞的團隊任務中的行為。具體來說,我們采用了逆向強化學習(IRL)(Ng和Russell,2000年;Arora和Doshi,2021年),這是一種從演示中推斷獎勵函數的方法。

這項任務是基于一個研究性的視頻游戲,被用來研究人類自主性的團隊合作(Adamson等人,2017年),涉及一個由人類玩家和一個AI智能體共同控制的機器人。在沒有玩家輸入的情況下,AI智能體控制機器人,但玩家可以在任何時候推翻智能體,類似于現實世界中與自動駕駛助手一起駕駛的情況。這項任務對旨在模擬人類意圖的示范學習方法提出了挑戰,因為觀察到的任務行為來自兩個示范者的控制:一個是人類,一個是自動駕駛。例如,人類的行為可能是由對自己的目標的理解和對人工智能的目標的估計產生的。此外,當人工智能處于控制狀態時,所有關于人類的信息都是他們不提供輸入的,人類同意人工智能選擇的程度是隱藏的。

我們對這一特定任務的關注是由我們的團隊正在進行的工作所激發的,即利用激發這一任務的研究視頻游戲從參與者那里收集數據。最終,我們將嘗試模擬真實的人在長時間內的行為--每天玩180天--以促進適應性AI智能體的發展。這里描述的工作是對一種方法的驗證,這種方法將推動我們的團隊實現這一目標;然而,這種方法具有足夠的通用性,其核心概念可以應用于其他地方。

付費5元查看完整內容

近年來,機器人領域發展迅速,機器人被用于越來越多的應用中,從制造業到醫療健康再到家務勞動。機器人技術的關鍵挑戰之一是使機器人能夠在非結構化和動態環境中執行復雜的操作任務。雖然機器人學習和控制已經取得了重大進展,但許多現有方法受到限制,因為它們依賴于預定義的運動基元或通用模型,而這些模型沒有考慮到個人用戶、其他合作智能體或交互對象的特定特征。為了在這些不同的環境中有效地工作,機器人需要能夠適應不同的任務和環境,并與不同類型的智能體進行交互,如人類和其他機器人。本論文研究學習方法,使機器人能夠適應他們的行為,以實現智能機器人行為。

在本文的第一部分中,我們專注于使機器人更好地適應人類。我們首先探索如何利用不同的數據源為人類用戶實現個性化。研究了人類如何喜歡用低維控制器(如操縱桿)遙控輔助機器人手臂。本文提出一種算法,可以有效地開發輔助機器人的個性化控制。這里的數據是通過最初演示機器人的行為,然后詢問用戶以從操縱桿收集他們相應的首選遙操作控制輸入來獲得的。探索了利用較弱的信號來推斷智能體的信息,如物理修正。實驗結果表明,人工修正是相互關聯的,共同推理這些修正可以提高精度。最后,研究了機器人如何通過推理和利用團隊結構更有效地與人類團隊合作和影響人類團隊,而不是只適應單個人類用戶。將該框架應用于兩種類型的群體動力學,即領導-跟隨和捕食者-被捕食者,并證明機器人可以首先開發一種群體表示,并利用這種表示成功地影響一個群體以實現各種目標。

在本文的第二部分,我們將研究范圍從人類用戶擴展到機器人智能體。本文解決了分散的機器人團隊如何通過只觀察其他智能體的行動來相互適應的問題。本文發現了團隊中存在無限推理循環的問題,并通過為機器人智能體分配不同的角色,如"發言人"和"聽眾",提出了解決方案。這種方法使我們能夠將觀察到的行動視為一個溝通渠道,從而實現分散團隊內的有效協作。在本文的第三部分,我們探討了如何通過開發定制的工具來適應不同的任務。強調了工具在確定機器人如何與物體交互方面的關鍵作用,使它們在為特定任務定制機器人方面變得重要。為解決這個問題,本文提出一個端到端的框架,通過利用可微物理模擬器來自動學習富接觸操作任務的工具形態學。最后,對全文進行了總結,并對未來的研究方向進行了展望。

付費5元查看完整內容

美國陸軍未來司令部的士兵致命性(SL)跨職能小組(CFT)正在研究通過頭戴式和武器式能力的組合來增強下馬步兵的新方法。根據SLCFT的指示,美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室的研究人員探索了加強輔助目標識別能力的技術,作為陸軍下一代智能班組武器計劃的一部分。

敵對環境中涉及潛在目標的復雜決策必須由下馬的士兵做出,以保持戰術優勢。這些決定可能是人工智能(AI)技術的強大信息,如AI支持的火力或指揮和控制決策輔助工具。例如,一個士兵發射武器是一個明確的跡象,表明該地區有一個敵對的目標。然而,一個士兵在環境中追蹤一個潛在的目標,然后放下他們的武器,這是一個模糊的、隱含的跡象,表明該目標受到關注,但最終被該士兵認為不是一個直接的威脅。在近距離作戰的環境中,與士兵狀態相關的隱性標記數據(如光電視頻、位置信息或火力行動)可用于輸入決策輔助工具,以得出真實的戰場背景。然而,需要對這些行動進行更徹底的檢查。此外,來自單個士兵的突發非交流行為在整個班級中的匯總可以增強戰術態勢感知。盡管它們有可能產生戰術影響,但這些狀態估計或行為指標往往不能以立即可用的形式獲得。

DEVCOM陸軍研究實驗室(ARL)的研究人員調查了一種通過機會主義感應來進行下馬士兵狀態估計的方法--一種不需要人類明確行動就能收集和推斷關鍵的真實世界數據的方法。在通過正常使用武器追蹤和攻擊移動和靜止目標時,連續獲得數據以解釋士兵的行為。這項工作中使用的士兵-武器行為分類方法主要來自人類活動識別(HAR)研究。然而,在這項工作中,為了提高行為結果的生態有效性,在眼球追蹤文獻中經常使用的實驗范式被反映出來,將眼球運動和認知推理聯系起來。具體來說,眼動跟蹤研究的一個子集的目標是收集和解釋與公開的視覺注意力有關的眼動事件(即固定、囊狀運動和追逐),這可以揭示認知過程和關于環境的客觀內容。在戰斗中,士兵們可能會將他們的目標停留在一個靜態的目標上(固定),當出現新的目標時迅速轉換目標點,有潛在的目標出現(囊狀運動),或者在潛在目標移動時跟蹤他們的目標點(平滑追擊)。

目前,頭戴式眼動跟蹤技術正在開發用于戰斗。然而,與校準誤差有關的凝視數據中的噪聲使其難以有效地使用這些數據。一個更突出的解決方案可能存在于士兵和他們的武器之間的互動中,這項工作使用傳統的HAR技術進行。執行HAR的主要方法是在一個人進行一些身體活動時,使用慣性測量單元收集時間序列數據。然后使用機器學習技術來訓練分類模型,根據數據信號預測行動。這種方法可以擴展到包括在人類與物體互動時對其運動的分類。在這種情況下,當近距離作戰的士兵與潛在的威脅進行互動時,武器的運動特征被伺機獲得,這為這些士兵在這種環境中做出的復雜決定提供了一個窗口。

論文中記錄并發表了對這一評估的全面分析。對來自動態士兵狀態估計的運動數據進行建模和分析以實現對形勢的理解。

付費5元查看完整內容

摘要

本報告涵蓋了與設計評估人類和智能軟件Agent之間通信有關的問題,這些通信是實現協作關系所必需的。為了使人與Agent之間的互動在動態的現實世界中保持穩定,軟件Agent和人類都必須能夠在任務目標方面溝通他們的整體意圖。由于推理過程、能力和知識庫的不同,人類和Agent并不是人類團隊的模擬。我們討論了有效通信所涉及的技術問題,包括相互透明的模型、自然語言處理(NLP)、人工智能(AI)和可解釋的AI。由于缺乏使人類能夠洞察其隊友心理過程的心智理論,Agent很難預測人類的信息需求和未來行動。涉及多個Agent的協作計劃研究和合成共享心智模型的研究被作為嘗試將人類和Agent整合成一個協同單位典范。然而,我們的結論是,在人類和Agent在復雜的、不確定的任務中像人類團隊一樣通信之前,NLP、可解釋人工智能和人類科學的進展將是必要的。

1. 引言

自主系統的前景和問題都將改變未來系統的動態,這不僅體現在自主系統對社會的影響上,也體現在它們與人類的互動上(《經濟學人》2016;Schaefer等人,2017)。人類和自主系統之間的伙伴關系涉及到將人工和人類融合成一個有凝聚力的系統,這種結合意味著所有的優勢和限制(Bradshaw等人,2009;Chen和Barnes,2014)。自主系統的范圍可以從那些獨立的、只由人類偶爾監控的系統到由人類指導的、受到密切監督的系統(Barnes等人,2017)。能夠自主行動并根據新信息更新行動以實現其目標的軟件系統被確定為智能Agent(IA);Russell和Norvig 2009)。在人類與IA的合作關系中,人類和IA共享決策空間的混合倡議能力,但人類擁有最終的權力,在危險的時間有限的情況下,允許靈活性,同時保持人類的責任(Chen和Barnes 2015;Barnes等人2017)。在大多數情況下,不可能先驗地將每個人分配到動態環境中的特定角色,因為他們的角色可以隨著情況的變化而改變。例如,自適應Agent可以在高工作負荷的任務段中掌握決策主動權,而不需要等待操作者的許可,但在正常的操作中會將決策主動權還給操作者(Chen和Barnes 2014)。一些與任務分配有關的規定性規則可以根據任務的優先級預先設定。其他規則可能會根據情況的緊急程度而改變(例如,在時間期限過后自主擊落來襲導彈[Barnes等人,2017;Parasuraman等人,2007])。然而,在動態環境中,溝通、對意圖的理解和共同的態勢感知(SA)是有效協作的必要條件(Barnes等人,2017;Evans等人,2017;Holder,2018;Chen等人,2018)。

隨著IA復雜性的增加,有效通信的必要性也隨之增加。Cooke(2015)認為,高效的團隊合作關系更多的是取決于有效的互動,而不是擁有廣泛的共享知識庫。除了有一個共同的語言框架,每個團隊成員都必須知道什么時候向他們的伙伴推送信息,什么時候要求提供信息。因此,人類和IA不僅要有任務環境的SA,而且要有彼此角色的SA,以便在沒有公開交流的情況下回應伙伴的要求(Scherri等人,2003;Chen等人,2018)。我們討論三個主要的主題。第一個主題是對人-Agent架構的描述,以及為什么它與人-人團隊不同,強調相互透明度的重要性。接下來,我們討論了人類與人工智能(AI)系統通信所涉及的技術問題,包括多模態交互、語言限制、AI的類型以及可解釋AI(XAI)的重要性,以確保相互理解。最后,我們討論了共享意圖的重要性,以促進操作者和人工智能之間信息交互的自然節奏

付費5元查看完整內容

本報告描述了2021財年美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)未來風險項目 "決策動力學、欺騙和博弈論"的研究工作。為了提高指揮和控制多域作戰的決策輔助工具的有效性,有必要開發能夠協助復雜決策的人工智能(AI)工具。該項目開發了一個人工智能測試平臺--ARL戰斗空間(ARL Battlespace),用于創建和研究復雜推理的人工智能決策輔助工具。ARL Battlespace是一個由友好和敵對的人類和人工智能Agent組成的多人網絡兵棋推演工具。分層貝葉斯模型的初步結果說明,在具有不確定性、欺騙和博弈論的情況下,具有復雜推理功能的人工智能多學科發展框架具有潛力。該項目還開始開發一個基于與戰場可視化和交互平臺以及高性能計算持久服務框架的潛在集成的人機協作決策框架。這些成果為改善人-人工智能團隊的復雜決策和協作能力開啟了研究的大門

1. 簡介

作為美國防部人工智能(AI)戰略的一部分,美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)正在開發基于人類系統適應戰略的研究項目和技術,包括開發基于人-AI團隊決策和相互適應的超人能力的目標。這些新能力對于解決陸軍的多域作戰(MDO)戰略是必要的,特別是其滲透和分解階段,在此期間,人工智能輔助決策可以增強指揮官處理高速和大量信息以及地面、海上、空中、太空和網絡領域的復雜動態的能力。一個關鍵的挑戰是,現有的人工智能算法,對于復雜的決策來說是遠遠不夠的,而且對MDO相關場景的概括能力有限。另一個挑戰是,現有的陸軍理論和決策支持程序沒有將人工智能納入軍事決策過程(MDMP),而陸軍的自動規劃框架(APF)剛剛開始解決這一差距。此外,現有的人-人工智能編隊決策理論和技術僅限于簡單的決策,為復雜的深度決策在提供人工智能透明度方面非常有限,在這種情況下,多種依賴性、不確定性以及信息領域和行為者與復雜的人類、物資和環境動態相交。它們與人類專家的隱性推理協同工作的能力也很有限。發展這些能力需要一個綜合的、多學科的研究方法,包括為新的人工智能研究和人類與人工智能的編隊協作開發人工智能試驗基地。

對于兵棋推演,有必要開發能夠模擬包括戰術和戰略層面在內的多個梯隊的決策測試平臺。現有的兵棋推演決策工具,如Opsim、AFSIM和OneSAF,可以在多個規模上對許多因素進行建模和模擬,以預測基于戰略、物資能力和資源的結果,但它們受到老化系統的限制,有經驗的士兵可能難以學習,也不太適合開發人工智能和人類+人工智能編隊協作的能力。最近,人工智能能力的快速上升為開發和納入新型人工智能作為兵棋推演的決策輔助工具打開了研究的大門。最近人工智能推理的改進(例如,基于深度強化學習)是基于環境狀態完全已知的“開放”游戲(例如,跳棋、國際象棋和圍棋),它們是基于有限的合作性或欺騙性。即使在有額外復雜性的情況下,如環境的不確定性(憤怒的小鳥、雅達利),決策的復雜性、靈活性和對多人兵棋推演的可轉移性也是有限的(如撲克、Minecraft、星際爭霸[圖1])。盡管這些模型可以深入探索決策,但它們只限于選擇結果的潛在價值可以很容易測量和量化的條件。兵棋推演環境給人工智能學習帶來了困難和未解決的挑戰,因為有許多信息不確定性的來源,不僅來自環境,也來自人類和人工智能Agent。人工智能需要適應不斷變化的規則和戰略,迅速減輕出乎意料的敵方能力,并利用新的機會和友好的能力。人工智能還需要與他們的人類隊友相互適應,他們需要有默契的推理能力來與人類專家協同工作,并補償個人的偏見和啟發式方法以及變化的認知狀態。與博弈論等經典方法不同的是,未來狀態的預期效用可以根據合作或不合作的選擇對有限的行動集進行明確的量化,兵棋推演提出了跨環境和社會動態(包括合作性和欺騙性)以及跨多個時空尺度和領域的相互作用的可能性,這使人工智能學習決策如何與未來狀態價值相聯系的能力受到影響。

圖1 ARL在更廣泛的人工智能研究戰略中的Battlespace平臺

解決這一差距需要持續的基礎研究工作,實驗的重點是為決策中的具體問題發現原則和開發新的算法,并有能力將這些原則和算法與MDO的兵棋推演聯系起來。例如,在具有不完善的知識和不確定性的復雜情況下,提供接近最佳解決方案的人工智能可能比提供單一的"最佳"解決方案更有幫助。這種解決問題的方式與人工智能的透明度也需要探討。對近乎最優和不確定性等條件進行實驗,并采用新的作戰人員機器界面(WMIs),可以產生新的算法、通用工具和原則,更好地協同人類和人工智能對復雜決策的探索。

1.1 軍隊的相關性和問題領域

陸軍戰略科技(S&T)計劃的一部分是為 "超人類"的決策和行動開發能力。對于科技計劃中的"人-系統適應"部分,預期的結果是將人類特有的能力和機器的新興能力結合起來,最大限度地提高速度和選擇,以有效應對2035年及以后的社會技術環境的復雜性、智能化和動態性。預計這些研究工作將為人類引導的機器適應、訓練精通技術的士兵、混合人機思維、以及下一代人類系統集成和系統級分析創造新的能力。由于戰爭正在快速變化,包括不斷的技術變化,實現這樣的能力需要制定一個研究計劃,以推進人工智能、人類與人工智能的合作,專門用于復雜的決策。

作為DEVCOM陸軍研究實驗室未來風險投資(DFV)計劃的一部分,這個項目的目標是開發一個跨學科的計劃,以解決人工智能決策的復雜性和人類-人工智能團隊決策中的差距。這包括開發一個人工智能研究測試平臺--ARL戰斗空間,將復雜的兵棋推演決策抽象為關鍵要素,以便人工智能和人類-人工智能團隊的發展可以專門關注復雜的決策過程本身,同時避免物理現實主義和當今材料和理論的計算和概念限制。這也包括為如何發展人類-人工智能協作決策創造新的概念,了解如何塑造信息流以實現人類-人工智能決策的相互透明,以及在人類和人工智能都難以篩選出不確定性和欺騙的條件下實現相互適應性學習。顯性和隱性的決策框架都需要通過這個抽象的兵棋推演測試平臺來實現,以便人工智能可以在多個推理層次上學習和接受挑戰。還需要一個適當的抽象水平,以使多種類型的研究,包括神經科學、人工智能和決策理論交叉的學術研究,以提高人工智能決策的能力和復雜性,并改善其在軍事方面的轉化。

1.2 長期目標

根據設想,在2035年及以后的陸軍中,指揮與控制(C2)決策將由決策輔助系統來激活,該系統利用分布在多個梯隊的人工智能能力,并以復雜和快速的方式攝取所有領域的數據,這將使沒有輔助的士兵感到不知所措。啟用人工智能的決策輔助工具將能夠對戰斗空間進行前沿模擬和分布式訓練;在MDO的滲透和解除整合階段,能夠對條件、友軍和敵軍戰略以及能力變化的可能影響進行調整和前瞻預測;并能夠對關鍵決策進行事后審查。人工智能將為其決策提供透明度,使真實和抽象的決策空間互動可視化,并根據陸軍理論和未來理論的要求,對士兵的個體化和情境進行優化。相反,人工智能將與士兵共同適應,學習如何在信息不足、沖突或欺騙的情況下做出復雜的決定,并為有效的團隊決策重新塑造、完善和展示信息。有了人工智能Agent作為數據有效轉化和行動化以及利用顯性和隱性知識的合作伙伴,預計分布式C2指揮官將能夠在MDO的許多時空尺度和維度上共同制定和協調行動方案,并且戰術和戰略的跨領域互動將被向前模擬,對環境、人和戰略的動態有更強的彈性。除了增加復雜決策的能力外,預計決策過程本身將通過消除繁瑣的計算和其他延遲而加速,從而使計劃和戰略能夠比實時更快適應不斷變化的戰場和外部(如外交、經濟)因素。

為了實現這一未來,為復雜決策開發新型人工智能的計劃的長期目標是利用多個學科的持續進步。用于推理的"核心人工智能"的發展,在為簡單決策迅速取得進展的同時,需要持續的協同創新,以及來自神經科學和心理學等領域的研究,以便在獎勵難以分配給具體事件或行動的條件下(例如,因為不清楚以何種程度的確定性將獎勵的原因歸于誰、什么、何時、何地或為何),為強化學習開發新型理論。需要機械層面的理論(例如,神經膠質網絡如何支持將不同的事件與獎勵聯系起來)和更高層次的理論(例如,社會規則如何塑造學習)來彌補目前核心人工智能的有限能力和C2決策的需求之間的差距。還需要協同創新和研究,將人工智能的發展與士兵的隱性推理過程相結合,以實現元學習和元推理的決策互動。

1.3 DFV項目的目標

ARL DFV項目是一種機制,旨在促進跨學科基礎和應用研究的新方向,解決研究差距,并為軍隊的任務創造新的能力。DEVCOM ARL研究員認為分析科學是一個需要能力的領域,具有高回報的潛力,需要對現有項目進行重新規劃和擴展,并需要新的項目來建立新的核心能力和建立內部的專業知識。

為了創造這些能力,這個DFV項目的主要目標是建立一個新的研究項目,為C2決策輔助工具的復雜推理開發新型人工智能。這包括開發一個人工智能測試平臺:ARL Battlespace,以便靈活地開發專門用于MDO C2決策的復雜推理的新型人工智能。現有的兵棋推演人工智能測試平臺往往局限于較簡單的決策,更注重于戰術性的地面行動。例如,正在進行的人工智能測試平臺開發工作,如ARL Simple Yeho人工智能測試平臺,側重于環境的真實性,有多個地圖層,包括道路、樹葉和海拔高度,向排長推薦決策,如路線規劃和士兵重新分配任務。由于對當地地形環境的關注,在該環境中開發的人工智能推理將集中在精細的社會和生態動態上,對協作和敵對決策動態進行深入訓練的機會比較稀少。這些稀少和復雜的問題("微小的、骯臟的、動態的和欺騙性的數據")迷惑了發展人工智能的經典方法,尤其是復雜推理。相反,這個DFV項目的ARL戰斗空間人工智能測試平臺抽象了當地地形的元素,將人工智能的學習和推理更具體地集中在復雜的MDO相關的C2深度推理上(多個決策步驟,包括更頻繁的合作和欺騙的機會)。這使得在C2兵棋推演的背景下,更有針對性地發展人工智能對復雜的多Agent(人、人工智能和人+人工智能團隊)的決策能力。

第二個目標是通過開發一個有效的WMI來研究和開發如何呈現人工智能的理解和預測以及如何利用人類的理解和預測,為復雜決策的有效人類-人工智能團隊合作創造條件。這項工作包括利用和開發高性能計算(HPC)資源進行計算支持,同時開發用于決策的商業二維交互和混合現實交互的定制軟件(例如,基于增強現實沙盤[ARES]平臺的戰斗空間可視化和互動(BVI)平臺)。通過開發多種WMI方法,我們期望這些平臺能夠實現復雜決策的快速原型研究,并能夠將我們的新型AI與更成熟的兵棋推演訓練和模擬框架與團隊進行整合。

我們預計,在新型人工智能開發、HPC計算支持和用于決策空間現實表現的WMI開發方面的這些努力將為人類-人工智能團隊的發展創造一個新的范例,為未來多個陸軍理論(MDMP、DOTMLPF、27 METT-TC28)的進步和現代化鋪平道路(圖2)。

圖2 在更廣泛的人類-Agent團隊決策研究戰略中的新型人工智能開發

這個項目開發了兩個研究框架 。首先,它開發了一個人工智能測試平臺,被稱為ARL戰斗空間,用于創建和調查人工智能的復雜協作和敵對決策。其次,它認識到目前軍事決策過程中的局限性,構思了一個用于人與人工智能協作的復雜決策的WMI,利用軍隊和商業開發的戰斗空間可視化平臺,與非傳統的HPC資源進行潛在的連接,實現人工智能增強的兵棋推演平臺。

2. ARL戰斗空間人工智能測試平臺

這里,我們描述了我們開發ARL Battlespace的方法,這是一個開源的靈活的兵棋推演平臺,將促進開發基于強化學習算法的新決策輔助工具。特別是,我們關注的是有三個或更多合作和敵對玩家的博弈論的理論和算法能力的差距。雖然博弈論的概念,如囚徒困境和Brinksmanship("吃雞"),對于兩個玩家已經發展得很好,但它們還沒有擴展到三個或更多的玩家,由于鞍點和局部最小值的存在,決策環境可能很復雜,這可能混淆了強化學習的作用。在戰爭中可能出現的情況下,理解和預測三個或更多的合作和敵對玩家的納什均衡,需要一個靈活的兵棋推演平臺,允許跨學科地探索這種決策空間。該兵棋推演平臺還需要能夠開發、理解和發現玩家和人工智能之間的新型互動和協同作用,使人類能夠利用人工智能快速找到最佳和接近最佳的解決方案。這些解決方案將使人工智能能夠從人類的決策模式中學習,以及如何優化其對決策空間的搜索。

2.1 框架

為了實現這些解決方案,我們開發了一個類似于國際象棋的棋盤游戲,由兩支隊伍組成,一支紅色部隊和一支藍色部隊,每支隊伍可以有多個聯盟(玩家)。游戲是在一個共同的戰斗空間上進行的,這個戰斗空間目前被設計為MDO每個領域的一套棋盤。圖3顯示了一組游戲棋盤的例子,我們考慮了一個"空中"和一個"陸地"棋盤。每個棋盤都被劃分為一組單元格,"空中"棋盤被放在"陸地"棋盤上,形成一個共同的戰斗空間。在這個例子中,我們選擇了創建方形網格,并且只考慮兩個領域。然而,在一般情況下,棋盤格可以采取任何形狀,并且可以任意縮小,而棋盤的數量可以靈活處理MDO中的每一個域。例如,"空中"盤可以由多個代表不同海拔高度的板組成。這種提法提供了一個通用的應用編程接口(API),允許在兵棋推演中取得基本的研究進展,因為它可以被定制以適應任何兵棋推演的場景。

圖3 用于復雜決策的ARL戰斗空間AI測試平臺

每個聯盟都被假定有一組部件,我們稱之為單位。目前,我們假設有四個地面單位和一個空中單位。地面單位由士兵、坦克、卡車和旗幟組成,而空中單位是飛機。每個地面單位目前都有相同的能力(即,相同的行動和視圖集)。然而,API的設計是為了使聯盟的每個單位都有定制的能力,從而使設計特定場景變得容易。

目前各單位的規則和行動如下。士兵、坦克和卡車都有一個目標,描述他們的導向。他們的行動包括 "什么都不做(doNothing)"、"轉向(turnH)"、"前進1(advance1)"、"射擊(shoot)"和"沖撞(ram)"。"doNothing"意味著該單位停留在他們的位置,不改變他們的狀態。"turnH"將單位的方向旋轉H度,其中H∈{-135,-90,- 45,45,90,135,180}。"advance1 "使其方向上向前移動一個單元。"shoot"向單位的方向射出一個彈丸,彈丸繼續向前推進一個單元,直到它與另一個單位相撞或在游戲盤外飛行。最后,"ram"行動使單位在其方向上向前推進一格,同時進行攻擊。與 "advance1"行動相比,"ram"行動總是有利的,因為攻擊可以消滅敵方單位。

飛機單位的規則和行動與士兵、坦克和卡車相似。這些行動是"什么都不做(doNothing)"、"轉向(turnH)"、"前進X、Y(advanceX,Y)"、"射擊(shoot)"和 "轟炸(ram)"。“doNothing”、“turnH”和“shoot”的動作與地面單位相同。行動“advanceX,Y”允許該單位沿東西軸線移動X單元,沿南北軸線移動Y單元。飛機也可以 "上升(ascend)"和 "下降(descend)"來起飛和降落。最后,"炸彈(bomb)"行動在飛機的正下方射出一個彈丸到陸地游戲盤上。旗幟單位無法移動,如果被俘,則被清除。

目前游戲玩法的實施很簡單。最初,每個聯盟(玩家)將其單位放在游戲盤的各自區域。當每隊有多個聯盟時,各隊的游戲板部分被平均分配給各聯盟。請注意,每個單位的位置對所有其他聯盟都是未知的。然后,每個單位觀察其可見范圍內是否有其他單位,提供一個戰爭迷霧的場景。我們將每個單位的觀察范圍定義為從該單位的當前位置開始的一個方塊;然而,可視范圍可以根據場景和單位的情況進行定制。一旦每個單位觀察到了,同一團隊的聯盟就會合作確定他們想為每個單位采取的行動集。這允許每個聯盟觀察其隊友的單位位置,并進行溝通以協調他們的計劃。接下來,每個聯盟為每個單位選擇一個行動。請注意,所選擇的行動只有屬于同一團隊的聯盟才知道。在選擇了行動后,游戲決議被應用,根據他們選擇的行動移動單位,并解決是否有任何單位被攻擊或與另一個單位相撞。如果一個單位被攻擊或與另一個單位相撞,它將被從棋盤上移走。這個過程不斷重復,直到游戲結束。

完成游戲取決于游戲的基本規則,這些規則可以根據具體場景進行定制。在這里,我們研究了兩種類型的游戲:(1)奪旗和(2)殲滅。奪旗游戲的目標是操縱地面部隊進入敵方領土以奪取對方的旗幟,旗幟的位置是未知的,必須通過探索才能發現。一旦所有的敵方旗幟被占領,游戲就會終止。殲滅戰的目標是發現并攻擊所有敵人的地面單位。在這里,一旦發現并消滅了所有敵人的地面單位,游戲就終止了。每種游戲的基本規則都是相同的,但實現每個目標的最佳策略是不同的。在這兩種類型的游戲中,由于敵方單位和旗幟的能見度有限,存在著高度的不確定性。

2.2 分層貝葉斯模型的試點實驗

接下來,我們報告了我們在開發基于模仿學習思想的人工智能Agent方面的初步結果,模仿學習使用的是由人類演示構建的分層貝葉斯模型。我們從討論數據收集過程開始,對數據進行分析,最后用啟發式方法使一個簡單的人工智能Agent勝過一個隨機Agent。

2.2.1 實驗設計

為了學習人類的策略,我們讓五個人類受試者組合在一起,針對第2.1節中討論的兩類游戲(即奪旗和殲滅),與兩個隨機Agent進行ARL戰斗空間游戲。在每個回合中,每個隨機Agent根據一個固定的分類分布為每個單位??選擇一個行動,其中采取一個行動的概率 取決于單位??可以采取的行動數。回顧一下,每個單位的行動在第2.1節中有描述。

每個游戲由一對人類受試者對兩個隨機Agent組成,在每個游戲開始時,人類受試者合作討論他們對該游戲類型的整體策略。這導致了20場游戲的收集,其中奪旗和殲滅戰各10場。一旦所有的游戲都進行了,就對游戲數據進行分析以確定人類的策略。

2.2.2 游戲數據結果和分析

分析游戲數據的第一個方法是研究人類玩家的行動頻率。行動頻率被定義為 ,其中D代表奪旗或殲滅的游戲數據。 是指在所有游戲中,單位??采取的行動次數,而??(??)是所有游戲中的總回合數。

圖4顯示了地面單位(即士兵、坦克和卡車)的行動頻率,圖5顯示了空中單位(即飛機)的行動概率。游戲的總體目標決定了所選擇的行動,使我們能夠確定所玩游戲的類型。如圖4所示,奪旗游戲的地面單位更有可能選擇前進和攻擊的方式,用 "沖撞"的動作來尋找旗子。此外,"什么也不做"的行動也被更頻繁地選擇。這是因為一旦團隊找到旗子,離旗子最近的單位就會采取行動去搶奪旗子,而其余單位則什么都不做。對于空中單位,人類受試者更傾向于選擇 "advance0,-2 "的行動,即把單位推進到敵人的領土上尋找國旗。

圖4 從人類游戲中產生的所有地面單位,以游戲類型為條件的行動概率

圖5 從人類游戲中產生的空中單位,以游戲類型為條件的行動概率

在 "殲滅"游戲中,人類Agent更傾向于選擇攻擊行動來消滅敵人的目標(即對地面單位采取 "射擊",對空中單位采取 "射擊"和 "轟炸")。為了進一步驗證這一策略,圖6顯示了每回合平均射彈數量的累積總和。顯然,"殲滅"游戲的射彈數量比"奪旗"游戲要多。

圖6 每一回合中射彈總數的平均累積總和

兩種游戲的另一個區別是,奪旗游戲的總回合數要比殲滅游戲少得多。這是因為人類Agent找到旗子的速度比他們找到敵方單位并消滅它們的速度要快。

基于對人類Agent如何與隨機Agent玩游戲的簡單理解,我們可以按照類似的方法來學習策略,為簡單的人工智能Agent開發啟發式方法。

2.2.3 從人類演示中學習的簡單人工智能Agent的性能

一個簡單的人工智能Agent的算法如下。最初,Agent隨機地將他們的單位放置在棋盤的指定區域。然后,每個Agent確定每個單位的狀態。考慮到狀態和游戲的目標,Agent從預定的概率分布中為每個單位抽取一個行動。

這個過程在每個回合中都會重復,直到游戲結束。預定的概率分布遵循一個分層貝葉斯模型。為了便于表述,我們在附錄中提供了相關理論。對于最簡單的情況,我們認為單位在每個回合中可能處于兩種狀態,。然后,概率分布根據附錄中的公式A-1定義,與圖4和圖5中的行動頻率類似。然后我們將這個分布實現在兩個簡單的人工智能Agent中,并與兩個隨機Agent進行比賽。作為一個基線性能,我們與兩個隨機Agent進行了比較。在這兩種情況下,都進行了1000場比賽,并計算了獲勝百分比。通過使用雙狀態概率分布,簡單的人工智能Agent能夠在奪旗游戲中贏得84.5%的時間,在殲滅游戲中贏得76.9%的時間。

接下來,我們為每個單位i考慮了一個更大的九態狀態空間,定義為,其中??r0和??r1分別表示一個友好單位是否被i單位觀察。??0和??1分別表示i單位是否觀察到敵方單位;以及??l0和??l1分別為團隊是否看到敵方旗幟。同樣,概率分布然后根據附錄中的公式A-1定義,并落實到兩個簡單的人工智能Agent。在奪旗游戲中,簡單人工智能Agent對兩個隨機Agent的獲勝比例為89.4%,在殲滅游戲中為82.3%。

結果摘要見圖7。有趣的是,在兩種形式的概率分布(即雙狀態分布和九狀態分布)中,奪旗策略都優于殲滅策略。這是因為 "消滅 "游戲中的Agent更有可能選擇 "射擊 "行動,由于隨機的初始位置,這將導致更多的友好射擊。因此,作為一個簡單的人工智能Agent,采取先攻后守的方法更有利。此外,當我們考慮到單位的額外狀態時,獲勝的百分比會增加。未來工作的一個可能方向是開發深度強化學習策略,以學習最大化獲勝比例所需的狀態定義和數量,即使是面對人類Agent,也要為MDO中的C2提供建議。

圖7 簡單AI Agent的獲勝比例

3. 復雜決策的實例場景

ARL戰斗空間測試平臺的關鍵優勢在于其靈活性和適應MDO任務規劃的變化需求。它的抽象性使關鍵的決策過程及其互動和動態被壓縮到一個較小的游戲盤中,并有更多可量化的人與人工智能的互動,用于開發人與人工智能的團隊合作。這使得人工智能的開發能夠集中于復雜決策的獎勵塑造,同時減少由于滋擾因素(如時空縮放)造成的學習障礙,這些因素使決策在時間和空間上變得稀疏,因此,更多的努力(人工智能以及人工智能開發者的部分)可以被用于在各種時空尺度的不確定性和欺騙下的學習。它還將兵棋推演互動中可能不容易被整合到人與人工智能團隊中的特質(例如,人類心理學的某些方面,如個人關系)放在一邊,以利于在人工智能推理發展方面取得更切實的進展。在下面一節中,我們介紹了幾個挑戰和發展人工智能進行復雜推理的例子。這些例子包括博弈論、元推理和網絡欺騙,涉及到現有人工智能算法尚未處理或解決的各種復雜決策。由于人工智能的C2決策輔助工具將有望超過人類水平的決策,不僅在速度上,而且在復雜性上,我們設想這樣的C2決策輔助工具需要能夠解決大多數(如果不是所有)的情景。

3.1 突破情景和重新想象博弈論

我們首先關注博弈論和兵棋推演之間的差距,在一個簡單的突破場景中,這是兵棋推演中經常遇到的一個經典問題(例如,在橋梁交叉口、地雷區和山口[圖8])。在經典的博弈論概念Brinksmanship("吃雞")中,友好的藍色和綠色坦克被激勵著越過缺口到達另一邊。通常情況下,這些坦克會協調他們的行動,但如果藍、綠坦克之間的通信被破壞,一個單位(如藍坦克)的行動可能會因為與另一個單位(綠坦克)的碰撞或友好射擊而導致低回報。如果還包括囚徒困境的元素,那么這個場景就迅速超越了經典的博弈論,因為可能需要綠色和藍色坦克一起穿越,共同攻擊更強大的紅色坦克,這需要仔細協調。額外單位的存在(例如,綠色飛機對敵對單位提供觀察、轟炸或干擾,如黃色士兵提供可能的增援)能夠進一步操縱動態和環境對決策的限制或機會。飛機也可能發現第二個缺口,或者 "墻"可以滲透,以創造缺口(例如,清除地雷或建立額外的橋梁交叉點)。

在粗略尺度(如10×10板)和背景下學到的行為可以通過獎勵塑造逐步推廣到更細的尺度和其他背景下。額外的地圖層也可以被添加到諸如快速地下運輸等領域,以繞過地面層中的墻壁。環境因素,如天氣,也可以包括在內,以改變機動性。因此,即使是一個看似簡單的場景,也可以提供豐富的機會來操縱影響決策動態和結果的因素,并探索不同類型的不確定性之間的相互作用如何改變決策景觀,以創建鞍點和局部最小值,從而混淆強化學習的作用。在戰爭中可能出現的情況下,理解和預測三個或更多的合作和敵對玩家的納什均衡,需要一個靈活的兵棋推演平臺,允許跨學科地探索這種決策空間。兵棋推演平臺還需要能夠開發、理解和發現玩家和人工智能之間的新型互動和協同作用,使人類能夠利用人工智能快速找到最佳和接近最佳的解決方案。這些解決方案將使人工智能能夠從人類的決策模式中學習,以及如何優化其對決策空間的搜索。

圖8 帶有豐富博弈論條件的場景

3.2 元推理場景、任務背景和戰略

在ARL戰斗空間游戲中,每個玩家都有一面彩色的旗幟,游戲可以通過殲滅所有對方的地面單位或奪取對方的所有旗幟來獲得勝利(現實生活中的一個等價物是奪取所有關鍵的橋梁或指揮中心)。根據游戲的狀態,指揮官可以決定改變整體策略(殲滅戰與奪旗戰),以更快地取得勝利。例如,如果一輛坦克已經接近一面旗幟,那么將剩余的單位轉到其他地方尋找剩余的旗幟可能是有利的(圖9)。相反,如果一支敵對部隊守衛著第一面旗幟,那么優先奪取這面旗幟可能會更好,這樣搜索第二面旗幟的效率會更高。這種未闡明的推理,或稱 "默契推理",往往在自然的人類決策中根深蒂固,這是一種需要開發的人工智能能力,以便人工智能能夠有效地參與人類-人工智能團隊的決策,使人工智能的發展能夠開始有工具來獲得人類決策的創造性。

圖9 帶有隱性推理和任務重新分配的元推理標志方案

對于人工智能的發展,這就需要一個額外的更高級別的推理Agent不斷地監測游戲的狀態,以做出切換策略的選擇,并將此傳達給控制各個單位的Agent。元推理包括監測推理所涉及的步驟,以及平衡影響活動結果的標準。此外,元推理結合了不同信息的不確定性,以產生更有意義的、符合背景的決策建議。納入元推理可以使約束條件和各種決策方法得到權衡,為行動方案提供不同的選擇。例如,基于元推理的替代選擇可以決定是否優先考慮探索與攻擊已知敵方單位與防御,部署哪種機動戰略,或者考慮到敵方部隊的可觀察位置如何重新分配任務。由于ARL戰斗空間環境的網格大小較小,游戲可以快速進行,導致經常有機會使用元推理,并使人工智能有機會學習結合和預測多種類型的元推理方法的相互作用。由于抽象環境增加了人工智能學習戰略如何交互的頻率,這將使人工智能學習更高級的戰略,例如需要平衡不同戰略、能力和任務要求之間的交互,保持選擇的自由,并產生戰略模糊性以迷惑對手。總的來說,這種方法的好處是通過增加控制和監測機制來改善決策,這些機制包括一個平衡行動和環境約束的元推理Agent。

3.3 簡單的欺騙和人工智能的心智理論

對抗性決策的一個關鍵方面,特別是在戰爭中,就是欺騙。欺騙可以發生在多個層面,包括戰略、可觀察的信息、單位能力和位置。在ARL戰斗空間中,單位的可觀察性有限,這自然為欺騙創造了機會,而飛機在敵方空間深處的探索能力也為揭開單位位置的欺騙提供了機會。圖10展示了一個簡單的欺騙場景的例子,在這個場景中,友軍的藍色和綠色部隊試圖穿越到另一邊。左下方的友軍士兵開始通過左邊的缺口發射導彈,因為他們的Agent推斷(通過對方Agent的人工智能心智理論),看到導彈后,敵方Agent會推斷出友軍正準備通過該缺口進行攻擊。這種欺騙,通過將敵方Agent的注意力和計劃集中到左邊的缺口,使他們偏離右邊的缺口,為藍綠坦克從右邊進入創造機會。通過設計有兩個缺口的情景,該情景建立在經典心理學的兩個替代性強迫選擇任務的基礎上,能夠應用敏感的心理學工具進行決策分析,并開發動物模型,從神經生理學和行為學上剖析支配欺騙的情境依賴性學習和決策的基本細胞和分子機制。例如,人們可以引入一些因素,使友好或敵對的決策出現偏差(例如,通過操縱傳感器的噪音或操縱總部的命令),或應用光遺傳學和化學遺傳學工具等方法,了解他人的認知、信念或策略的神經表征(例如,在前扣帶回和眶額皮層中)對決策計算的貢獻(在前額皮層中)。這種調查還可以發現決定一意孤行、啟發式方法和隱性偏見與對其他假設的開放性的因素,這可以幫助確定在特定條件下如何最好地重新分配任務(例如,當一個人對等級指揮結構有偏見時,他可能不太愿意追求與總部的命令相矛盾的傳感器信息)。這種固有的偏見、啟發式方法和默契的推理是人類推理的自然組成部分,在我們與他人的互動中會被預期到;人工智能的心智理論包括這種偏見補償,對優化人類+人工智能的團隊合作可能是有益的。

圖 10 需要人工智能心智理論的簡單欺騙場景

3.4 網絡欺騙、多領域整合和可信度

在人類的決策中,來自不同領域的信息可以結合起來,產生意想不到的效果。心理上的McGurk效應是指口型"ga"和聽覺上的音節"ba"在時間上有很強的同步性,從而產生幻覺"da"。雖然多感官整合似乎沒有在C2決策中得到探索,但MDO中多個領域的匯合,特別是其在穿透和分解整合階段的高容量和高速度,可能會產生意想不到的非線性跨領域的相互作用(這可能有助于"戰爭迷霧")。圖11說明了一個例子,在這個例子中,實際跡象(導彈)和坦克誘餌(由中間人[MITM]網絡攻擊產生)的組合可以協同作用,迫使敵方單位向左側缺口移動。為網絡欺騙創造趨同的跡象線是一種普遍的策略,然而特定的欺騙模式可能比其他模式更有效。例如,人們認為大腦會將相似或相關的跡象分組,以進行有效的處理(如格式塔分組),這樣就可以克服信息瓶頸(如處理七個以上的名義項目,從而減少單個項目的影響)。如果進行每一次網絡攻擊都會產生一定的成本或風險,那么了解如何將這些成本分配到不同的線索特征中,以便以最小的風險提供最有效的影響可能是有益的(例如,如果MITM攻擊產生導彈誘餌,那么它的效果可能會降低,甚至是反作用)。了解不同的線索組合如何被不同的士兵所感知,也可能是有意義的。具有不同偏見或處于不同角色或梯隊的指揮官可能對相同的跡象組合有不同的感知、解釋或行動(例如,一個誘餌的有效性可能取決于它與目標指揮官的距離以及與他的決策過程的相關性)。更高級的策略可能包括主動防御(例如,通過 "蜜罐 "策略[圖12]),以提高網絡欺騙的有效性。為了給MDO提供超人的能力,人工智能決策輔助工具可能需要根據即時可用的跡象在多個領域協助生成可信的誘餌,以網絡的速度迅速調整這些展示,并保持虛擬和現實世界之間的一致性,以保持幻覺的有效性。

圖11 帶有中間人攻擊的網絡場景

圖12 帶有蜜罐的網絡場景

4. 人與人工智能編隊協作的復雜決策

上一節所述的ARL戰斗空間人工智能測試平臺通過將戰斗空間地形抽象為一個沒有現實表現的網格狀環境,提供了人工智能開發和測試所需的靈活性。例如,圖8顯示了一個類似于墻的障礙物,它被表示為幾個網格塊,與單位互動時應用的環境約束條件有關。人類團隊和AI都在共同的雙級網格化戰斗空間內進行游戲。人類玩家通過在控制臺窗口中輸入基于文本的編碼命令與ARL戰斗空間互動。這種命令行的交互和顯示加速了人工智能算法的開發過程,并為人工智能兵棋推演所需的大規模實時計算建立了與計算資源的潛在聯系。為人工智能兵棋推演測試平臺(如ARL Battlespace)構思一個用戶界面,并建立通往外部計算服務的管道,構成了DFV第二個目標的基本組成部分--開發一個用于復雜決策的WMI。

一個跨梯隊和作戰級別的軍事決策過程模型構成了為人類和人工智能兵棋推演開發一個有效的WMI的基礎。在傳統的兵棋推演中,指揮官利用一個共同的基于地圖的作戰地形,并模擬MDMP中各種因素的組合如何產生行動方案(COAs)、可能的反擊行動、資源使用估計和預測結果。在幾天或幾周內,MDMP過程形成一套精煉的COAs,對作戰環境做出某些假設,包括地形、天氣和設置戰場的單位的可用性和能力(即為支持主要作戰行動而塑造活動)。

盡管MDMP幫助指揮人員了解作戰環境和考慮作戰方法,但這個過程有許多局限性,如時間密集性、假設的僵硬性、跨場景變化的訓練機會有限,以及很少有機會將人工智能指導納入決策過程。傳統上,一項任務的成功與指揮部執行MDMP的能力直接相關。然而,鑒于MDO的復雜性增加,有大量的任務指揮系統和流程,與行動相關的所有活動的整合和同步變得越來越困難,甚至到了人力無法完成的地步。缺少MDMP所導致的規劃專業知識的缺乏會導致行動的不同步和不協調,并最終導致士兵的生命損失。

MDMP中沒有具體描述戰斗空間的可視化能力,但它顯然在決策過程中發揮著重要作用。最近,整合了先進可視化能力的新系統和技術已經被開發出來,這些系統和技術可以提高對局勢的認識,從而加強決策過程。陸軍的例子包括Nett Warrior,它使下馬的戰士能夠直觀地看到附近的友軍和敵軍,同時根據當地的地形協作規劃戰術任務。盡管這項技術將無線電和數字地圖擴展到了下馬戰士,但它缺乏一個提供決策幫助的基礎人工智能引擎。BVI是陸軍技術的另一個例子,它能夠為任務規劃提供分布式協作,具有從任意視角和廣泛選擇的設備對共同作戰圖進行2D和3D可視化的能力。BVI架構可以被制定,以拉入外部計算服務,如分析管道、模型和AI引擎。

目前,MDMP并沒有將人工智能指導納入整體任務規劃方法中。陸軍的APF開始通過將自主技術插入MDMP工作流程來解決人工智能輔助決策的問題。指揮人員可以通過APF的數字規劃顯示、規劃創建者和規劃監控工具,在任務規劃和COA開發過程中獲得背景援助。任務執行和估計能力通過監測任務的規劃和實際進展,為改進決策跟蹤和支持活動提供自動協助。盡管APF在MDMP中引入了基本的自動化水平,但它缺乏Nett Warrior和BVI所提供的高級可視化和用戶交互能力。

除了MDMP之外,最近將人工智能納入決策過程的努力包括了一些方法,在模擬人類決策過程方面取得了一些成功。一般來說,對于決策變量有限的問題,如資源分配、飛行模擬器和較簡單的場景,人工智能取得了一些成功。目前面臨的挑戰包括:需要提高人工智能的能力,以解決有多個行動者、不完整和可能相互沖突或欺騙的信息、不斷變化的單位行動和環境屬性的復雜決策,以及需要將這些決策的后果在許多空間和時間尺度上可視化。

4.1 未來MDMP需要的進步

MDMP在支持MDO復雜決策方面的局限性,突出表明需要在三個方面進行改進。首先,有必要將人工智能生成的指導和輔助決策支持納入MDMP。這包括進一步發展和整合人工智能到戰斗空間決策規劃,以及進一步改善人工智能決策過程的可解釋性和透明度。第二,有必要在可能的情況下,將決策分析與戰略層面以及戰術邊緣的HPC的力量結合起來。這將能夠利用HPC系統的力量來改善建模、分析和計算時間,同時整合和同步來自所有戰區領域的信息。最后,有必要利用先進的可視化技術,如混合現實技術,對決策空間進行更準確和互動的展現。不是簡單地在一個固定的時間尺度上顯示地形的二維渲染,而是需要可視化不同領域的決策是如何互動的,并利用混合現實技術來提高理解的吞吐量和深度,并實現平面顯示不可能的洞察力。

MDMP是陸軍設計方法的核心,用于應用批判性和創造性思維來理解、可視化和描述問題以及解決這些問題的方法。作為解決問題的行之有效的分析過程,必須克服前面描述的MDMP的局限性,以便快速制定一個靈活的、戰術上合理的、完全整合的、同步的規劃,以最小的傷亡增加任務成功的可能性。下面的小節描述了對MDMP的潛在改進,以支持人類與人工智能的合作決策。

4.1.1 人工智能引導的決策指導

需要新的人工智能支持的WMI,以利用人工智能決策的持續進步,并為復雜的適應性決策的人工智能學習做出貢獻。通過匯集所有領域的信息,計算人類和人工智能Agent的風險和預期回報,人工智能決策輔助工具的發展將提供能力越來越強的COA建議。現有的人工智能有幾個局限性,特別是對于有不確定性的復雜和適應性決策,以及人類和人工智能Agent的協作和對抗。對多Agent的協作和對抗性決策進行建模可能特別復雜,因為它的遞歸性質,其他Agent是模型的一部分,需要對決策特征、個性化的價值、風險規避、記憶和注意力進行動態和不斷發展的估計。這些具有高度不確定性、復雜性和動態性的情況是人類擅長的領域,適當設計的人機協作交互可以提供加速和更有效的決策。為了實現有效的團隊合作,新穎的WMI應該幫助作戰人員篩選復雜的信息,幫助人工智能發現決策的隱含規則。在此,我們提供了關于人機協作如何有效的案例。

多域兵棋推演中需要的復雜決策是開發有效的人工智能決策輔助工具的直接挑戰。最近人工智能在圍棋和國際象棋等游戲中的成功是基于對世界現有狀態的完全了解(即 "開放"游戲),而兵棋推演通常包括關于作戰環境的不完整(如星際爭霸)、不確定和/或欺騙性的信息。由于世界狀態、不同行動者的狀態以及所采取的行動影響的不確定性,知識的缺乏使得人工智能Agent難以計算未來行動的風險回報情況。不確定性也限制了人工智能估計其他行為者的風險回報概況的能力,而這是計算有效博弈論策略所需要的。人工智能被可能的最優和近似最優選擇的廣度所淹沒(即由于信息有限而選擇錯誤)的情況并不少見,因為人類在制定有效探索隱藏信息的策略時,會采用啟發式方法來進行有效的選擇和預測。為了幫助發展人工智能的隱性知識和探索能力,新型的WMI需要有效地解釋和展示決策圖,以使作戰人員能夠快速和自然地瀏覽可能的選擇,同時使人工智能能夠適時地從人類的決策中學習,而不施加認知負荷。

開發人工智能的WMI的另一個基本挑戰是如何有效地整合和顯示MDO中所有五個領域的信息,特別是空間和網絡,因為這些領域的信息具有不同的時空尺度。對于網絡,決策的規模和速度可能比人類處理和理解的能力更快,需要人類的輸入來指導半自動的決策,以及一個實施進攻和防御欺騙策略的人工智能。WMI需要能夠以這樣的方式顯示決策圖,即一小部分最優和接近最優的決策策略清單是可以解釋的(例如,通過決策樹)。這應該包括對關鍵Agent在不確定情況下的未來狀態和風險回報情況的估計,以使有效的博弈論決策能夠被共同開發和相互理解。

這些挑戰為有效的WMIs的可能設計提供了參考。也就是說,我們需要有能力從不同的來源(包括從其他國家的決策輔助工具)攝取信息,以及一個能夠承載整合這些信息的計算能力架構,同時還要處理基礎的人工智能計算(包括學習和部署)。我們還需要共同開發一個交互和算法設計,以適時地利用人類和人工智能Agent的優勢并減少其局限性。

4.1.2 高計算能力下的決策過程

在MDO兵棋推演的復雜決策過程中,需要大量的計算能力來處理和記錄所有組件、實體和狀態空間。從動態狀態空間的累積數據集中建立過去、現在和預測模型,需要利用HPC資源來產生分析見解,并創建在復雜決策背景下有用的表示。

實施HPC分析工作流程的一種方法是使用持久性服務框架(PSF)。PSF是一個最近可用的分布式虛擬化解決方案,它可以通過一個基于網絡的前端實現對高性能計算服務的非傳統訪問,而不像傳統的HPC環境那樣,計算節點在特定時期內以批處理模式分配給用戶。此外,PSF可以提供對數據、數據庫、容器化工具集和其他托管平臺的分布式持續訪問。

在一個PSF方法的例子中,一個模擬引擎連接到PSF,用于記錄人類和人工智能做出的所有決策。這允許分析在任務規劃和COA開發過程中發生的決策行為,以及識別決策模式和戰略,以開發競爭和現實的兵棋推演場景。一個戰斗空間可視化平臺可以托管在PSF上,并使用信息傳遞協議來更新所有連接的設備接口。來自模擬引擎的狀態信息可用于生成戰斗空間和參與作戰單位的圖形表示。

使用PSF方法并利用HPC資源,可以實現利用大數據攝取和分析的人工智能輔助決策機制,同時可供地理分布的用戶用于協作決策工作。連接到PSF托管服務器的各種混合現實顯示模式可以支持從戰略層面的C2到作戰邊緣的更多移動戰術使用等一系列作戰場景。

4.1.3 決策空間的逼真呈現

用圖形表示各級行動的軍事決策戰略需要新的可視化方法,這些方法可以應用于以規則變化、認知狀態、不確定性以及個人偏見和啟發式方法為特征的動態環境。

戰斗空間的視覺表現應該在技術上盡可能準確和逼真,但又保持在人類可以理解和解釋的認知水平。融合了混合現實技術的先進可視化方法有可能更好地表現多領域戰爭的變化特征及其不斷變化的威脅和動態環境。隨著最近混合現實可視化設備的技術進步,成本降低,硬件的可靠性和實用性顯著提高,混合二維和三維可視化方法現在已經成為可能。

由多個二維顯示器組成的混合現實方法增強了更先進的三維可視化能力,可以為指揮人員提供了解復雜的戰爭游戲狀態空間所需的洞察力。例如,BVI平臺可以使用多種可視化模式的組合,真實地呈現地理空間的地形。作為一個數據服務器,BVI向支持多種可視化模式的客戶端應用程序分發地形、作戰和Agent行為數據,包括頭戴式顯示器設備、基于網絡的界面、移動安卓平板設備和混合現實設備(例如,HoloLens 2、Oculus Quest)。

圖13(頂部)顯示了位于加利福尼亞州圣貝納迪諾縣歐文堡國家訓練中心的高分辨率地形上的友軍與敵軍的兵棋推演場景。與MDMP期間經常使用的傳統2D地圖顯示相比,戰斗空間的3D視圖可以從多個觀察角度提供更豐富的用戶體驗。三維視圖,在BVI的網絡戰術計劃器(WTP)中,將地形和人工特征的空間信息以及由MIL-STD 2525C符號描繪的單位位置可視化。

可以想象,地理空間視角,如BVI提供的視角,支持決策者對動態戰斗空間環境的理解。與可導航的人工智能增強的決策空間(圖13,底部)搭配,組合的視角可以使人們更好地理解視覺空間依賴性、影響和因果關系、估計的風險和價值、不確定性以及復雜決策的欺騙性。將這種以地理空間和決策為中心的視角與人工智能相結合,可以提供必要的廣度,以協調物理行動與網絡和其他非空間領域的行動,跨越多個時間尺度,并具有快速適應變化的任務目標的靈活性

圖13 BVI網絡戰術規劃器中的兵棋推演場景的三維視圖(上)與人工智能決策樹的概念(下)。

5. 討論

人工智能對人類自然決策行為的機會性學習,以及學習環境的適當結構和順序,使人工智能被訓練過程有效地塑造,是已經建立起來的提高人工智能快速學習困難挑戰能力的框架。要進一步提高人工智能在兵棋推演中的復雜決策能力,需要提高人工智能在具有高度不確定性的MDO背景下處理決策的能力、欺騙性和博弈論,這些都是人工智能發展過程中獎勵分配的挑戰。克服這些挑戰需要利用多學科的進展,從了解大腦的決策、獎勵和計算的神經生物學進展到專業知識、隱性知識、心智理論、博弈論和元推理在復雜決策過程中如何應用的心理學進展。

人工智能如何能夠最好地學習人類的復雜決策仍然是一個開放的問題。盡管對復雜決策進行獎勵塑造的確切機制還沒有被發現,但這個項目已經產生了如何通過一個新的人工智能測試平臺和WMIs來發現這種機制的設想。ARL戰斗空間人工智能測試平臺和場景將人類和人工智能置于與MDO相關的決策環境中,使人工智能能夠學習不同的決策和因素如何相互作用,以及人類如何通過這種復雜的決策樹進行合作和對抗。一個關鍵的進展是,測試平臺和場景提供了一個豐富的環境,通過抽象化那些會使決策要領稀疏化和阻礙學習的因素,有效地開發人工智能心智理論和與MDO相關的元推理,以進行復雜的決策。

另一個進展是開發高性能計算框架,以實現人工智能決策支持的連續分布式訓練。這將使人工智能決策輔助系統能夠托管在ARL的持久性服務框架上,因此,將來士兵可以隨時隨地以人類和人工智能混合團隊的形式,針對人工智能兵棋推演Agent進行單獨或協作訓練。

這個項目的第三個進展是開發了一種可視化人工智能決策過程的方法,以實現人工智能的透明度和信任,以及人類與人工智能團隊的合作決策。人工智能的推理必須既抽象又與兵棋推演環境相關,這樣人類就可以理解人工智能對不同決策結果的評價,并有效地瀏覽人工智能的決策樹,而不會造成過度的認知負擔。我們已經向人工智能增強的WMI邁出了第一步,它基于三維混合現實,利用和增強人類固有的三維認知和預測的能力。隨著進一步的設計,我們設想它的界面將給人以自然的感覺,同時擴大顯示多個領域的信息,并使人工智能能夠適時地從用戶的決策中學習。這種自然的、直觀的人工智能輔助決策系統,是為了支持MDO C2決策而開發的,包括隱性推理,以及協作和對抗推理,對于人類在復雜決策中信任人工智能對COA結果的估計至關重要。

5.1 進一步發展人工智能測試平臺和人工智能Agent的潛力

雖然最近在游戲中對深度強化學習算法的利用顯示出巨大的前景,但這種成功的前提是與一個相對簡單、結構良好的游戲合作。真正的挑戰出現了,因為環境越來越依賴于稀疏的觀察數據、復雜和動態的Agent策略。完全在內部開發平臺與在現有的開放源碼庫上建立平臺相比,有幾個權衡因素--主要是限制因素的最小化和環境開發的純粹工作量。創建一個全新的定制平臺可以完全定制與游戲相關的錯綜復雜的問題,盡管變得非常耗時。相反,在使用現有的庫,如StarCraft2LearningEnvironment(SC2LE)時,會出現各種不可逾越的限制,但投入游戲開發的工作量會減少十倍。我們正在進行的ARL戰斗空間人工智能測試平臺的第二代開發,名為Simple Yeho(圖14),是建立在天平兩端的平衡上的,OpenAI Gym是一個用于開發強化學習算法的工具包,對輸入的Agent和環境結構不做任何假設。顯然必須遵循一個基本的框架,但OpenAI Gym除了提供大量的文件和例子供客戶參考外,還提供了完全的設計自由。從游戲開發的角度來看,并沒有立即需要解決的問題,但它確實需要成為未來一個更優先的事項。

圖14 簡單的Yeho人工智能測試平臺

未來的問題并不局限于游戲環境,因為它們將不可避免地延伸到理論上的強化學習挑戰,如無縫的多Agent通信、任務協調和固定的策略。更多需要關注的實際問題包括算法效率(限制計算密集型任務以及內存分配的心態),一種新穎的去中心化強化學習算法,以及跨多個領域的數據泛化。過度消耗硬件資源是人工智能所有分支中的一個共同瓶頸。從軟件的角度來看,ARL Battlespace AI測試平臺對資源消耗很少,該環境仍然專注于AI發展的研究問題,而不是全面的MDO實施,這就是為什么計算效率還不是一個緊迫的問題。歸納游戲狀態信息的潛在解決方案,特別是在動態環境中,包括時差變異自動編碼器和分布式時差強化學習,因為它們除了在數據點之間提供一個平滑的潛在空間外,還允許對未來的幾個狀態有明確的信念(這在元推理方面起作用)。我們的新型強化學習算法應該解決的其他主要問題是安全/認證、Agent決策透明度和Agent間的實時通信。將區塊鏈整合到DEVCOM ARL框架中,將確保節點之間的安全通信線路,提供一個不可改變的分布式賬本,以揭示Agent的低級決策,并向Agent引入民主投票系統,以促進團體合作,同時仍然保持個人的自私性。

5.2 進一步發展人類-人工智能協作交互的潛力

目前軍事決策過程中的局限性確定了一個多學科的研究方法,用于開發復雜決策的人類和人工智能WMI。作為基礎層的決策空間的現實表示,包括具有地理空間精確性的自然和人工制作的戰斗空間地形。一個先進而直觀的用戶交互允許混合現實視角的戰斗空間,使決策者能夠根據作戰因素探索COA的替代方案。這兩個要求指導了對陸軍和商業開發的戰斗空間交互系統BVI的選擇,作為ARL戰斗空間人工智能測試平臺中實現的人工智能和人類-人工智能團隊發展的潛在過渡媒介。

過渡的第一步是將ARL戰斗空間的網格狀環境疊加到BVI真實世界的作戰地形上,并將現有的BVI多模態用戶交互調整為兵棋推演。圖15顯示了使用BVI的網絡戰術規劃器3D視角在歐文堡地形上疊加的擴展網格的一個部分,其中友軍和敵軍單位位于兵棋推演會話的開始。在瀏覽器窗口中,可以使用戰術規劃工具欄的鼠標、觸控板或觸摸屏互動來放置和操作單位。BVI提供了添加單位的功能;路線點、戰術符號和圖形;以及繪制線條、多邊形和文本框等特征。

圖15 BVI網絡戰術規劃器中帶有網格覆蓋的兵棋推演場景的三維視圖

一個尚未解決的問題是,如何最好地利用BVI的混合現實(XR)可視化功能來進行協作決策(例如,在兵棋推演期間,通過加強決策者對地形的地理空間因素的理解)。加載不同的地形和創建定制的訓練場景可能來自于多維數據,并以各種身臨其境的形式觀看,這超過了陸軍其他系統的可視化能力。根據這些三維地形的廣度和細節,當決策者使用一系列強大的交互方式在大面積的地形上進行操作時,界面如何顯示這些信息可能會造成大量的信息過載或混亂。一個有效的界面需要被設計成不僅要選擇傳達哪些環境和決策空間信息,而且要選擇如何從用戶的有利位置呈現這些信息。

如果不可能有開發時間和精力,BVI的API提供了機會,以標記、標簽和定位在地形之上的場景適應性網格的形式嵌入視覺輔助,作為決策者的空間管理干預措施。例如,圖15中描述的網格的行和列可以被標記或編碼,以快速定位實時事件和人工智能產生的活動。多維網格結構和編碼方案可以將兵棋推演提升到以MDO為特征的復雜水平,同時減輕一些基于地形的空間管理問題。

在空間和時間領域的數據分析中協調戰斗空間的多個視圖,可視化提供了額外的方法,促進兵棋推演期間的復雜決策。當需要一個共享的MDO戰斗空間呈現時,可以通過在不同的可視化模式上實施多個協調視圖來實現協作戰略規劃模式,根據分布式指揮人員的輸入進行互動更新。指揮人員的輸入也可以指導視覺過濾器對協調視圖的應用,從而減少不必要的復雜性,突出場景或任務關鍵的戰斗空間信息。

圖16顯示了SyncVis視覺分析系統,該系統旨在顯示多個協調的數據分析視圖,支持數據探索和理解。SyncVis通過用戶互動將每個視圖中顯示的信息與其他視圖聯系起來,從而產生多種數據可視化。這個例子顯示了SyncVis在四個協調視圖中對COVID分類人群數據分析的二維界面。變量選擇器(選擇六個屬性)、地圖/地形、相互信息圖和每個選定變量的疊加區域圖。

圖16 SyncVis二維界面顯示COVID數據分析的多種協調的可視化效果

SyncVis的可視化功能可以與使用PSF的HPC分析工作流程后端集成。PSF服務器可以向BVI和SyncVis流傳作戰和Agent行為數據,創造一個統一的戰斗空間探索體驗。基于用戶按需輸入和過濾的協調戰斗空間視圖的好處有待研究。

一個靈活的兵棋推演環境似乎是關鍵,因為每個訓練場景、COA和任務計劃都是在MDMP和相關軍事理論的約束下制定的,但又是獨一無二的,并取決于戰斗空間及其操作變量。一個HPC PSF數據分析處理管道為WMI提供動力,士兵或指揮官按需協調戰斗空間的BVI和SyncVis可視化,將徹底改變現有的兵棋推演范式,并觸及MDO固有的復雜程度,以及贏得勝利所需的人類和AI指導的決策水平。

6.結論

我們強調了三個關鍵的發展領域,即人工智能引導的決策指導,支持這種指導的計算基礎設施,以及決策透明度的混合現實表現的發展。這些領域的進步需要跨越許多不同學科的專業知識。新的人工智能發展需要融合神經科學、心理學和數學的思想,以克服復雜決策中長期存在的問題的瓶頸。這包括跨時間尺度的學習和變化環境下的災難性遺忘,以及更具體的兵棋推演問題,如具有不確定性、欺騙和博弈論的多Agent決策。計算基礎設施也需要發展,因為計算能力和數據框架對于在戰術邊緣產生人-人工智能團隊的共同操作圖來說都是必不可少的。為了有效地開發,應該通過一個共同的框架來抽象出專有的限制和軟件的依賴性,并為使用和故障排除提供清晰的文檔,以使學術界、政府和工業界更好地專注于解決人與人工智能的合作問題。這個通用框架應該包括有效的信息傳遞,同時提供靈活性和適應性,以滿足人工智能開發和人類用戶在訓練和實際使用環境中的需求。最后,交互技術的開發本身需要跨學科的協同專業技術。一個基礎性的問題是如何壓縮信息使之被用戶有效地理解,以及如何最好地利用用戶的互動來進行機會主義學習。人類的大腦并不處理所有的感官信息,而是對世界進行預測和假設,以便在信息不完整的環境下節約計算。一個有效的WMI應該同時預測潛在的決策結果以及個人用戶的期望和假設。此外,人工智能決策輔助工具必須估計用戶的默契,使其能夠提供最相關的信息和最有希望的選擇,這些信息來自整個作戰領域。

付費5元查看完整內容

在未來的軍事行動中,通過協調多智能體系統(MAS)來實施戰略機動以獲得對對手的優勢,是一個很重要的途徑。最近探索MAS協作的工作主要集中在識別、分類、驗證、實施,以及通過多智能體強化學習(RL)來研究新興的協作方式。強化學習方法可以通過探索和利用選定行動來響應特定環境中的突發行為,這有可能抑制對抗性協作,反過來又可以為各種情報、監視、目標獲取和偵察任務提供機會窗口。本報告簡要介紹了RL領域的突出工作及其在自主戰略機動協作式MAS中的潛在應用。

1 引言

美國陸軍現代化激增是由對手在多個領域(如陸地、海洋、空中、網絡、電磁和空間)對美國構成的威脅所推動的,這對美國利益的威脅超出了常規戰爭。預計未來的戰斗將在這些復雜的多領域環境中進行,人工智能(AI)將指導與人類士兵一起協同工作的機器人Agent的戰術、技術和過程(TTPs)。這些機器人將聚集在一起,形成智能多Agent團隊,與人類士兵有效協作,完成任務。

美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的基本研究計劃(ERPs)構建了開發和實施智能多Agent系統(MAS)的具體計劃路徑。此類陸軍計劃為美國國防行動提供了關鍵研究問題的答案,這些問題匯聚在一起,指明陸軍未來司令部的現代化努力方向。人工智能用于自主機動性(AIMM)和新興超限技術(EOT)是ERP的例子,明確側重于使下一代戰車具有自主感知、學習、推理、規劃和機動能力。這些未來的自主系統將與人類智能體合作進行預測和規劃,并通過戰場上的自主機動(AIMM)和保護(EOT)向士兵提供支持。本報告重點關注需要進行的自主協作,以使多智能體系統(即人類、智能體或人類和智能體混合)在未來的軍事行動中取得成功。

集成和協調的MAS將需要技術的進步,重點是超越我們目前的能力,以有效地對付同等裝備的對手(同行或接近同行)的協作戰略機動性。一個直接的挑戰是開發能夠以良好協調方式自主和智能地工作的智能體團隊。這種能力要求智能體在執行關鍵任務時與士兵一起觀察、定位、決定和行動(OODA-Loop)。雖然新的努力促進了對多智能體范式中情報的一般理解,但目前對情報的解釋并不明確。最近的文獻表明,基于強化學習(RL)的方法可能為實現這種技術進步提供了一條可行的途徑,本文介紹的一系列工作就是證明。

在本報告中,介紹了RL領域的貢獻,以及它們在軍事環境中的潛在應用--特別是通過戰略編隊機動來抑制對手的協作,以實現戰場上的超越。最小化、限制或完全抑制對抗性多Agent行為中的協作是探索和執行在模擬情況下通過RL實驗得出戰略機動的一種手段。此外,協作的戰略機動可以通過各種RL方法學習,以告知防御部隊創造機會或優勢窗口的潛在途徑。

為了在模擬環境中通過戰略機動的RL方法實現MAS協作,我們首先介紹了近年來一些最突出的RL研究。最近在RL領域的進展(如alphago)促進了更復雜的多智能體強化學習(MARL)算法在現實世界應用。此外,近年來也有一些框架來實現多智能體協作。這些努力加在一起,可以為開發和實施多機器人協作提供一條道路,以便在為未來戰場設計的多機器人系統中實現戰略機動。

在下面的章節中,對近年來突出的RL方法進行了分類和概述,并表明這些方法與DEVCOM陸軍研究實驗室目前的研究和開發項目相一致。具體來說,本報告的重點是確定戰略機動的特定算法的優勢和劣勢。此外,對選定的RL方法類別進行了分類,以深入了解戰略機動的潛在實施,并考慮到情報、監視、目標獲取和偵察(ISTAR)任務。

2. 多域作戰中多智能體系統的戰略機動

簡單地說,戰略機動可以解釋為一組智能體協調他們的行動,通過戰勝對手來實現一個共同的目標。破壞,是戰略機動的一個特例,可以表示為對對手協作戰略機動的抑制。因此,戰略機動一詞的使用意味著至少存在兩個對立的或敵對的雙方,他們處于動態的斗爭中,通過限制、抑制或以其他方式破壞對手的協調或戰術,并強加自己的協作戰術來獲得對對方的優勢。

在本節中,提供了一個對抗性的交戰場景,其核心是使用選定的遠程資產,這些資產本質上破壞了友好部隊的交戰。圖1顯示了一個圖例,描述了與所述多域作戰(MDO)情景相關的選定資產和部隊的軍事符號學。根據MDO理論,在武裝沖突中,對手的遠程反介入和區域拒止(A2AD)火力系統可以被用來拒絕友軍在戰區的機動自由(見圖1)。這是通過將情報、監視和偵察(ISR)資產與致命性和非致命性火力相結合來實現的,以攻擊戰略和行動支持區的友軍指揮結構、維持能力和部隊編隊。這些地區是近距離地區作戰資產(如部隊和裝備)的傳統集結地(見圖2)。對手有能力在友軍后方深處識別和攻擊目標,導致這些實體在地理上與戰術支持區和近距離區分離,這有效地提高了友軍的損耗率,即所謂的對峙。鑒于前線部隊與戰略和作戰機動支援相分離,敵對勢力可以利用這種友軍孤立無援的情況,將其消滅。

圖1 友軍(BLUEFOR,左)和敵軍(OPFOR,右)部隊的資產和資源。在所描述的MDO情景中,假設BLUEFOR和OPFOR的所有資產都是自主化的編隊。

圖2 敵軍(OPFOR)使用遠程導彈和火箭炮干擾或破壞友軍(BLUEFOR)戰略支援區的維持行動,這使得友軍無法以有利的條件與近距離地區的敵軍機動部隊交戰。為了應對這一戰略,BLUEFOR執行反擊任務,以摧毀位于深火區的OPFOR遠程火力系統(藍色箭頭)。從深層機動區的BLUEFOR SOF發出的三叉箭頭代表了一種 "破壞 "戰術,它打破了對手的隊形和節奏。

圖3 壓制(S)或解除(N)敵方遠程火力系統和ISR資產,使友軍能夠穿透敵方的A2AD保護傘。這使友軍能夠在近距離地區擊敗敵人,并使機動指揮官有能力利用他們的成功,迅速將部隊轉移到深度機動區,摧毀(D)脆弱的敵方資產并追擊撤退的敵軍。F表示 "固定",可有效減緩敵軍的行動。粗箭頭代表部隊移動的方向。

MDO理論規定了擊敗對手A2AD能力的計劃(即對峙),以便戰略和作戰機動能夠使前沿部署的友軍以有利的條件與對手交戰(即穿透和瓦解A2AD系統以利用機動自由)。在這里,我們只關注友軍(BLUEFOR)野戰軍和軍團與敵方A2AD系統交戰時的滲透和瓦解部分,這可能需要在未來的戰斗中使用自主MAS。此外,據推測,圖1中友軍(BLUEFOR)和敵軍(OPFOR)的所有符號都將包含自主化的編隊(例如,機器人戰車、自動瞄準系統、地面和空中的機器人ISR資產)。圖2和圖3分別顯示了利用這種符號學與自主化編隊進行戰略機動的情景圖。

如圖2所示,敵對的A2AD火力系統通過攻擊戰略和作戰支持區來創造對峙局面。友軍火力和防空部隊從太空和高空監視(未顯示)接收有針對性的情報,在狹窄的時間窗口內打擊高價值目標(即多管火箭系統[MLRS]),以減少對手的位置調整。除了監視之外,還可以采用戰略刺激--打擊來穿透和瓦解對手的遠程火力系統。

在ISTAR任務中,MARL可以通過利用敵軍理論和敵軍行動中的局部觀察,戰略性地照亮和跟蹤敵軍目標的位置。此外,經過MARL訓練的具有自主能力的編隊,結合高度機動和分散的空中和地面火力,可以開始壓倒對手的遠程防空。友軍可以利用經過訓練的MARL方法來利用對手的TTP,進行防空和地面火力的戰略機動。這些具有自主能力的編隊根據從戰略空基刺激收集的監視數據選擇地理位置。隨著對手的遠程火力系統被消滅,戰略和作戰支援部隊能夠向前方的作戰部隊推進(機動)(見圖2)。

敵軍利用ISR資產識別作戰支援區的友軍資產,并從作戰縱深火力區用遠程火力系統(即多管火箭炮)攻擊友軍。這些敵方火力擾亂了友軍在該地區進行傳統支援行動的能力,這反過來又導致這些活動在離部隊前線更遠的地方進行。這通過擴大戰場和緊張的補給線而造成地理上的對峙。此外,這還允許敵方機動部隊以有利于敵方既成事實的條件與近距離地區的友軍作戰。根據MDO的理論,為了消除對峙,友軍的炮兵系統必須在敵軍的火力和ISR資產部署之前識別、交戰并摧毀它們。友軍SOF通過破壞補給和指揮與控制(C2)節點以及為聯合火力提供目標數據來協助這項工作。這在敵人的A2AD保護中創造了缺口,可以被機動指揮官所利用。在這種覆蓋下,友軍機動部隊穿透并利用近距離和深層機動區域的缺口。

在作戰區,近距離和縱深地區的聯合部隊的戰略編隊可能是自主啟用的編隊(即MAS),利用MARL訓練的策略來利用對手的TTP(來自理論)、本地觀察和ISR收集的信息。如圖2所示,聯合部隊將協調其ISR和遠程精確火力的能力,為前沿部署的BLUEFOR部隊提供支持。在戰略和作戰單位的支持下,擁有自主能力的前線部隊可以在近距離和縱深地區進行協調,以分離和擊敗敵方資產。這將促進消滅敵對的前沿機動部隊(OPFOR),使遠程火力系統容易受到地面攻擊(瓦解),如圖2所示。

聯合火力(即友軍或BLUEFOR)壓制或消滅對手的遠程火力系統,使友軍機動部隊能夠進入并擊敗近距離區域的作戰部隊(見圖3)。然后,友軍機動部隊利用這一優勢,在深度機動區(見圖3中的D區)摧毀敵方的助推器。這將導致剩余的敵對機動編隊從近距離區域撤出,并在深層機動區域建立一個新的戰線。這個過程不斷重復,直到達到戰略目標或打敗OPFOR。這些協調活動在理論上可以通過人類士兵和自主多智能體系統之間的合作來實現。此外,鑒于目前正在積極研究開發和部署這種自主系統,預計未來的戰場將需要考慮像這樣的場景來規劃戰略機動。

本節提供了一個可以應用MARL方法訓練自主化編隊的場景;然而,在這種復雜的MDO環境中執行的具體RL方法還沒有經過測試,或者可能還不存在。下一節闡明了與利用RL方法為未來的MDO交戰訓練MAS有關的一些挑戰。

3 挑戰

在這項工作中,我們將重點聚焦到可以指導MAS克服與軍事防御MDO中戰略機動相關挑戰的RL方法。從技術上講,RL是機器學習(ML)的一個分支,它超越了從數據中建立精確的預測,通過在環境中產生行動來展示學習。這種學習的展示可以被認為是一種決策形式,但更準確的描述是通過狀態空間探索進行戰略行動選擇。

RL智能體在獎勵函數的基礎上進行學習(或訓練),最終確定在當前情況下(即該智能體在環境中的狀態),哪一個是智能體要選擇的最佳行動。例如,RL智能體可以與環境互動,產生與獎勵掛鉤的經驗,這將形成學習的策略(即一系列的狀態-行動對)。然而,在后面的章節中強調,目前的RL方法可能還不夠成熟,無法克服與人類類似的適應性相關的挑戰,以便在新情況或環境中進行智能決策。盡管RL算法有其缺點,但它們似乎是在軍事防御MDO中實現協調的MAS執行戰略機動的最有希望的途徑之一。

在多智能體任務中,協作通常是定義不清的,而且經常被用來表示一組智能體在某些合作任務領域中成功地執行了任務。在以前的工作中,開發并采用了各種新方法來測量執行合作任務時智能體行動之間的相互依賴性,以確認這些智能體事實上已經學會了協作。對協作的確認是確定MAS有能力與其伙伴合作的先決條件,而不是簡單地采取導致某種程度的優化行動。雖然在某些情況下,最佳行為可能是可取的,但如果任務以某種不可預見的方式發生了變化,一個簡單的最佳行為的智能體可能會在戰場上導致災難性的損失。因此,未來防御行動的MAS必須具有明確協作的能力。

在本節的其余部分,描述了與開發戰略機動MAS有關的一些挑戰,其中時間尺度、能力和局部目標可能有很大的不同(例如,MDO),但需要某種程度的協作。此外,假設更大程度的靈活協作可以促進任務執行的改進(例如,更快、更少的損失、非直觀的策略、有效處理不斷變化的能力/團隊組成)。

隨著環境在動態戰場上的變化,敵對雙方(至少)可能需要重復規劃和預測,以便1)跟上,或2)領先于對手的規劃和預測。經過RL訓練的MAS能夠學習這種動態的規劃和預測循環。另外,如果學習智能體建立了一個關于對手協作行動的適當模型,然后采取行動破壞這種協作,也可以實現這一目標。

在一個理想的情況下,一個被選來指導MAS行為的算法將學會處理環境、對手戰術和能力、自身能力(獲得新的能力或失去以前的能力)、團隊組成(例如,改變合作者)和局部目標的變化。然而,大多數最先進的(sota)方法受到經驗的限制(正如許多RL方法的情況一樣)。此外,在大多數模擬中,團隊的能力和組成通常是固定的,不能為算法提供足夠的數據來操作和處理任何上述的特征變化。因此,在選擇一種算法來指導旨在產生戰略機動的MAS的行為時,必須考慮新的或動態的事件、行為、資產和實體。

總之,目前的算法方法在復雜的軍事防御MDO環境中沒有達到所需的能力。目前的缺點可以分為三類。1)數據要求,由于情況的新穎性,數據是有限的,數據集不足以產生準確的預測,或者數據以某種方式被污染(例如,嘈雜、臟亂或對手的改變),2)有限的計算資源,以及3)算法不能泛化到訓練期間遇到的情況之外(例如,不同的目標、改變的能力或修改的團隊組成),導致狹隘或脆弱的MAS解決方案。

在下一節中,我們將更詳細地討論RL的缺點,以闡明如何克服這些問題,為軍事防御MDO環境提供解決方案。為此,我們介紹了現有的RL算法的分類法。這一努力應提供對有前途的RL技術更好的洞察力,這可能有助于確定最終應用于美國國防MDO的可行途徑。

4. RL技術和方法

學習算法的可擴展性是MDO中軍事任務的主要關注點之一,特別是因為這種任務可能需要大量的智能體來完成一個目標。此外,軍事任務可能涉及多個子任務,每個子任務都有自己的子目標,從而進一步復雜化了場景。在MDO中,預計一個子目標由無數復雜的戰略演習組成,這需要MAS的快速計算,以及使用最小計算資源(如在戰術邊緣計算)的最佳(或至少足夠)戰略。因此,一個可擴展的RL算法必須考慮到:1)環境和任務的復雜性;2)智能體(伙伴和對手)的數量,以便每個智能體能夠在通過RL學習過程中收集經驗時正確選擇行動。

環境復雜性(即智能體的狀態和行動空間的大小)可以指環境的狀態空間中可用的狀態數量,以及該環境中智能體可用的行動方案數量。RL算法的可擴展性是指在足夠復雜的狀態和行動空間中,在合理的時間和計算能力內計算最優策略的能力。環境的復雜性還包括納入額外的智能體(例如,擴展到MAS),其中狀態空間被放大以考慮到額外的智能體,而行動空間的大小被乘以該之智能體的數量。

通過使用狀態-動作對的表格來解決RL的可擴展性問題是不實際的,因為連續的領域會使表格無法維持,而且在合理的時間內同時更新所有智能體的表格條目是不可行的。即使有足夠大的計算資源(如過多的計算機內存)來包含所有的狀態,在每個狀態-動作對之間的學習也會太慢。與利用表格跟蹤狀態-動作對相反,一個解決方案是使用非參數函數近似器(例如,權重為參數的深度神經網絡)來近似整個狀態空間的值。然而,函數近似器必須是可微分的,這樣就可以計算出一個梯度,以提供參數調整的方向。

有兩種方法來訓練值函數近似器:1)增量方法和2)批量方法。增量方法使用隨機梯度,在梯度方向上調整近似器的參數,使估計值和目標值之間的誤差最小。然而,增量方法的樣本效率不高,因此不具備可擴展性。相比之下,批量處理方法從一組經驗中保存數據,并使用它們來計算函數近似值估計和目標值之間的誤差。批量方法與傳統的監督學習有共同之處,即結果是已知的(例如,數據被標記),計算近似值的估計值和實際結果值之間的誤差。這種類型的批量學習通常被稱為經驗重放。重復這個過程將導致最小平方誤差的解決方案。最近一個成功的經驗重放的例子是用深度Q網絡(DQN)玩雅達利游戲演示的。盡管函數近似法在復雜的環境中顯示出了成功,但如果不考慮額外智能體的加入(即非平穩性或部分可觀察性),單靠這種方法不太可能足以訓練出MDO場景的MAS。

與價值函數近似法相比,策略學習方法依靠策略梯度(PG)的計算來明確優化策略,而不是間接依靠價值函數。與函數近似方法相比,PG具有更好的收斂特性。PG方法比價值近似方法更受歡迎的主要原因是它們能夠在高維和連續的行動空間中有效(即在復雜環境中可擴展)。在蒙特卡洛(MC)策略梯度(例如REINFORCE算法)中,實際回報(選擇行動)與一個分數函數相乘,以計算梯度。該梯度被用于策略調整(通過改變參數值)以找到最大的回報行動。MC策略梯度具有高方差,收斂速度慢,因為它使用智能體的狀態-行動對在不同時間的整個軌跡來獲得一個返回值。另一種可能超越傳統函數近似方法缺點的解決方案是利用 "演員評論"方法。

在演員-評論家方法中,PG方程被修改為使用價值函數的近似值,而不是使用真實的行動-價值函數乘以分數(如REINFORCE算法)。這表明行為者按照評論者所指向的方向調整策略,以便使總的累積獎勵能夠達到最大。評論者的這一策略評估步驟可以通過使用組合值近似方法(即MC、時差-TD(0)和TD(λ))來完成。為了減少策略梯度的差異,可以使用一個優勢函數。優勢函數告訴我們,與一般的狀態值函數相比,一個行動比另一個行動(Q值)好多少。這意味著評論者必須估計Q值。一個有效的方法是使用TD-error,它是優勢函數的無偏樣本,評論者對一組參數進行近似。TD(λ)資格跟蹤也可用于評論者估計不同時間步長的值。有趣的是,MC(高方差)和TD方法可以與行為人一起使用,隨著時間的推移(即收集的經驗)修改策略。

由于MDO涉及軍事任務,RL算法必須有能力與許多其他智能體協調,以實現最佳的戰略機動,因此MAS的算法必須能夠與大量的智能體和異質資產一起擴展。算法的另一個重要能力是處理復雜狀態空間(即許多智能體)和多領域環境的大量觀察能力。在接下來的章節中,我們將討論在MDO中使用不同種類的RL算法對戰略機動的影響。

無模型算法可分為非策略性和策略性算法,其中狀態行動空間可以是連續的或離散的。在這一節中,討論了無模型算法的優勢和劣勢,以及它們如何與戰略機動相一致,從而實現MDO的目標。這一分析的目的是為尋找在MDO環境中實現戰略機動性的潛在算法方法提供方向。

4.1 深度Q網絡(DQN)

深度Q網絡(DQN)是一種單一的RL智能體算法,它被訓練用來玩行動空間離散、狀態空間連續的Atari 2600游戲。DQN使用一個用Q-learning訓練的卷積神經網絡,從高維輸入(連續圖像)中學習。

DQN算法是一種有效的樣本方法,因為它利用所有收集到的經驗來提取盡可能多的信息。DQN足夠強大,可以使用相同的超參數進行訓練,玩六種不同的Atari游戲,其中智能體在其中三個游戲中的表現比人類專家更好。

然而,DQN的一個缺點是,在理論上不能保證訓練好的神經網絡實現穩定的Q值預測(即在不同的獨立模型中,訓練好的策略可能會有很大的差異)。

鑒于DQN本質上是一個單一的RL智能體模型,它應該不足以在MDO中進行戰略機動。在MDO中,多智能體RL算法可能更適合,因為智能體在執行時間內典型的分散化,允許智能體彼此獨立運作。此外,DQN的原始實現只利用了四個觀察序列來學習Q值,這對于MDO中的戰略機動來說是不夠的。多個資產的戰略機動通常不能在如此短的時間間隔內被捕獲。事實上,這是DQN在評估的三個Atari游戲(即Q*bert、Seaquest和Space Invaders)中與人類相比表現不好的主要原因。然而,存在一些DQN的變體來解決這個問題和其他弱點。

Bootstrap DQN就是這樣一個變體,它學習了一個Q網絡的集合,以提高采樣效率,并克服了傳統DQN的不足之處。行動消除是另一種與DQN一起使用的方法,以解決大的行動空間。帶有記憶類型的DQN(即循環神經網絡)也可以用來處理部分可觀察性。如果一個智能體需要為完成任務而導航環境,這種方法就特別有用。另外,分布式DQN返回一個分布信息,可用于評估策略風險和減少最佳解決方案周圍的方差或噪音。

盡管DQN及其修改后的變體在處理比簡單的Atari游戲更復雜的任務方面很有前途,但DQN方法本質上缺乏一個多智能體預測機制來進行協作戰術,而這是MDO中戰略機動的需要。此外,DQN在大多數情況下計算量太大,無法用于軍事相關環境。最后,DQN算法方法對未見過的例子(例如,伙伴的新行為或環境中出現的實體/障礙)缺乏足夠的適應性。

4.2 深度確定性策略梯度(DDPG)

在現實世界中,大多數常規任務涉及連續狀態和行動空間。然而,DQN只考慮離散的狀態空間和低維的行動空間。處理連續狀態和行動空間的DQN的另一種方法是深度確定型策略梯度(DDPG)方法。DDPG通過結合價值函數近似和確定性策略梯度(DPG),推進了DQN方法的進展。DDPG利用行為批判的方法,可以克服連續空間的復雜性。這種無模式、非策略預測和控制算法可以執行物理控制任務(如車桿、靈巧的操縱、腿部運動或汽車駕駛)。

另一種使用深度神經網絡的方法是信任區域策略優化(TRPO)。這種方法直接構建一個隨機策略,而不需要演員-評論者模型(不要與環境模型混淆,這將使其成為一種基于模型的方法)。與TRPO類似,引導式策略搜索(GPS)不需要角色評論模型,而是使用軌跡引導的監督式策略學習以及一些額外的技術(例如,減少視覺特征的維度,在網絡的第一層增加機器人配置動態的信息)。因此,GPS的數據效率很高,如果需要的話,可以改編成DDPG。另一方面,PILCO首先學習一個概率模型,然后找到一個最佳策略。PILCO在某些問題領域具有很高的數據效率;然而,它的計算量很大。此外,D4PG對DDPG算法提出了一些改進:分布式評論者更新、分布式并行演員、N步返回和經驗重放的優先級,以實現對不同類別任務的更穩定和更好的解決方案。

從戰略機動的角度來看,DDPG算法的主要缺點是它被設計成一個完全分散的單一智能體算法(即獨立學習者)。因此,DDPG算法不便于在多智能體場景中進行協作。因此,使用DDPG所產生的戰略機動將不會產生協作的團隊行為。此外,DDPG不具備處理基于角色的多目標任務的能力,而這是軍事行動中戰略機動的要求。

4.3 多智能體深度確定性策略梯度(MADDPG)

RL智能體互動對于戰略機動的人工智能系統至關重要,不同的智能體可能需要組成團隊來抑制對手的戰略合作或抑制對手的協調。Q-Learning和PG方法分別受到非平穩性和高方差的影響。為了克服這些問題,多智能體深度確定性策略梯度(MADDPG)算法擴展了一個演員評論家方法,這使得它可以通過集中智能體訓練而對多智能體系統發揮作用。MADDPG框架采用集中式評論家家進行訓練,并在測試期間部署分散的演員。一個評論者(每個智能體都有一個)接收每個智能體的策略,這允許開發具有潛在不同獎勵功能的依賴性策略(例如,MADDPG允許訓練具有相反獎勵功能的對抗性團隊)。相反,演員(即策略網絡)在訓練和測試期間只擁有本地知識。演員(通過訓練)在與評論者評價一致的方向上反復改進策略。

MADDPG的一個主要弱點是,對Q函數的輸入隨著環境中智能體數量的增加而增加(不可擴展)。這給MDO中的戰略機動性帶來了問題。如果智能體需要被替換、添加、修改或移除,可能需要進行再訓練。在戰略機動中,智能體可能需要定期轉換角色或改變能力,這對MADDPG適應軍事領域構成了重大挑戰。此外,頻繁的再訓練將使快速戰略機動變得不可能。縮短訓練時間將減少邊緣的計算負荷,使快速戰略機動成為可能。MADDPG不能適應這種極端情況。對于軍事應用,希望有一個強大的對手或智能體模型,以便使作戰時間最大化(即有足夠的時間來執行戰略機動)。

為解決其可擴展性問題,對MADDPG的一個潛在修改是形成智能體集群,為集群而不是每個智能體單獨學習一個策略。在發生新事件的情況下,可以推遲重新訓練的需要,因為從理論上講,一個智能體集群將有一套處理動態情況的可變能力。此外,這將避免隨著智能體的修改或新智能體的引入而增加Q函數的輸入空間。然而,問題來了。我們怎樣才能將一個任務分解成部分獨立的子任務,并使最優分組策略的退化程度最小?

雖然MADDPG可以形成一組異質的多智能體策略,能夠完成不同的任務,但這種方法不能很好地擴展到十幾個智能體。隨著智能體數量的增加,策略梯度的方差會呈指數級增長。因此,這種方法不太適合MDO中的戰略機動,在這種情況下,必須考慮到40多個異質智能體的對抗情況。克服這一可擴展性問題的方法是均值場多智能體RL算法,該算法計算鄰近智能體Q值的均值估計,當智能體之間的鄰近互動變得復雜時,可能導致高誤差率。此外,進化種群課程算法的設計是為了通過將遺傳算法方法與RL相結合,使MADDPG具有可擴展性。隨著MADDPG的進步和該方法所顯示的成功,可以想象這些算法的進步會導致在模擬實驗中對MDO內的戰略機動性進行強有力的演示。

與MADDPG不同的是,反事實多智能體(COMA)方法對所有智能體使用一個集中的評論家,但被設計用于離散的行動空間。COMA比MADDPG更具可擴展性,但它可能導致一套同質的策略,在智能體能力充分不同、局部目標不同或獎勵函數不同的情況下可能失敗。與MADDPG類似,Minmax多智能體DDPG(M3DDPG)比MADDPG的原始版本增加了一項改進,允許智能體制定更穩健的策略來對抗對手(即具有對立獎勵結構的競爭游戲)。然而,M3DDPG仍然無法處理異質智能體被引入系統的情況。

在具有連續狀態和行動空間的環境中實施算法,有時需要利用常見的技術來操作輸入或輸出,如離散化狀態和行動空間或將離散的策略輸出轉換為連續輸出。轉換策略輸出的一個例子是OpenAI多智能體粒子環境中MADDPG的實現。在這個例子中,離散的策略組件被用來計算連續的行動。從另一個角度來看,多智能體轉化器軟雙Q學習算法將連續行動空間離散為一組速度和角速度控制,然后可以在運動模型中使用。盡管這些技術允許在連續環境中使用這種算法,但這些算法方法沒有用連續信息進行訓練,這可能會限制它們在物理環境中進行戰略機動的功效。

4.4 價值為本

最近的一個基于價值的MARL算法系列在非常復雜的《星際爭霸2》模擬環境中被證明是相當成功的,其中根據智能體的本地Qa值學習了一個集中的聯合行動值Qtot。然后通過線性argmax算子從Qa中提取一個分散的策略。這種非常簡單而有效的分解方法避免了學習聯合行動值,而聯合行動值的規模并不大。如果增加新的智能體或用新的能力替換智能體,仍需進行再訓練。然而,與MADDPG相比,它更具有可擴展性,因為單個Q值僅從局部觀察中學習,避免了通過學習因子化的Qtot來學習聯合行動值。但是,當有超過40個智能體時,這個系列的算法的可擴展性可能會受到挑戰。為了使其更具可擴展性,已經提出了基于角色的算法RODE,其中智能體的角色是根據他們對環境的影響對他們的行動進行聚類來確定。該算法對于大量的智能體顯示了非常有希望的結果。

對于戰略機動,RODE算法是非常有前途的,因為各組智能體可以被分配到不同的角色,其中角色可以基于他們的行動和對環境的影響或任何其他固定的行為(對于盟友或甚至敵人)。然后,該算法可用于不同群體的戰略角色轉換。由于不同角色的行動空間受到限制,該算法收斂得非常快。這種算法也適合于基于角色的技術的戰略使用,這可能會在未來的工作中進行研究。即使RODE是非常可擴展的,我們也不清楚當新的智能體將被添加到環境中時如何調整它;需要學習一個集中的策略以實現最佳協作。

與RODE算法相比,一種可擴展的多智能體強化學習方法部署了一種熵-規則化的非策略方法來學習隨機價值函數策略,實驗表明它能夠擴展到1000多個智能體。如前所述,可擴展的RL算法關注環境的復雜性--系統或團隊中的智能體越多,狀態空間越大。RODE是有限的,因為它使用一個集中的策略,當更多的智能體被引入到環境中時必須重新訓練。多智能體轉化器軟雙Q學習算法是一種集中訓練的非策略學習算法(即共享一個中央經驗重放緩沖器),其執行是分布式的(即每個智能體根據其本地觀察做出自己的控制決定),而不是來自中央控制器。由于這種分布式的方案,當智能體被添加或從系統中移除時,團隊不受影響,繼續執行他們的策略。

在可擴展性方面,訓練大型MAS(即許多智能體)是很困難的,而且已經表明,即使是最先進的算法也不能為復雜的MARL任務學習到高性能的策略。多智能體變換器軟雙Q學習通過在訓練期間利用啟發式方法緩解了這一可擴展性問題,該方法允許在較小的智能體集合上訓練策略(例如,在目標追蹤場景中,四個智能體追蹤四個目標),并且該策略已被證明可以在執行中與更多的智能體一起工作而不需要任何調整(即用1000個智能體測試和評估)。訓練和執行過程中使用的啟發式方法使算法能夠解決智能體數量的巨大分布變化:它基本上將測試時的大型復雜觀察空間縮減為接近智能體策略最初訓練的內容。從軍事角度看,這種提法是戰略機動的理想選擇,因為現場的智能體可能會在原地丟失或獲得,可能要考慮額外的戰略信息。一個靈活和可擴展的算法提供了MDO中所需要的能力。

5. 洞察力和結論

由于一些因素,包括科技進步,美國的對手正在變得更加先進。在未來的MAS自主戰爭中,協作的戰略機動可以為國防軍帶來某些優勢。在這篇文章中,我們討論了一些最突出的RL算法,以發現訓練MAS的可行候選策略,這些MAS可以有效地進行戰略機動,從而在未來潛在的軍事行動中打開機會之窗。本文描述了RL方法的分類法,并對最突出的RL算法進行了概述。研究發現,由于訓練和測試因素的不同,大多數RL算法缺乏處理與未來潛在沖突相關的復雜性的能力。

DEVCOM ARL ERPs為開發和實施智能MAS提供了一個規劃性的路徑。鑒于陸軍研究項目為美國國防行動提供了關鍵研究問題的答案,AIMM和EOT ERPs特別促成了研究,可以為協作的自主MAS提供一個路徑,可以克服與1)環境,2)對手戰術和能力,3)自身能力(即,獲得新的能力,失去以前的能力,或能力被改變),4)團隊組成(例如,增加、刪除或交換隊友),5)戰略團隊定位、進入、導航(機動)以支持部隊并壓倒對手,以及6)任務目標。最近,AIMM和EOT ERP在這一領域的工作闡明了衡量MAS協調性的方法,并允許開發一個框架來訓練和測試執行各種任務的MAS的協調性,此外還評估了利用一系列集中訓練技術的新算法方法。

此外,還需要進行更多的調查,以闡明有利于在ISTAR任務和其他交戰場景中利用MAS的軍事戰略。在淺顯的情況下,將完全自主的MAS送入高風險情況(即預期因果率高的情況)是可取的;然而,由于目前的技術限制,僅僅期望MAS能夠在沒有人類監督或干預的情況下完成任務是不夠的。因此,在未來的工作中,將進行研究以確定一套強有力的交戰方案。最后,這項工作將導致自主MAS的最終整合,以便在未來的軍事行動中盡可能地協調戰略機動。

付費5元查看完整內容

?

對于群體智能中的人類操作員來說,關鍵情況下的決策支持至關重要。自主系統共享的大量數據很容易使人類決策者不堪重負,因此需要支持以智能方式分析數據。為此,使用了用于評估情況和指示可疑行為或統計異常值的自主系統。這增強了他們的態勢感知能力并減少了工作量。因此,在這項工作中,強調為檢測監視任務中的異常而開發的數據融合服務,例如在海事領域,可以適應支持集群智能的運營商。此外,為了使人類操作員能夠理解群體的行為和數據融合服務的結果,引入了可解釋的人工智能 (XAI) 概念。通過為某些決策提供解釋,這使得自主系統的行為更容易被人類理解

作者解決了由于自主系統共享大量數據而導致的信息過載問題。為了緩解這個問題,他們建議通過兩種智能數據分析方式來幫助人類操作員。第一種方法是自動異常檢測,這可能會加強人類操作員的 態勢感知SA 并減少他們的工作量。第二種方法是可解釋的人工智能 (XAI) 概念;它們有可能使群體行為以及異常檢測結果更易于理解。

作者認為,控制一群無人機仍然具有挑戰性。一方面,(半自動化)群體代理“必須決定行動方案”;另一方面,人類操作員必須決定他們的行動,例如與群體互動。提出的建議力求改善人在循環中。考慮到海上監視的應用,使用非固定代理的動態方法具有幾個優點。首先,某些場景只能使用動態方法進行管理;其次,與固定監視傳感器相比,代理更便宜;第三,在多個地點靈活使用代理可以減少操作群體所需的人員數量。然而,情況評估仍然需要知情的操作員。

作者認為,在海洋領域用于船舶分析的異常檢測算法可能適用于引入以下場景的群體。“假設我們有一個群體來支持海上船只,這些船只不僅會收集它們自己的傳感器系統可用的數據,還會收集所有資產的數據。所有來源收集的信息都需要融合成一幅連貫的畫面。這不應僅限于 JDL 數據融合的第一級,而應包括更高級別的數據融合過程,以獲取有關附近所有對象的可用信息。” 數據驅動的方法能夠應對這種情況。文獻提供了三種檢測位置和運動異常的方法:統計解釋為與正常行為相比的異常值;聚類分析聚類相似的軌跡和確切的路線;用于建模正常移動模式的深度學習方法。為了應對更復雜的場景,包括船舶周圍環境(基礎設施、地理、天氣等)在內的算法是必要的。在某些復雜異常的情況下,區分正常和異常行為需要基于規則、基于模糊、多智能體或基于概率圖形模型的算法。對于所有提到的算法類別,作者都指出了大量的示例算法。

一些算法是黑盒模型,因此,它們的解釋對于人類操作員來說是復雜的。XAI 概念可以幫助緩解這個問題。XAI 概念旨在“提供道德、隱私、信心、信任和安全”,并努力在“它已經做了什么、現在正在做什么以及接下來會發生什么”中明確決策。,從而提高了人工操作員的 SA。考慮到 XAI 模型,模型特定方法(僅限于某些數學模型)可以與模型無關(適用于任何類型的模型)方法區分開來。

在目前的貢獻中,重點是與模型無關的方法。考慮到這些,局部解釋方法(解釋整個模型的單個預測結果)可以與全局解釋方法(解釋整個模型的行為,例如以規則列表的形式)區分開來。此外,作者使用特征屬性、路徑屬性和關聯規則挖掘來區分方法。通過特征屬性,“用戶將能夠了解他們的網絡依賴于哪些特征”;方法示例是提供全局和局部可解釋性的 Shapley Additive Explanations (SHAP) 和指示“模型在進行預測時考慮的輸入特征” 的局部可解釋模型無關解釋 (LIME)。路徑集成梯度(PIG,使用局部解釋)等路徑屬性提供了對模型預測貢獻最大的特征,從而深入了解導致決策的推理。關聯規則挖掘(ARM)是另一種使用全局解釋的方法,發現大型數據集中特征之間的相關性和共現。ARM 方法使用簡單的 if-then 規則,因此被認為是最可解釋的預測模型。可伸縮貝葉斯規則列表 (SBRL)、基尼正則化 (GiniReg) 和規則正則化 (RuleReg) 技術被認為適用于監視任務。

作者認為,使用這樣的 XAI 概念,人類操作員(決策者)可以更好地理解、更好地控制和更好地與一群自主代理進行通信,尤其是在具有挑戰性的環境中。總而言之,將異常檢測和 XAI 概念這兩種方法應用于人類在環、用戶對群體智能的理解和信任可能會得到改善。

付費5元查看完整內容
北京阿比特科技有限公司