自主機器人團隊組成中的異質性什么時候是有益的,什么時候是有害的?我們在一個最小可行的模型中研究并回答了這個問題,該模型研究了異質速度在周界防御問題中的作用,其中防御者共享一個總的速度分配預案。我們考慮了兩種不同的問題背景,并制定了基于動態規劃和局部互動規則的策略。我們對這兩種方法進行了理論分析,并使用模擬方法對我們的結果進行了廣泛的驗證。有趣的是,我們的結果表明,異質團隊的生存能力取決于防御者可用的信息量。此外,我們的結果表明了一個普遍性屬性:在廣泛的問題參數范圍內,防守方的最佳速度比率幾乎保持不變。
關鍵詞:周界防御,異質多機器人團隊,動態規劃
機器人系統的一項日益重要的任務是保衛一個地區免受外部因素的影響,這些因素構成了不同程度的威脅。這方面的例子包括保衛機場,防止無人機入侵[6],保衛野生動物棲息地,防止偷獵者侵入[1],撲滅和防止人類或自然活動造成的破壞性野火蔓延[8],以及軍事應用[13]。
一般來說,周界防御問題的解決方案是為一組限制在某一區域周界的智能體尋找策略,這些智能體受托保衛該區域不受試圖突破該區域周界的入侵者侵害[16]。
與同質化的機器人團隊相比,具有不同能力的機器人團隊(異質化團隊)有其獨特的優勢和挑戰。為不同的智能體配備不同的能力可以形成協同效應,在這種情況下,異質系統勝過由相同智能體組成的同質系統。因此,在過去十年中,機器人界對定義、探索和量化不同機器人應用中的異質性產生了極大的興趣[19,14,11,7,12,10]。
本文研究了多機器人團隊中異質性對周界防御問題的影響。我們提出了兩種最優策略,在不同的假設條件下有效。第一個策略是基于動態規劃(DP)[2]。當防御者能夠預測來襲攻擊的位置時,它是最優的,但受到維度詛咒的影響,因此相關計算成本相對較高。第二種策略是基于局部互動規則的,當防御者沒有關于來襲攻擊的信息時是最佳的。這種策略可以以在線方式高效計算,但沒有提供對攻擊位置的任何先驗知識。
我們證明了兩種策略的最優性并分析了它們的時間復雜性。這些算法在模擬中得到了廣泛的驗證。我們的數值實驗是二維的,但大多數理論結果對任何維度都有效。這包括無人機應用中的三維周界,以及作為任意維度狀態空間中約束集產生的更高維度的周界。
我們的結果表明,異質性在防守方能夠獲得有關來襲攻擊信息的情況下是有益的,而在防守方沒有攻擊信息的情況下是有害的。此外,我們顯示了一個普遍性的屬性,即在兩個防御者的情況下,防御者的最佳速度比率幾乎保持不變。
相關工作:周界防御問題是追擊-規避問題的一個變體,在文獻中已經被廣泛地研究。Issacs的開創性工作描述了微分博弈的方法,以得出一個追求者一個規避者博弈的均衡策略[4]。不同研究人員為解決涉及多個追擊者和規避者的追擊規避博弈各種變體做了大量的工作[20,21,3]。這些論文包含了從追擊者方面、從規避者方面或兩者來看待追擊-逃避博弈的工作。維度的詛咒對解決涉及多個追擊者和規避者的問題構成了相當大的挑戰。本文提出的周界防御問題是Isaacs[4]首次提出的目標守衛問題的一個變體。在目標守衛問題的設定中,一個智能體的任務是對抗一個敵對智能體以守衛一個目標區域。對周界防御問題的研究還處于初級階段。Shishika和Kumar的綜述文章[16]描述了最近關于多機器人周界防御問題的工作[15,5,18,17]。與這些工作中考慮的問題不同,我們考慮的是一類周界防御問題,其中攻擊者的數量遠遠大于防御者的數量。
本文的其余部分組織如下。第2節包含了我們的符號和問題陳述。第3節和第4節分別詳細介紹了我們在非限定和單位時間范圍內的理論結果。第5節討論了模擬結果。
圖1:三個防守者面對三個攻擊者,每個防守者的單位時間可達集顯示。請注意,第三個維度是時間;如果攻擊代表一個物理物體,它是從圓圈外的某個地方接近的,但我們只關心它將在哪里和什么時候擊中周界。在這個例子中,防守者不允許離開周界,所以可達集的大小隨著速度的增加而線性增加(直到它覆蓋整個周界)。
?在日益復雜的軍事行動環境中,下一代兵棋推演平臺可以減少風險,降低作戰成本,并改善整體結果。基于具有多模態交互和可視化能力軟件平臺的新型人工智能(AI)兵棋推演方法,對于提供滿足當前和新興戰爭現實所需的決策靈活性和適應性至關重要。我們強調了未來作戰人-機器交互的三個發展領域:由人工智能引導的決策指導,高計算力下的決策過程,以及決策空間的真實呈現。這些領域的進展將使有效的人機協作決策得以發展,以滿足當今戰斗空間日益增長的規模和復雜性。
關鍵詞:決策、交互、兵棋推演、人工智能、增強/混合現實、可視化
在傳統的兵棋推演中,指揮官利用一個共同的基于地圖的作戰地形,并在軍事決策過程(MDMP,方框1)中模擬各種因素的組合如何產生行動方案(COA)、可能的反擊行動、資源使用估計和預測結果(美國陸軍,1997年,2014年,2015年)。在幾天或幾周的時間里,MDMP過程導致了一套精煉的COAs,它對作戰環境做出了一定的假設,包括地形、天氣以及戰區資產的可用性和能力(即塑造支持主要作戰行動的活動)。
方框1. 軍事決策過程(MDMP) | |
---|---|
MDMP是美國陸軍解決問題的理論方法,從接到任務開始,到生成作戰命令結束。MDMP被用作一種工具,幫助指揮人員審查眾多的友軍和敵軍的作戰行動。MDMP的7個步驟在規劃新任務、擴展行動和執行訓練演習所需的決策過程中灌輸徹底、清晰、合理的判斷、邏輯和專業知識(美陸軍,1997年,2015年)。 | |
指揮官在接到任務后啟動了MDMP。在MDMP的第1步中,所有的工作人員和關鍵的任務參與者都被告知任務和待定的規劃要求,包括進行MDMP的可用時間量。確定進行任務分析所需的工具,并收集與任務和作戰區有關的文件。步驟2,執行任務分析,建立對任務的全面理解,包括關鍵的事實和假設,形成擬議的任務說明和任務分析簡報,為制定COA做準備。 | |
MDMP的第3至第6步著重于制定COA以進行分析和比較。這些步驟包括:第3步,制定COA;第4步,COA分析(兵棋推演);第5步,COA比較;第6步,COA批準。COA是對一個已確定的問題的潛在解決方案。每個COA都要使用篩選標準來檢查其有效性,如在既定的時間框架、空間和資源限制內完成任務。COA的選擇過程通常涉及到兵棋推演,它試圖在考慮到友軍力量和敵人能力的情況下,將行動的順序流程可視化,同時考慮到行動區域內平民的影響和要求(美陸軍,2014)。戰術模擬(兵棋推演)方法的好處是突出了作戰行動的優勢和劣勢。這往往是一個反復的過程,對作戰行動方案進行評估,然后根據需要進行修改,直到出現一個或多個具有最高成功概率的作戰行動方案來完成任務目標。 | |
在一個具體的行動方案得到指揮部的批準后,MDMP的最后一步是制作行動指令,這是一份給下屬和鄰近單位的指令,旨在協調所有參與任務的組織的活動。這一步驟涉及到所有受命令傳播影響的組織之間的積極合作,并建立起對局勢的共同理解。 |
盡管MDMP幫助指揮官了解作戰環境和考慮作戰方法,但這個過程有很多局限性,如時間密集、假設僵化、跨場景訓練的機會有限,以及將人工智能(AI)指導納入決策過程的機會很少。傳統上,一項任務的成功與指揮部執行MDMP的能力直接相關。然而,鑒于當今多域作戰(MDO)的復雜性增加(Feickert,2021年),有大量的任務指揮系統和流程,與行動相關的所有活動的整合和同步變得越來越困難,甚至到了人為無法完成的地步。由于MDMP的缺陷而導致的規劃專業知識的缺乏,可能會導致不同步和不協調的行動,從而最終導致士兵的生命損失。
MDMP中沒有具體描述戰斗空間的可視化能力,但它顯然在決策過程中發揮著重要作用。最近,集成了先進可視化能力的新系統和新技術已經被開發出來,它們可以提高態勢感知,從而增強決策過程。美陸軍的例子包括Nett Warrior(Gilmore,2015),它使下馬戰士能夠直觀地看到附近的友軍和敵軍,同時根據當地的地形協同規劃戰術任務。盡管這項技術將無線電和數字地圖擴展到了下馬戰士,但它缺乏一個底層的人工智能引擎來提供決策幫助。戰斗空間可視化和交互平臺(BVI,前身為增強現實沙盤,ARES)是陸軍技術的另一個例子,它能夠為任務規劃提供分布式協作,具有從任意視角和廣泛選擇設備的共同作戰畫面的二維和三維可視化能力(Su等人,2021)。BVI架構的制定是為了拉入外部計算服務,如分析管道、模型和人工智能引擎。美陸軍研究實驗室正在努力將這些類型的服務納入BVI,包括用于加強決策支持的人工智能。
目前,MDMP并沒有將人工智能指導納入整體任務規劃方法中。美陸軍的自動規劃框架(APF)(Bailey,2017)開始通過將自主技術插入MDMP工作流程來解決人工智能輔助決策問題。指揮人員可以通過APF的數字規劃呈現、規劃創建和規劃監控工具,在任務規劃和COA開發期間獲得背景援助。任務執行和估計能力通過監測任務的規劃和實際進展,為改進決策跟蹤和支持活動提供自動協助。盡管APF為MDMP引入了基本的自動化水平,但它缺乏Nett Warrior和BVI所提供的先進的可視化和用戶互動能力。
提供地面部隊自動化和用戶可視化能力的是美陸軍最知名的兵棋推演平臺--半自動化部隊(OneSAF),為計算機生成的地面部隊提供建模和模擬能力(PEO_STRI, 2022)。OneSAF提供了半自動和全自動的軍事實體(即士兵、坦克、直升機和綜合單位)的建模,在類似真實世界的戰斗空間中以不同的保真度來支持特定的應用和場景。OneSAF主要用于訓練,并與目前的任務指揮系統具有互操作性。它可以使用多分辨率的地形和詳細的實體相關數據庫來模擬廣泛的作戰環境。然而,OneSAF對地形和實體系統的高保真建模的優勢使得它的設置和運行成本很高。它受到老化系統的限制,而且眾所周知,士兵需要大量的培訓來學習如何操作模擬,使用起來很困難(Ballanco,2019)。OneSAF的復雜功能并不適合開發人工智能能力,以實現快速和敏捷的戰士-機器決策。
除了MDMP和上面提到的陸軍平臺外,最近將人工智能納入決策過程的工作包括一些方法(Goecks等人,2021a),在模擬人類決策過程方面取得了一些成功。一般來說,人工智能在決策變量有限的問題上取得了一些成功,如資源分配(Surdu等人,1999)、飛行模擬器(Drubin,2020)和更簡單的場景。正在進行的挑戰包括需要提高人工智能的能力,以解決有多個行為者、不完整和可能沖突的信息、不斷變化的單位行動和環境屬性的復雜決策,以及需要將這些決策的后果在許多空間和時間尺度和領域內可視化。
以下各節描述了對MDMP的潛在改進。"未來軍事決策過程所需的進步"一節概述了支持MDO決策的三個研究領域,并以圖表形式描述了這些研究領域與軍事理論決策方法之間的關系。"未來軍事決策過程所需的進步 "一節中的小節對每個研究領域進行了更深入的討論。"展望推進人-人工智能團隊決策的交互技術 "一節概述了未來的作戰人員-機器接口(WMI)的發展方向,重點是與決策有關的人-人工智能團隊的跨學科研究。
軍事決策過程在支持MDO復雜決策方面的局限性,突出了在三個研究領域的改進需要。首先,有必要將人工智能產生的指導和輔助決策支持納入MDMP。這既包括進一步開發和整合人工智能到戰斗空間決策規劃,也包括進一步改善人工智能決策過程的可解釋性和透明度(Chen等人,2018)。第二,有必要在戰略層面以及戰術邊緣,盡可能地將決策分析與高性能計算(HPC)的力量結合起來。這將能夠利用HPC系統的力量來支持建模、分析和計算時間,同時整合和同步來自所有戰區領域的信息。最后,有必要利用先進的可視化技術,如混合現實技術,對決策空間進行更準確和互動表述。不是簡單地在一個固定的時間尺度上顯示地形的二維渲染,而是需要可視化不同領域的決策是如何相互作用的,并利用混合現實技術來提高理解的吞吐量,并產生平面顯示不可能的洞察力。
除了MDMP之外,其他更廣泛適用的支持戰斗性問題解決的軍事理論包括:DOTMLPF[例如,學說、組織、訓練、物資、領導、人員和設施;(美陸軍,2018年)],這是一個確定差距并為當前和未來作戰要求提出設計解決方案的框架;以及METT-TC[例如,任務、敵人、地形和天氣、部隊、可用時間和民事考慮;(美陸軍,2019年)],這是一個結構化框架,用于捕捉任務相關因素的狀態,以便在軍事行動期間進行共享評估。這些理論定義了MDO戰場的信息背景,構成了應用于上述三個研究領域的軍事決策的核心基礎。如圖1所示,在為人類和人工智能指揮開發復雜軍事決策空間的新表述時,研究進展和MDO相關理論相互借鑒、相互啟發、相互加強(美陸軍,2010)。
圖1. 新型作戰人員-機器交互(WMIs)和人工智能輔助決策所需的三個研究發展領域,以支持和加強基本的MDO理論[右下圖來源:Lebsack(2021)]。
需要新的人工智能支持的WMI,以利用人工智能決策方面正在取得的進展,并為復雜的適應性決策的人工智能學習作出貢獻。在簡化的戰斗空間中測試人工智能決策輔助工具是開發過程中重要的第一步,也是將人工智能納入更成熟的戰斗空間平臺(即BVI、OneSAF)的前奏。開發用于決策輔助實驗的人工智能測試平臺可以在MDO中產生能力越來越強的潛在COA建議。圖2顯示了陸軍開發的兩個人工智能測試平臺的例子。
圖2. 兩個ARL人工智能測試平臺的例子。左邊:ARL Battlespace(Hare等人,2021)( //github.com/USArmyResearchLab/ARL_Battlespace )。右邊:ARL的Simple Yeho測試平臺。圖片由C. Hung制作。
人工智能測試平臺能夠開發出匯集所有領域信息的AI,并計算出人類和AI智能體的風險和預期回報。圖2的左側顯示了ARL戰斗空間測試平臺(Hare等人,2021年),它是從頭開始開發復雜決策的新型人工智能的理想場所。它對戰斗空間的抽象強調了軍隊相關場景下的核心推理原則,在這種情況下,用蜜罐進行網絡欺騙。較小的網格空間使人工智能的學習和發展能夠集中在不確定性下的復雜推理,有多個友好和敵對的agent。圖2的右側顯示了ARL的Simple Yeho測試平臺,它提供了將人工智能開發與更多真實世界場景中的默契推理結合起來的能力,有多個基于地形的海拔高度、視線范圍、障礙物、樹葉(隱蔽)、道路和城市區域。紅色陰影和黑色線條表示任務的起點和終點、左右邊界以及人工智能建議的路線。這種額外的真實性使其能夠與MDO理論相結合,包括DOTMLPF和METT-TC,并使人工智能與自然的、機會主義的士兵行為共同發展。這兩個人工智能測試平臺都可以擴展為傳統和沉浸式混合現實WMI開發平臺。
使用漸進式和可擴展的人工智能測試平臺,可以調查現有人工智能的幾個基本限制,特別是對于具有不確定性的復雜和適應性決策,以及人類和AI智能體的協作和對抗。對多智能體的協作和對抗性決策進行建模可能特別復雜,因為其遞歸性質,其他智能體是模型的一部分(Goldman,1973;Grüning和Krueger,2021),需要對決策特征、個性化的價值、風險規避、記憶和注意力進行動態和不斷發展的估計。這些具有高度不確定性、復雜性和動態性的情況是人類擅長的領域,適當設計的交互界面和人工智能測試平臺的人機協作可以提供加速和更有效的決策。對于有效的團隊合作,新穎的WMI應該幫助作戰人員篩選復雜的信息,并幫助人工智能發現決策的隱含規則。下面,我們提供了關于人機協作如何有效的案例。
多域兵棋推演中需要的復雜決策是開發有效人工智能決策輔助工具的直接挑戰。最近人工智能在圍棋、國際象棋、Minecraft和大富翁等游戲中的成功(Silver等人,2017;Goecks等人,2021b;Haliem等人,2021)是基于對世界現有狀態有完整了解的游戲(即 "開放 "游戲),而兵棋推演平臺通常包括關于作戰環境的不完整(如星際爭霸)、不確定或欺騙性信息(Vinyals等人,2019)。不確定性也可能來自變化的物理學或其他環境規則,正如在《憤怒的小鳥》中所探索的那樣(Gamage等人,2021)。由于世界狀態、不同行動者的狀態以及所采取的行動不確定性,知識的缺乏使得人工智能agent難以計算未來行動的風險回報情況(Cassenti和Kaplan,2021)。不確定性也限制了人工智能估計其他行為者的風險回報概況的能力,而這是計算有效的博弈論策略所需要的。人工智能被可能的最優和近似最優選擇的廣度所淹沒(Lavine,2019),即由于信息有限而選擇錯誤的選項,這種情況并不罕見,因為人類在制定有效探索隱藏信息的策略時,采用啟發式方法進行有效的選擇和預測(Gardner,2019)。為了幫助發展人工智能的隱性知識和探索能力,新型的WMI需要有效地解釋和展示決策景觀,以使作戰人員能夠快速和自然地瀏覽可能的選擇,同時使人工智能能夠在不施加認知負擔的情況下從人類的決策中機會主義地學習(Lance等人,2020)。這種機會主義學習可以包括:例如,凝視跟蹤,以捕捉吸引人類興趣和意圖的視覺區域和未標記的目標。它們還可以包括建立在自然的士兵選擇行為基礎上的行動者批評方法,以改善人工智能對人類專家在不確定、不完全信息和欺騙的情況下如何優先考慮某些選擇的學習,這取決于任務相關的背景。
開發人工智能的WMI的另一個基本挑戰是如何有效地整合和顯示MDO中所有五個領域的信息,特別是空間和網絡,因為這些領域的信息具有不同的時空尺度(Gil等人,2018)。對于網絡,決策的規模和速度可能比人類處理和理解的能力更快,需要人類的輸入來指導半自動化的決策,以及實施進攻和防御性欺騙策略的人工智能。WMI需要能夠以這樣的方式顯示決策圖景,即可以解釋一小部分最優和接近最優的決策策略(例如,圖3中的決策樹)。這應該包括對關鍵agent在不確定情況下的未來狀態和風險回報情況的估計(Hare等人,2020),以使有效的博弈論決策能夠被共同開發和相互理解。
圖3. 在頂部,是BVI網絡戰術規劃器應用程序中友軍與敵軍戰爭場景的三維視圖。三維視圖提供了一個比二維視圖更真實的決策視角,例如,顯示友軍(藍色)和敵軍(紅色)機載預警系統(AEWs)和周圍地形的海拔。這使得快速審查可能的視線和相對于周圍地形的感應。下面是人工智能的導航決策樹,為人工智能計算的幾個關鍵選擇的風險/回報概況以及它們如何映射到地形上提供透明度。這種抽象的決策空間還可以整合非空間決策,例如網絡欺騙。虛線表示與友方AEW的通信聯系和對敵方AEW的可能干擾。圖片由C. Hung制作。
這些挑戰為有效的WMIs設計提供了參考。也就是說,我們需要有能力從不同的來源(包括從其他國家的決策輔助工具)提取信息,以及一個能夠承載整合這些信息的計算能力的架構,同時還要處理基礎的人工智能計算(用于學習和部署)。我們還需要共同開發一個界面和算法設計,以適時地利用人類和人工智能agent的優勢并減少其局限性。
在復雜的決策過程中,需要大量的計算能力來處理和記錄所有組件、實體和狀態空間。從積累的動態狀態空間的數據集中建立過去、現在和預測模型,需要利用HPC資源來產生分析性的見解,并在決策背景下創建有用的表述。
實施HPC分析工作流程的一種方法是使用持久性服務框架(PSF)。PSF是一個最近可用的分布式虛擬化解決方案,它可以通過一個基于網絡的前端實現對HPC服務的非傳統訪問,而不像傳統的HPC環境,計算節點在特定的時間段內以批處理模式分配給用戶。此外,PSF提供對數據、數據庫、容器化工具集和其他托管平臺的分布式連續訪問(Su等人,2021)。
在一個PSF方法的例子中,一個模擬引擎連接到PSF,用于記錄人類和人工智能做出的所有決定。這允許分析在任務規劃和COA開發過程中發生的決策行為,以及識別決策模式和戰略,以開發競爭性和現實的兵棋推演場景。一個戰斗空間可視化平臺可以托管在PSF上,并使用消息傳遞協議來更新所有連接的設備接口。來自模擬引擎的狀態信息可用于生成戰斗空間和參與作戰單位的圖形表示。
使用PSF方法并利用HPC資源,可以實施人工智能輔助決策機制,利用大數據攝取和分析,同時可供地理分布的用戶用于協作決策工作和 "永遠在線 "的個性化培訓和紅色團隊。連接到PSF托管服務器的各種混合現實顯示模式可以支持一系列作戰場景,從戰略層面的指揮和控制到作戰邊緣的更多移動戰術使用。
用圖形表示各級行動的軍事決策戰略需要新的可視化方法,這些方法可以應用于以規則變化、認知狀態、不確定性以及個人偏見和啟發式方法為特征的動態環境(Dennison等人,2020;Hung等人,2020;Raglin等人,2020)。戰斗空間的視覺表現應該在技術上盡可能準確和逼真,但又保持在人類可以理解和解釋的認知水平(Kase等人,2020;Larkin等人,2020;Hung等人,2021)。融合了混合現實技術的先進可視化方法有可能更好地表現多領域戰爭的變化特征及其不斷變化的威脅和動態環境。隨著最近混合現實可視化設備的技術進步,成本降低,硬件的可靠性和實用性顯著提高,混合二維和三維可視化方法現在已經成為可能。
由多個二維顯示器組成的混合現實方法增強了更先進的三維可視化能力,可以為指揮人員提供理解復雜的兵棋推演狀態空間所需的洞察力(Su等人,2021)。當需要一個共享的戰斗空間表示時,可以通過在不同的可視化模式上實現多個協調的視圖來實現協作的戰略規劃模式,以根據分布式指揮人員的輸入進行互動更新。
BVI(Garneau等人,2018)平臺表示地理空間地形信息和地圖圖像,允許指揮人員建立和修改戰術任務規劃和COA。作為一個數據服務器,BVI將地形和作戰數據分發給支持多種可視化模式的客戶端應用程序,包括頭戴式顯示器設備、基于網絡的界面、移動安卓平板設備和混合現實設備(例如,HoloLens 2、Oculus Quest)。
例如,圖3(頂部)顯示了位于加利福尼亞州圣貝納迪諾縣歐文堡國家訓練中心的高分辨率地形上的友軍與敵軍的兵棋推演場景(Wikipedia, 2021)。與MDMP期間經常使用的傳統2D地圖顯示相比,戰斗空間的3D視圖可以從多個觀察角度提供更豐富的用戶體驗。三維視圖,在BVI的網絡戰術計劃器(WTP)中,將地形和人工特征的空間信息以及由MIL-STD 2525C符號描繪的單位位置可視化(美國防部,2014)。可以想象,地理空間視角,如BVI提供的視角,支持決策者對動態戰斗空間環境的理解。與可導航的人工智能增強的決策空間(圖3,底部)搭配,組合的視角可以使人們更好地理解視覺空間依賴性、影響和因果關系、估計的風險和價值、不確定性以及復雜決策的欺騙性。將這種以地理空間和決策為中心的視角與人工智能相結合,可以提供必要的廣度,以協調物理行動與網絡和其他非空間領域的行動,跨越多個時間尺度,并具有快速適應變化的任務目標的靈活性。
人工智能和人-人工智能團隊的快速發展需要WMI同步發展。隨著新型人工智能對有價值的COA產生更好的預測,并能更好地處理復雜的決策,它們也必須利用人類的專業知識,學習如何處理具有高度不確定性、欺騙、隱性知識和博弈論的決策。相反,人工智能的推理必須既抽象又能與兵棋推演環境相聯系,以實現透明和信任,同時又不造成過度的認知負擔。基于三維混合現實的WMI可以利用和增強人類固有的三維認知和預測能力(Welchman等人,2005;Kamitani和Tong,2006;Kim等人,2014;Boyce等人,2019;Krokos等人,2019),如果設計得當,其交互將感覺自然,同時擴大顯示多個領域的信息的能力,同時使AI能夠適時地從用戶的決策中學習。
我們強調了三個關鍵的發展領域,即人工智能引導的決策指導,支持這種指導的計算基礎設施,以及決策透明度的混合現實表現的發展。這些領域的進步需要跨越許多不同學科的專業知識。新的人工智能發展需要融合神經科學、心理學和數學的思想,以克服復雜決策中長期存在的問題的瓶頸。這包括跨時間尺度的學習和變化環境下的災難性遺忘,以及更具體的兵棋推演問題,如具有不確定性、欺騙和博弈論的多Agent決策。計算基礎設施也需要發展,因為計算能力和數據框架對于在戰術邊緣產生人-人工智能團隊的共同操作圖來說都是必不可少的。為了有效地開發,應該通過一個共同的框架來抽象出專有的限制和軟件的依賴性,并為使用和故障排除提供清晰的文檔,以使學術界、政府和工業界更好地專注于解決人與人工智能的合作問題。這個通用框架應該包括有效的信息傳遞,同時提供靈活性和適應性,以滿足人工智能開發和人類用戶在訓練和實際使用環境中的需求。最后,交互技術的開發本身需要跨學科的協同專業技術。一個基礎性的問題是如何壓縮信息使之被用戶有效地理解,以及如何最好地利用用戶的互動來進行機會主義學習。人類的大腦并不處理所有的感官信息,而是對世界進行預測和假設,以便在信息不完整的環境下節約計算。一個有效的WMI應該同時預測潛在的決策結果以及個人用戶的期望和假設。此外,人工智能決策輔助工具必須估計用戶的默契,使其能夠提供最相關的信息和最有希望的選擇,這些信息來自整個作戰領域。
信息作戰和指揮與控制(C2)是美國陸軍可以向盟友和伙伴提供的兩種能力。在未來的作戰環境中,不僅要為動能作戰做準備,而且要為混合作戰和以信息為重點的戰爭做準備。這需要在復雜和默契推理的人工智能能力方面取得進展,在能夠提供持續訓練、分布式混合決策和大數據分析系統方面取得進展,以及在人與人工智能協作決策和機會主義學習方面取得進展,以實現人工智能的持續進步和人與人工智能的共同適應。這些進展中的每一項都需要跨學科的計劃性努力,以克服復雜的技術挑戰,創造新的決策原則、理論和理論方法,包括持續開發綜合測試平臺和技術,以實現政府、學術界和工業界的合作和協同發展。
指揮與控制是聯合軍事行動的核心內容之一,然而,現代安全威脅性質、全球技術民主化以及信息流動速度和范圍都對傳統的作戰范式造成了壓力,需要進行根本性的轉變,以便更好地在多個物理和虛擬領域進行同步整合和操作。在本文中,我們旨在通過提出三個概念來應對這些挑戰,這些概念將指導人類-人工智能綜合指揮與控制系統的創建,其靈感來自于商業部門和學術界的最新進展和成功。第一個概念是一個將人工智能能力整合到事業的框架,優化勞動力中的信任和性能。第二個概念是通過對信息抽象、團隊合作和風險控制的動態管理,實時創建多組織多領域的任務團隊,從而促進多領域的運作。第三種是多級數據安全和多組織數據共享的新范式,這將是未來聯合和聯盟多域作戰的一個關鍵推動因素。最后,我們提出了一系列建議,以研究、開發和實例化這些指揮與控制能力方面的變革性進展。
關鍵詞--人與人工智能系統,多域指揮與控制,分布式貝葉斯組合分析,信任網絡
在聯合軍事行動中,聯合部隊指揮官承擔的最關鍵角色之一是指揮和控制(C2),即對指定的部隊行使指揮權力,以實現集體目標[1]。在現代軍事環境中,C2增強了指揮官做出知情和及時決策的能力,并得到了提供態勢感知的分布式信息和通信系統的復雜企業的支持。傳統上,通過政策和技術,C2被限制在單個物理領域,如空中、陸地和空間,以及虛擬領域,如網絡,導致不同領域的信息整合面臨挑戰。然而,現代同行和跨國安全威脅的復雜性要求有能力在多個領域進行整合和聯合行動,美國政府目前正在調查技術和方法,以實現和加強多領域的C2[2]。
遷移到一個多域的作戰結構,在技術、人力、理論和文化方面有許多挑戰。現有的武器和信息系統是建立在使用專有數據交換機制的傳統硬件和軟件上的,抑制了現代化和更廣泛的整合。來自各種來源和組織的人類和傳感器產生的數據以臨時的方式結合在一起,并在多個網絡的多個安全級別上進行存儲和分隔,往往抑制了多組織的聯合信息共享和決策。此外,這些系統幾乎沒有自動化,操作起來也是人力密集型的,隨著人力的固定以及任務范圍和責任的增加,這些系統將無法擴展。在自動化和分析系統存在的地方,由于缺乏培訓、透明度和衡量的性能(包括真實的和感知的),它們受到了濫用和不良的信任校準。同時,美國政府高級領導層評估說,技術的民主化已經使戰場變得平坦,美國未來的戰略優勢取決于利用人工智能(AI)的能力,如機器學習、計算機視覺和自主系統,并將其與勞動力結合起來,創建共生的人機團隊[3]。
在本文中,我們研究了在美國武裝部隊中實現綜合多域作戰結構的挑戰,并比較和對比了商業部門和學術界的類似既定方法。我們提出三個概念來應對這些挑戰。首先,我們開發了一個框架,以幫助人工智能(AI)能力的發展、成熟和擴散到業務中,并將優化員工隊伍中的信任和表現的過程制度化。其次,我們探討了如何通過平衡的信息管理和動態管理的風險,使多域作戰得以創建。最后,我們描述了一個多級數據安全和多組織數據共享的新范式,這將是未來聯合和聯盟多域作戰的一個關鍵推動因素。
無人駕駛飛行器(UAV)已經成為整個航空航天應用中突出的飛機設計,包括商業、民用和軍用。由于無人機與有人駕駛飛機相比具有獨特的能力,因此在一些任務和應用中,無人機是首選。這篇論文的目的是更好地理解應用于無人機的飛機生存能力的概念和建模。傳統上,生存能力作為一個領域,主要是在有人駕駛的飛機和單機的背景下定義和考慮生存能力。隨著在多無人機作戰場景中的重要性不斷增加,了解單個無人機和無人機群的飛機生存能力變得越來越重要。
這項研究工作被分為三個研究問題,確定了在生存能力建模、驗證和無人機飛機設計方面的貢獻。
研究問題1試圖證明無人機生存能力參數化模型的可行性。其結果是一個無人機生存能力模型和模擬,它說明了無人機生存能力中的關鍵權衡。生存能力對無人機設計特性(速度、翼面積、阻力和升力系數)的影響被量化,具體采用詳細的致命包絡模擬方法。
研究問題2旨在驗證和確認無人機的生存能力模擬,提供生存能力模擬結果預測能力的證據。通過與以前的建模工作進行比較,通過征求專家意見,以及通過參數變異性和敏感性分析,提出驗證和確認的證據。
最后,研究問題3試圖將模擬結果應用于多無人機戰術評估和單機設計。結果說明了通過無人機設計可以實現的改進能力,包括裝甲(通過1000公斤的裝甲實現25%的生存能力改進),速度增加(巡航速度增加100英里/小時實現14%的殺傷力下降),以及其他相關設計變量。結果還表明,多無人機戰術可以提高無人機在戰斗中的生存能力。忠誠的僚機戰術被模擬為將C-130J(相當于無人機)的生存能力從19.8%提高到40.0%。其他單一的無人機戰術,如燃料傾倒、后燃器等,也在同一框架下評估其相對有效性。
本論文通過提出一種飛機生存能力評估方法,將生存能力與現代無人機應用、新出現的威脅、多無人機戰術和無人機設計聯系起來,回答了上述研究問題。考慮并模擬了飛機在遇到現代無人機對抗措施時的生存能力。對無人機的性能指標進行了建模和模擬,以描述對提高飛機生存能力敏感的飛機設計參數。通過從現代多無人機戰術角度評估飛機的生存能力,本研究試圖為無人機設計師提供更完整的生存能力衍生設計標準的視野。
第21屆智能體及多智能體系統國際會議(International Joint Conference on Autonomous Agents and Multi-Agent Systems, AAMAS-2022)5月9日到13日在線舉行。智能體及多智能體系統國際會議(AAMAS) 是多智能體系統領域最具影響力的會議之一,由非營利組織IFAAMAS主辦。
來自美國伍斯特理工學院《Hacking the Colony: On the Disruptive Effect of Misleading Pheromone and How to Defend against It》獲得最佳論文。弗吉尼亞大學等《Deploying Vaccine Distribution Sites for Improved Accessibility and Equity to Support Pandemic Response》獲得最佳學生論文。
//aamas2022-conference.auckland.ac.nz/awards/best-paper-and-demonstration/
「最佳論文獎」(Best Paper Award)
螞蟻已經進化到通過留下信息素的痕跡來尋找和獲取食物。這種機制啟發了多種分散多機器人協調的方法。然而,在這篇文章中,我們表明,信息素的蹤跡是一種脆弱的協調機制,可以破壞,以餓死群體。我們引入了誹謗者: 惡意的智能體,他們留下了誤導性的,但難以區分的食物信息素的蹤跡,以分散和誘捕巢穴中的合作螞蟻。我們根據誤導信息素的蒸發率和群體中誤導信息素的比例等參數來分析詆毀者的有效性。此外,我們還提出了一種新的應對措施,即引入一種新型的信息素: 警示信息素。合作螞蟻在現有的食物路徑上分泌這種信息素作為警告。當警示信息素的強度超過食物信息素的強度時,合作螞蟻忽略重疊的食物信息素。我們證明,盡管其簡單,這種防御機制可以限制,但不能抵消,詆毀者的影響。最終,我們的研究表明,基于信息素的協調雖然有效,但也是脆弱的。
「最佳學生論文獎」(Best Student Paper Award)
為應對新冠肺炎,許多國家規定保持社交距離,禁止大型集體集會,以減緩新冠肺炎的傳播。這些社會干預措施以及疫苗仍然是減少SARS CoV-2傳播的最佳途徑。為了提高疫苗的可及性,弗吉尼亞州等州部署了流動疫苗接種中心,在全州分發疫苗。當選擇在哪里放置這些網站時,有兩個重要的因素需要考慮: 可訪問性和公平性。我們制定了一個組合問題,捕捉這些因素,然后開發有效的算法,在這兩個方面的理論保證。此外,我們還研究了問題的內在難度,并證明了強不可能性結果。最后,我們對真實數據進行了計算實驗,以證明我們的方法的有效性。
在 2016 年人工智能促進協會 (AI) 發表的講話中,當時的協會主席呼吁 AI 為了魯棒性而犧牲一些最優性 [1]。對于 AI,魯棒性描述了系統在各種情況下保持其性能水平的能力 [5]。通過機器學習開發和驗證高質量模型面臨著特殊的挑戰。一般公認的大多數人工智能需要魯棒的原因包括:
? 訓練和運行數據的不確定性;
? 輸入來自不同訓練集,但在統計上或語義上與訓練群體一致;
? 訓練群體之外的輸入;
? 用有限的數據學習;
? 面對新穎的情況,需要不同于學習策略和分類器的開發方式;
? 對抗性行動。
此外,對于人類 AI 協作團隊,人類必須適當地信任 AI 系統;因此,透明度也可以被視為魯棒性問題。混合戰爭為人工智能的魯棒性帶來了額外的挑戰。決策的不同性質和必要的決策支持擴大了所需模型的范圍。在不同條件下開發的模型組合使用會影響可以對復合系統質量做出的統計聲明。
如果我們需要魯棒性,我們必須考慮它的度量。對與上述條件相關的魯棒性研究的調查,提供了一系列可能的措施。北約聯盟實施的混合戰爭需要了解所使用能力的魯棒性。在本文中,我們從當前文獻中調查了魯棒性度量的前景。在這樣做的過程中,我們有助于了解聯盟內部各種模型和軟件的組合。
現代混合戰爭不僅包括傳統戰爭,還包括政治和網絡戰爭(以及其他),其越來越依賴人工智能 (AI) 在日益復雜的環境中執行任務。許多現代 AI 實現都是使用機器學習 (ML) 技術構建的,使用數據旨在來表示預期的情況。這意味著:
? 大多數當前的 AI 構建塊都是為特定目的而構建的,雖然旨在泛化以支持現實世界的輸入,但并不總是能夠處理不熟悉的情況(輸入)。它們是“黑盒”設計,可以實時或近乎實時地執行復雜的決策或環境解釋(分類),但通常只能為已知輸入產生可靠的答案。
? 如果提供以前從未見過的信息或通過人類可能察覺不到的攻擊,人工智能構建塊通常很容易被愚弄和混淆。
從本質上講,我們正在處理的是一個易受影響的問題:現代 ML 解決方案,實際上還有其他 AI 解決方案,本質上很容易被他們不熟悉的數據所欺騙 [2] [3]。例如,這使得依賴于它們的指揮和控制 (C2) 決策樹邏輯容易發生故障。當然,我們想知道如何通過確保利用人工智能的 C2 對故障具有魯棒性來保護自己免受此類漏洞的影響。
總結:
? 許多機器學習方法天生就容易受到環境變化和攻擊的影響;
? 因此,依賴機器學習(主要基于神經網絡(NN))的人工智能系統本質上是脆弱的;
? 因此,必須使依賴人工智能的混合戰爭變得強大。
ML 方法的訓練和運行都基于以下幾個方面:(1)輸入數據,(2)內部結構,以及(3)學習算法。機器學習的脆弱性可能是由許多因素造成的。出于本文的目的,我們假設網絡內部結構是靜態的、足夠強大且安全的,雖然還有許多其他因素,但我們考慮了兩個主要方面:(a) 訓練數據不佳,(b) 以前未使用的業務數據。因此,我們的重點是 ML 解決方案的輸入數據。
天真地,我們假設 ML 方法(尤其是 NN)是使用高質量(“好”)輸入數據訓練的:在運行期間可能期望 選擇性表示AI 處理的輸入范圍。這個想法是,在運行過程中,人工智能可以為運行數據產生“正確”的決策,這些決策與訓練它的數據相似。換句話說,人工智能必須能夠進行插值,并且在某種程度上還可以推斷其原理。
在最壞的情況下,糟糕的訓練數據會導致訓練出不符合目的的機器學習模型,或者在最好的情況下會導致生成“愚蠢”的模型;也就是說,只能做出具有高度不確定性的模糊決定。然而,在數據質量范圍的另一端也存在危險,因為雖然“好的”訓練數據可能會產生一個可以做出非常準確的決策的模型,但它可能只能使用窄范圍的輸入數據來做到這一點。當然,我們希望機器學習既能滿足其性能要求,又能適應它最初沒有訓練過的新環境;即能夠處理新穎事物場景。
因此,ML 的一個重要目標是構建一種泛化良好的能力。在狹窄的應用程序中,我們希望確保在環境樣本上訓練過的模型能夠像宣傳的那樣在整個環境中工作。最終,我們希望人工智能面向復雜環境的處理能力,可針對所有現實,或者至少是人類感知的所有現實。從某種意義上說,這完全涵蓋了所有情況,沒有新的情況。如果我們觀察牛頓宇宙并且擁有巨大內存量,那么所有情況都可以從當前數據中預測出來。但是,由于我們對宇宙建模的能力受到嚴重限制,因此可能會經常出現新穎情況。在不可能為復雜環境訓練模型的前提下,當這些模型被引入現實世界時,模型應該能應對各種突發情況。
因此,表征模型的魯棒性具有挑戰性,需要考慮模型的不同方面的魯棒性。雖然有許多可用的魯棒性定義,但應區分用于傳統軟件魯棒性的定義,例如 IEEE 24765[4] 的定義,以及與 AI 模型相關的定義。本文中使用 ISO CD22989 [5] 中提供的定義:
魯棒性是“系統在任何情況下保持其性能水平的能力。魯棒性屬性表明系統有能力(或無能力)在新數據上具有與訓練它的數據或典型運行數據相當的性能。”
在定義了術語“魯棒性”之后,由于本文的重點是魯棒性度量,我們現在將定義術語“度量”,應用于魯棒性。為了在編寫定義時為我們的思考過程提供信息,確定度量魯棒性可能具有的各種目的以及利益相關者可能是誰,是有用的。由于魯棒性度量的目的和要求將取決于 ML 模型的生命周期階段,因此我們分析了生命周期階段的目的。
盡管許多 ML 模型將基于 NN,但我們的分析擴展到涵蓋 ML 類型和架構的不同變體,并指出 ML 的主要變體是:NN、決策樹和強化學習。
在 ML 模型設計和開發階段,開發人員將試驗模型設計并調整模型的架構和參數,以優化模型的性能。在這個階段,魯棒性度量的目的既可以是提供一種在進行這些更改時度量魯棒性改進的方法,也可以描述模型如何表現魯棒性。此外,不同模型的開發人員之間商定的度量標準將允許在模型設計之間進行可靠的比較。
在系統設計階段,在選擇現成的ML模型納入整個系統時,度量魯棒性將通過提供一種方法來比較一個模型與另一個模型的魯棒性水平和性質,從而為系統設計者提供關于模型選擇的決策信息。
在部署之前,安全從業人員將使用魯棒性度量來為包含 ML 的系統的安全風險評估提供信息。具體來說,該度量將為 ML 模型的漏洞分析提供信息,若該模型具有低魯棒性,則表示攻擊者可以利用漏洞。
最后,在部署階段,從單個 ML 組件的魯棒性度量中得出的整體系統魯棒性度量,將支持最終用戶對系統輸出或行為的信任和信心。
鑒于上述使用范圍和相關利益者,出于本文的目的,我們將有意保留術語“度量”的寬泛定義。我們的定義超出了純粹的測量或量化行為,包括我們如何描述或表征 ML 在任何特定環境中的魯棒性。因此,我們將本文的其余部分基于以下定義:
魯棒性度量是 ML 模型在其生命周期中可能面臨的各種挑戰的魯棒性的度量或表征。特定度量的精確性質將取決于 ML 模型的類型、模型旨在完成的任務、以及模型所處生命周期的階段。
在考慮魯棒性度量時,我們通過提出“面對……什么的魯棒性?”這個問題開始分析。這生成了一個 ML 模型可能面臨的情況列表,在這些情況下,它們的魯棒性可能會受到挑戰。我們稱這些為“面對”條件。
? 訓練和運行數據的不確定性;
? 不同于訓練集的輸入,但在統計上或語義上與訓練群體一致;
? 訓練群體之外的輸入;
? 用有限的數據學習;
? 新穎的情況,不同于學習策略和分類器的開發方式;
? 對抗性行動;
我們的文獻檢索提供了許多關于魯棒性的先前研究,對于每一項,我們都試圖確定它們適合哪些類別。雖然這并不總是顯而易見的,但它似乎代表了一種構建分析合乎邏輯的方式。因此,在以下段落中,我們嘗試以這種方式對文獻檢索中的單個研究進行分類。
對于每個類別,我們描述了每個魯棒性挑戰的性質和細節,然后是用于度量魯棒性的度量指標類型。盡管本文中對魯棒性的審查不包括混合戰爭示例,但所討論的內容適用于混合戰爭方法。
能夠處理訓練和運行數據中的不確定性對于 AI 來說至關重要,它代表了當前 ML 系統的關鍵組成部分,尤其是那些在軍事領域等危急情況下使用的系統。
在 ML 中,目標是在給定的成本函數情況下,學習最適合訓練數據的模型參數。然后,部署該模型以獲取對新數據和未見過數據的預測。作為訓練過程的結果,任何學習模型都帶有不確定性,因為它的泛化能力必然基于歸納過程,即用數據生成過程的一般模型替換特定觀察[6]。盡管研究界做出了許多努力,但沒有任何現有的 ML 模型被證明是正確的,因為任何可能的實驗都嚴重依賴于假設,因此當受到以前未見的輸入數據影響時,每個當前的 ML 模型輸出仍然是不確定的。
不確定性在統計領域有著悠久的歷史,從一開始,它就經常被聯系起來并被視為一個類似于標準概率和概率預測的概念。然而,在最近,由于當前對 ML 的炒作以及如今基于此類解決方案的系統正在控制我們的日常生活,研究界對此類概念的興趣越來越大。這首先是出于安全要求,為此需要新的方法來應對。
在現有文獻中討論 ML 不確定性的不同方法中,可以根據所考慮的不確定性類型對它們進行聚類。當前的大多數作品都解決了偶然或認知不確定性。
對 ML 中的不確定性進行建模的傳統方法是應用概率論。這種概率建模通常處理單個概率分布,因此忽略了區分偶然不確定性和認知不確定性的重要性 [7] [8]。
偶然不確定性:我們可以將其稱為統計不確定性,它源于實驗結果可變性的隨機性概念。簡而言之,當提到偶然不確定性時,我們隱含地指的是即使存在任何其他信息源也無法減少的不確定性。讓我們通過一個非常基本的例子來描述這一點:假設我們想要模擬拋硬幣的概率結果。我們可以定義一個概率模型,該模型能夠提供頭部或尾部的概率,但不能提供保證的結果。這種不確定性定義了總不確定性的不能復歸的部分。
認知不確定性:也稱為系統不確定性,這是由無知/缺乏知識決定的總不確定性的一部分。這種不確定性是由于機器學習系統的認知狀態造成的,并且可以通過附加信息來減少。例如,假設我們有一個 ML 模型學習一門新語言,并且給它一個新詞,它應該猜測它是指頭還是尾。智能體對正確答案的不確定性與預測拋硬幣時一樣不確定,但是通過在情況中包含額外信息(即提供同義詞或解釋單詞的正確含義),我們可以消除任何不確定性在答案中。因此應該很清楚,與偶然性相反,認知不確定性定義了總不確定性的可還原部分。
既然我們已經定義了偶然不確定性和認知不確定性,我們將考慮有監督的 ML 算法以及這兩種不同類型的不確定性如何在 ML 中表示。
在監督學習環境中,我們可以訪問由 n 個元組 (xi,yi) 組成的訓練集 D = {(x1,y1),…,(xn,yn)},其中 xi (屬于實例空間 X)是包含特征的第 i 個樣本 (即,測量值),而 yi 是來自可能結果集 Y 的相關目標變量。
在這種情況下,ML 算法具有三個不確定性來源:
? 偶然不確定性:通常,X 和 Y 之間的相關性不是確定性的。因此,對于給定的輸入 xi,我們可以有多個可能的結果。即使存在完整的信息,實際結果 yi 也存在不確定性。
? 模型不確定性:為解決給定問題而選擇的模型可能遠非最適合該任務的模型。這是由于模型的正確性和假設的正確性存在不確定性。
? 近似不確定性:通過優化過程學習的模型參數只是對真實假設的估計。這種估計是由于在學習過程中使用的數據缺乏保真度。
模型和近似不確定性都代表認知不確定性。
應該注意的是,對于 ML 算法,偶然不確定性和認知不確定性在很大程度上取決于環境。例如,通過允許學習過程改變最初定義的場景的可能性,可以減少偶然不確定性以支持認知不確定性;也就是說,原始環境中的偶然不確定性并沒有改變,而是通過改變環境而改變(類似于在擲硬幣的例子中加權硬幣的一側)。相反,如果我們考慮一個固定的初始場景,我們知道認知不確定性(即缺乏 ML 算法知識)取決于學習過程中使用的數據量(多少觀察)。由于訓練樣本的數量趨于無窮大,機器學習系統能夠完全降低逼近不確定性。
表示不確定性的不同 ML 方法具有不同的能力,可以根據以下內容進行聚類: (i) 表示不確定性的方式; (ii) 如果處理兩種類型的不確定性(偶然性和認知性)中的兩種或僅一種; (iii) 如果他們提供了任何可用于提供不確定性數量粗略估計的解決方案。
高斯過程 (GP) [9] 是一種用于監督學習的通用建模工具。它們可用于泛化多元隨機變量的貝葉斯推理和函數推理。在分類的情況下,GP 具有離散的結果,不確定性定義的困難在于知識的表示,然后將其識別為模型的認知不確定性,就像在貝葉斯方法中一樣。在回歸的情況下,可以將偶然不確定性(即誤差項的方差)與認知不確定性區分開來。
在機器學習中,最大似然估計原理起著關鍵作用。事實上,如果一個模型可以“非常接近”似然函數的最大值,這意味著數據的微小變化可能對估計的影響有限。如果似然函數是平滑的,它可能是一個很好的指標,表明估計存在高度的不確定性,這可能是由于許多參數的配置具有相似的似然性。
在 ML 中,我們經常利用 Fisher 矩陣 [10] 來表示認知不確定性的數值 [11]。
生成模型可用于量化認知不確定性。考慮到這些方法的概率性質,這些方法旨在模擬數據分布的密度,通過確定給定數據是否位于高密度或低密度區域,這些模型隱含地提供有關認知不確定性的信息。這一類別中最相關的工作是基于核密度估計或高斯混合,最近在深度自動編碼器方面取得了一些進展[12]。
密度估計是處理異常和異常值檢測方法的關鍵要素,后者只是一個分類問題,當樣本位于低密度區域時,它被認為是分布之外的問題。這樣的成果反而捕捉了偶然的不確定性。
一般來說,生成模型解決了一個非常具有挑戰性的問題,需要大量數據才能正常工作,并且通常具有很高的不確定性。
人工深度神經網絡 (DNN) 本質上是一個概率分類器,我們可以將訓練 DNN 的過程定義為執行最大似然推理。這導致模型能夠生成給定輸入數據的概率估計,但不能提供有關其概率置信度的詳細信息:捕獲了偶然的不確定性,而沒有捕獲認知。盡管如此,后者通常被稱為模型參數的不確定性。在文獻中,最近有一些作品 [13] [14] 試圖通過將貝葉斯擴展引入 DNN 來模擬這種認知不確定性。
模型集成(Model Ensembles )模型類的常見示例是 bagging 或 boosting。這種方法非常受歡迎,因為它們可以通過產生一組預測而不是單個假設來顯著提高點預測的準確性[15]。可以包含在此類中的最相關的工作是隨機森林模型 [16]。此類別中的方法主要關注整體不確定性的任意部分。
Credal 集(Credal Sets)是一組概率分布,它是貝葉斯推理推廣的基礎,其中每個單一的先驗分布都被一個候選先驗的Credal 集所取代。作品 [17] [18] 研究如何定義Credal 集的不確定性以及相關表示,定義了存在于Credal 集中的兩種類型的不確定性:由于隨機性導致的“沖突”和“非特異性”。這些直接對應于任意和認知的不確定性;通常使用 Hartley 函數 [19] 作為標準不確定性度量; [20] 還定義了一種工具,可用于評估 ML 系統在面對訓練和操作數據的不確定性時的魯棒性。如果我們知道給定隨機變量的未知值在給定的有限集中,Hartley 函數可用于評估不確定性。此外,已經通過類似 Hartley [80] 和廣義 Hartley [81] 措施提出了對無限集的擴展。
在運行期間,分類器為輸入數據的每個樣本分配一個類標簽。考慮到上述魯棒性的定義,類內可變性,即分配到同一類的所有樣本之間的可能變化,隱含地包含在用于學習分類器的訓練數據集中。
使用更具建設性的方法來定義魯棒性有助于更好地模擬用戶對分類器性能的期望。為此,如果分類器對于輸入數據的所有有意義的變體是不變的,我們將暫時稱其為魯棒分類器。顯然,所有有意義的變體的集合取決于應用場景,這通常很難描述。然而,對于許多分類問題,這種有意義的變體可以分為兩類:(i)物理修改(例如,噪聲添加、混合失真、裁剪、旋轉、縮放)和(ii) 輸入樣本的語義修改(例如發音的不同方式)。圖 1(1) 說明了手寫數字分類示例的這兩類可能變體。我們考慮書寫數字“9”的不同變體。而(如圖 1 所示)噪聲添加 (a) 和混雜失真 (b) 可被視為屬于第一類,第三類 (c) 在數字“9”上添加一個小弧線是有意義的(句法)變體,特別是不同國家的當地文化,它使符號(“九”)的語義保持不變。
圖 1 (1) 手寫數字 9 的可能數據變體,(2) 使用變分自動編碼器 (VAE) 重建的數字 3、8、9 的空間,該編碼器對來自 MNIST 語料庫的各個數字進行訓練,(3) 對應的潛在空間表示顏色編碼數字類型。
AI/ML 相對于第一類變體的魯棒性,尚未得到令人滿意的解決,但近年來已在相當程度上得到解決。在許多涉及對第一類變體的魯棒性的出版物中,基礎數據樣本被建模為歐幾里得向量空間中的向量。然后通過將范數有界向量添加到數據樣本來對失真進行建模。這里,通常使用 Lebesguetype 范數(lp norms)(特別是 l1、l2 和 l∞)。在一篇被廣泛引用的論文 [20] 中表明,這種 l2 范數有界的“對抗性攻擊”可用于在基于神經網絡的分類器中導致錯誤分類。隨后,在對抗性攻擊和相應的保護方法領域做了很多工作(本文稍后將進一步詳細討論)。結果表明,在許多情況下,攻擊很難檢測到,并且對于當時最先進的方法,可以繞過檢測 [21]。顯然,在這種情況下的魯棒性需要保護免受對抗性攻擊。在這種對抗性攻擊環境中定義魯棒性的許多方法可以在一個通用框架下捕獲,如 [22] 所示。
第二類,數據樣本的語義上有意義的變體,導致了迄今為止很大程度上尚未解決的重大挑戰。相應地,在[68]中,對所謂的感知擾動的魯棒性被稱為一個開放的研究問題。盡管現代基于 AI 的分類器,特別是深度神經網絡,在眾所周知的公共分類挑戰上取得了破紀錄的改進,但相比之下,它們的判別性自然不會導致分類結果的易解釋性。近年來,整個研究分支都集中在可解釋的 AI 上,即,研究通過給定分類器對映射到相同類別的樣本集進行形式化甚至語義化的方法。
理解分類器語義的一個重要方法是將成功的判別分類器與生成模型結合起來。生成方法的優點是可以使用這些模型生成來自原始(樣本)空間的示例。一種結合分類器和生成模型的成功方法是生成對抗網絡(GAN)[24]。
也可以適用于分類的生成模型是(變分)自動編碼器(VAE)[25]。自動編碼器的基本思想是通過訓練一個深度神經網絡來學習原始數據的緊湊表示,該網絡在兩端具有全維(相對于原始數據)層,中間有一個稀疏的“瓶頸”層。圖 1 (2) 和 (3) 說明了如何使用 VAE 來“理解”網絡學習的類別:(2) 顯示了一組具有代表性的重構,這些重構是由經過訓練的 VAE 的生成部分獲得的,用于對 MNIST 數據集的數字“3”、“8”和“9”進行分類。因此,在某種意義上,(2)總結了分類器準備識別的內容。在圖 1 的右側,(3)顯示了從 VAE 的分類器分支獲得的輸入樣本(即 MNIST 數字)的潛在空間表示。顏色對三個數字進行編碼。潛在空間點和重構樣本之間的對應關系如箭頭所示。在藍色中,繪制了將 9 的流形與其他數字分開的曲線,以指示學習的分類邊界。考慮到這個例子,我們注意到上述變體 (c) 在重建部分 (2) 中沒有很好地表示 - 考慮到語義庫受到北美書寫數字風格的偏見,這并不奇怪。因此,為了使分類器對變化 (c) 具有魯棒性,必須應用額外的措施,例如增加或添加到訓練數據中。
基于生成模型,Buzhinsky 等人[26] 提出了幾個指標來衡量分類器對“自然”對抗樣本的魯棒性。為此,他們提出了一組在潛在空間中工作的六個性能指標,并隨后顯示了上述經典對抗魯棒性和“潛在對抗魯棒性”之間的聯系,即對潛在空間擾動的魯棒性。后者的有趣之處在于,幾個示例的潛在空間擾動已被證明與原始樣本空間中語義上有意義的變體相對應。
我們注意到經典的對抗魯棒性已經可以用于獲得關于小范數有界擾動的人工智能分類器的“認證”魯棒性。然而,語義魯棒性更難以形式化,并且與正確理解和建模目標類密切相關。為此,生成模型是一個重要的工具。諸如投影信念網絡 (PBN) 等新概念,即基于前饋神經網絡結構的分層生成模型,具有易于處理的似然函數的優勢,在該領域非常有前景 [27]。
最近的一項工作 [75] 涉及一種稱為復雜事件處理的 ML 形式,其中融合了來自多個傳感器的具有空間和時間關系的多模態輸入,以允許深度學習模型推斷特定類型的事件,例如槍聲或爆炸。此類事件被稱為“復雜事件”。因此,魯棒性的概念并不適用于模型本身,而是適用于機器學習功能所包含的整個組件系統。該研究聲稱,(a)人類邏輯在基于模式和序列預定義復雜事件中與(b)來自單個傳感器的深度學習推斷相結合,提高了系統對錯誤分類的魯棒性。
在 [78]中,Ashmore 等人識別一組關于輸入域及其子集的定義:I 輸入域空間——模型可以接受的輸入集; O,運行域空間——模型在預期運行域中使用時可能預期接收的一組輸入; F,故障域空間——如果系統其他地方出現故障,模型可能接收到的一組輸入; A,對抗域空間——模型在被對手攻擊時可能收到的一組輸入;其中 O、F 和 A 都是 I 的子集。這些定義不僅在考慮訓練群體之外的輸入(可以從 O、F 或 A 中得出)時很有用,而且在推理模型的輸入時更普遍。
小的、像素空間的擾動,人類可能察覺不到,通常使用 lp 范數測量擾動幅度,是評估模型魯棒性的合理方法(將在 2.6 節后面討論);特別是在對抗性攻擊的可能性更高的混合戰爭領域。然而,在考慮評估模型的魯棒性時,這些小擾動不一定適用于 Ashmore 的攻擊域空間 (A) 之外。最近,獨立的工作 [79] [80] 已經開始研究擾動模型的輸入,使其遠離經常討論和研究的小擾動方法,而不是生成被認為與環境相關且人類可區分的擾動:這些擾動看起來會在輸入上引入純粹、模糊或朦朧等(這可以合理地代表來自 F 或 O 的輸入)。
此外,在 [80] 中,作者建議對語義相關的圖像引入有意義的擾動,但這些擾動可能尚未包含在模型訓練集中;例如,例如,將一群鵝引入一個場景,在這個場景中,模型正在識別停車場中的車輛數量。雖然最后一類有意義的擾動顯然是 Ashmore 的輸入域空間 (I) 的一部分,但可以說,如果訓練數據集不足,這些語義相關的擾動也可以被視為運行域空間 (O) 的一部分。有趣的是,[80] 還發現,當增加系統對小擾動的魯棒性時,模型在處理語義上有意義的擾動時可能變得不那么魯棒,因此考慮評估模型對這兩種擾動類型的魯棒性顯然很重要。
為了評估模型對這種語義上有意義或環境相關的擾動的魯棒程度,[80] 的作者提出了一種用于引入擾動的滴定方法,這樣可以逐步測量在模型的準確性變得可疑之前引入擾動(例如,通過其置信度或已知基礎事實的分類變化)。當考慮模型在預期的運行域空間中的應用時,這提供了一個進一步的度量標準來評估模型的魯棒性。
眾所周知,使用深度學習需要大量數據來學習復雜的任務。如果訓練數據太小,模型會過擬合,泛化能力很差。不幸的是,獲取高質量的訓練數據既困難又昂貴,因為它通常需要人工標記。例如,細粒度的 Cityscapes 數據集平均需要 1.5 小時來標記每個樣本 [28]。此外,與為學術目的(概念驗證、評估、基準測試等)開發的數據集不同,軍事數據集還必須包含代表在現實世界可能發生但難以觀察甚至預測的大量邊緣情況的數據。如果沒有這樣的訓練數據,在可能最重要的時候,或者在條件因敵對行動而意外改變的時候,軍事模型的實際價值將是有限的。
軍事應用的數據采集挑戰是重大的,但也是必須解決的,以確保模型在現實世界中部署時是強大的。幸運的是,許多轉移學習技術[29][30][31]已經被提出,這些技術利用了深度神經網絡可以學習到可轉移的一般特征,因此,可以被其他類似的任務重新使用[32]。預訓練與微調相結合,通常用于利用少量/有限的數據進行學習,同時避免昂貴的大規模模型(如GPT-3)的再訓練,這些模型可能需要專門的硬件來學習。其主要思想是:
1.將預訓練的源模型的一部分復制到目標模型中;
2.向目標模型添加一個或多個隨機初始化的(未訓練的)層,使最后一層與目標的標簽空間相匹配;
3.使用標記的目標域數據訓練模型。
然而,這些技術不能用于軍事數據來自特殊傳感器(如激光雷達、紅外、合成孔徑雷達和高光譜)的情況,這些傳感器很少有預先訓練好的模型,或者過于敏感,甚至在盟友之間也不能共享。
無監督領域適應是另一種轉移學習技術,雖然它在淺層學習中已經被研究了幾十年,但最近在深度學習中也受到了很多關注[33]。使用這種技術,來自源域的標記訓練數據可以用來訓練一個使用目標域的無監督數據模型。該方法假設源域的標記數據成本低且容易獲得。
從軍事角度來看,這個想法很有吸引力,因為源數據有可能是合成的。也就是說,已經存在的模擬器或其他生成模型有可能被改編為不僅能生成完美標記的源數據,還能生成代表邊緣情況的數據,否則很難甚至不可能獲得這些數據。基于模擬的方法將完全消除人類的標記工作,否則可能會導致不正確、有偏見和不完整的數據集,這些數據集在訓練時也會轉移到模型中。使用無監督領域適應性來彌補 "模擬到真實"的差距(sim2real)正在積極進行[34][35],使用各種技術,其中許多依賴于使用對抗性方法,如領域損失函數[36][37]和生成性對抗網絡(GANs)[38][39]。
為了在復雜環境中發揮作用,人工智能必須表現出對新事物的魯棒性。DeepMind[41]的演示表明,ML可以被用來開發策略,從而在僵硬的游戲中實現超人的發揮。圍棋“Go”這個游戲提供了一個復雜的環境,超過了我們對游戲可能狀態的存儲極限,因此提供了前面討論的關于我們對牛頓宇宙建模的極限的情況。然而,如果改變了游戲規則,生成的代理就會變得很脆弱或者完全失敗。在[42]中,這種類型的結果在一個更簡單的環境中被證明,實驗闡明不同的變化如何影響代理的魯棒性。
但新穎性不僅僅是數據點不包含在 ML 訓練集中的情況。為了將新穎性的研究結合起來,[43] 提出了一個描述新穎性的框架。圖 2 說明了人們如何以一種可以同時衡量新穎性和代理反應的方式看待新穎性。這種新穎性觀點的關鍵在于,可以將新穎性考慮到與世界有關的方面以及與代理人的經驗有關的方面。同樣,對代理任務有影響的新穎性,對魯棒性的影響不同于對任務沒有影響的新穎性。這也是 Chao [42] 中證明的一個發現。
圖 2. 考慮新穎性的框架。
DARPA SAIL-ON 計劃 [40] 中采用的一種基于游戲的新穎性實驗方法。 DARPA SAIL-ON 計劃假設智能體具有以下四個要素:
? 一種性能要素,它使用已知的專業知識通過感知、推理、規劃、控制機制來完成任務并實現目標(例如,尋找和收集具有所需特征的水下物體);
? 一個監控元素,將觀察結果與期望值進行比較,以檢測環境(例如,聲納不可靠、不熟悉的捕食者)和代理自身行為(例如,車輛向右轉向)中的異常情況;
? 一種診斷要素,可定位專業問題,生成有關原因(例如,非反射表面、橫流、未對準的螺旋槳)、評估備選方案并從中進行選擇;
? 修復被認為是造成性能問題的專業知識并糾正它們的維修要素(例如,更新的聲納方程、電流敏感控制器或新的螺旋槳模型)。
正如上文關于新穎性的介紹部分所述,這項研究的大部分開始于認識到 DeepMind 用于解決圍棋、國際象棋、將棋和星際爭霸游戲的方法對游戲規則的變化并不魯棒。一個例子是南加州大學 (USC) 開發并通過 GitHub 發布的 GNOME 框架。
NIWC Pacific 與 USC 合作開發了一個版本,英國 Dstl 使用 GNOME 框架開發了“Hunting of the Plark”游戲。這將允許對受過訓練以玩該游戲的代理的新穎性影響進行實驗,這是圖靈研究所研究小組的重點。計劃對使用 ML 開發的決策支持工具進行進一步實驗,我們不僅可以處理模擬情況,還可以與美國海軍進行現場實驗。
個體在不知道世界形勢發生變化的情況下對新穎事物有很強的抵抗能力。這很可能是由于新穎事物對正在執行的任務并不重要,或者至少是在敏感度較低的領域變化。然而,處理新穎事物的一個策略是至少檢測到一個代理處于一個新穎的情況,即使該代理不知道如何在新穎的環境中工作,除了退出或提醒其他人注意這種情況。
代理的基本問題是:環境是否發生了變化,或者正在分析的數據是否只是在以前分布的一個尾部?目前,對于大部分的ML來說,僅僅認識到數據不在樣本范圍內可能就足夠了。至少能認識到其自身局限性的ML在許多情況下是一個進步。在這方面,經典的對抗性例子演示經常被提起:在這些實驗中,代理往往對他們的錯誤答案非常自信[44]。
在規劃系統中,識別可能基于對任務進度的動態評估。如果規劃無效,一種可能是世界以一種模型未反映的方式發生了變化。早期檢測可能會防止災難性結果,但這并不能保證。事實上,人們可以設想無法恢復的情景(在黑洞的事件視界上轉彎是一個極端的例子)。
[45] 將提供魯棒響應的任務定義如下:
? 假定:使用專業知識在一類環境情況下運行的代理架構;
? 假定:支持此類環境中可接受的代理性能專業知識;
? 假定:在突然的、未通知的更改環境中,經驗有限會導致性能降低;
? 發現:當環境發生變化時,哪些修改后的專業知識將支持可接受的性能。
對新穎事物的響應類型與正在執行的任務類型有關。在分類器中,系統可能需要調整其模型,不僅允許改變其提供的答案,還允許解釋這種變化意味著什么。例如,想象一個感知代理,其可確定機器人是否存在障礙物。相機系統的改變,例如鏡頭上的蒼蠅附著可能會為系統創造一個新局面。如果系統能夠適應并確定不存在障礙,則需要對情況進行解釋以證明答案的合理性。
圖 3. SAIL-ON 新穎性指標假設。注意程序中的 TA2 代理是那些對環境中的新穎事物做出反應的代理。
對于規劃系統,新穎性可能表現為采用新的行動或發現行動的成本與以前不同;目標可能會發生巨大變化。規劃系統可能不得不調整他們的知識,重新計算以前的任務,利用經驗來改變他們的計算。上面圖 3 中的假設說明了測量環境。在環境中出現變化之前,學習和運行可能會進行一段時間。對特定變化還不夠魯棒的代理性能會下降,必須找到一種方法來檢測新事物的發生,確定發生了什么變化并在運行中對其進行解釋。
在過去的幾十年里,已經證明基于深度學習技術的機器學習模型可以在各種任務中達到甚至超越人類水平的表現。另一方面,機器學習模型通常容易受到輸入擾動的影響,并且很容易被愚弄以產生不正確的輸出 [53] [54]。這些類型的操作被稱為對抗性攻擊,機器學習模型對抗這些攻擊的性能被測量為對抗魯棒性 [55]。在兩個不同方面研究了對抗魯棒性。第一個方面,研究人員試圖找到一種產生對抗性攻擊的方法,以最大程度地降低模型的魯棒性 [56] [57] [58] [59] [48]。第二方面,研究人員試圖找到更好的訓練或防御方法,使網絡架構對這種對抗性攻擊更加魯棒[60] [61] [62] [63] [64]。在本節中,我們調查了對抗性攻擊和防御方法,并從當前文獻中定義了對抗魯棒性的指標和測量方法。
[54] 中針對機器學習系統 M 和輸入樣本 C(稱為干凈樣本)定義了對抗性攻擊,如下所示:
“假設樣本 C 被機器學習系統正確分類,即 M(C) = y。可以構建一個對抗性樣本 A,它在感知上與 C 無法區分,但分類錯誤,即 M(A) ≠ y。”
基于此定義,對抗性攻擊的目的是修改模型輸入以導致不正確的模型輸出,使其無法被人類觀察者區分。不可區分性標準對可應用于輸入的擾動有一些限制,這在文獻中稱為 lp 范數,即
其中 ? 是最大允許擾動。最常用的范數是 l2 和 l∞。
考慮到這一限制,提出了幾種方法來生成對抗性樣本 [65] [55] [48]。生成對抗樣本主要遵循兩種不同的方法,即黑盒和白盒。在黑盒方法中,用戶不了解模型,只能訪問給定輸入的預測概率或預測類別。另一方面,假設模型及其參數在白盒方法中是完全已知的[47]。
白盒攻擊在欺騙模型方面比黑盒攻擊更有效,并且在文獻 [56] [57] [58] [48] 中使用不同的方法進行了廣泛的研究。白盒攻擊主要是基于梯度的攻擊方法:它們通常構造一個損失函數,可以導致擾動攻擊能力的提高和擾動幅度的降低,然后通過梯度優化損失函數以生成對抗樣本[66]。使用損失函數的梯度來確定對抗性擾動,可以像快速梯度符號法(FGSM)[65]那樣在一個步驟中進行,用于快速生成對抗性樣本。為了提高效果并減少擾動,在基于迭代梯度的攻擊中,不是在梯度方向上采取單一步驟,而是采取多個較小的步驟[54][48]。
對抗性攻擊也可以作為訓練的一部分。最近的一些工作[46]背景是一個對等網絡,其中每個對等體都有一份神經網絡模型的副本,以創建一個分布式的學習環境,這并不依賴于中央協調節點的存在。這樣的機器學習架構非常適用于有多個伙伴的軍事聯盟場景。最初,每個對等體擁有總訓練數據集的一個子集,隨著模型訓練的進行,模型參數在每次訓練迭代時都在對等體之間共享。
本實驗基于 Fashion-MNIST 數據集,并非試圖提高點對點 ML 的魯棒性,而是測量和優化中毒技術在導致對等體錯誤分類方面的有效性。中毒效果的衡量標準是,就訓練迭代次數而言,惡意對等體能夠可靠地毒化良性對等體的速度有多快。然而,我們相信相同的指標可以用來推斷 ML 對這種中毒的魯棒性:實現錯誤分類所需的迭代次數越多,魯棒性就越高。
已經提出了一些方法來保證在特定條件下對范數有界的對抗性攻擊的魯棒性。例如,Wong 和 Kolter [67] 使用對抗性多面體的概念為基于 ReLU 的分類器提出了可證明的防御措施。此外,[68] 中提出了一種有效且完整的分段線性神經網絡魯棒性驗證器。在該論文中,提出了一種算法,該算法基于最大 (l∞-) 范數在對抗性誤差上產生經過驗證的界限。
獲得強大的深度神經網絡的最成功的方法之一是通過對抗訓練。對抗性訓練的主要動機是將攻擊和防御都納入一個共同的理論框架,自然地封裝了大多數先前關于對抗性樣本的工作 [55]。在這種方法中,不是直接將原始數據集中的樣本輸入到訓練中,而是允許對抗性攻擊首先擾動輸入,然后將擾動的樣本輸入到訓練中。對抗性訓練以不同的方式得到增強,例如改變攻擊過程、損失函數或模型架構 [69] [50]。
對抗性訓練的性能很大程度上取決于生成增強訓練數據集時使用的損失函數和對抗性攻擊方法,并且由于需要生成對抗性樣本,與干凈訓練相比需要更長的時間。在 [73] 中,已經證明,使用具有早期停止的經典對抗訓練可以更容易地提高最先進的對抗訓練方法的性能。這表明我們對對抗性訓練的理解是有限的。在 [74] 中分析了對抗性訓練對魯棒性的影響,他們得出結論,在使用(隨機)梯度下降的干凈訓練過程中,神經網絡將在所有特征中積累一些與任何自然輸入,但極易受到(密集)對抗性擾動的影響。在對抗訓練期間,這種密集的混合物被“純化”以使模型更加魯棒。
最近開展的工作 [70] 專門研究了上述方法。事實上,這項工作旨在通過將隨機噪聲引入訓練輸入并使用隨機梯度下降 (SGD) 對其進行優化,同時最小化訓練數據的總體成本函數,從而使深度神經網絡對對抗性輸入更加魯棒。效果是在開始時隨機初始化的輸入噪聲在訓練過程中逐漸被學習。結果,噪聲近似地模擬了輸入分布,以有效地最大化給定輸入的類標簽的可能性。
作者 [70] 評估了他們在 MNIST、CIFAR10 和 CIFAR100 等分類任務上的方法,并表明以這種方式訓練的模型更具對抗性。發現噪聲和干凈圖像的組合方式對精度有重大影響,乘法比加法獲得更高的精度。魯棒性的直接度量沒有發展,而是隨著擾動水平的增加,魯棒性被量化為精度函數。
繼對抗性訓練的主題之后,[72] 表明,圖像分類深度神經網絡對對抗性輸入的魯棒性可以通過輸入空間和模型參數空間的離散化來提高,同時精度損失最小。在使用 MNIST、CIFAR10、CIFAR100 和 ImageNet 數據集的實驗中,輸入空間的離散化涉及將像素強度的數量從 256 (28) 減少到 4 (22),參數空間的離散化涉及使用低精度權重訓練模型以及諸如二元神經網絡 (BNN) 之類的激活。此外,結合這兩種離散化技術極大地提高了模型的魯棒性。與更昂貴的對抗性訓練過程(即使用對抗性示例訓練模型)相比,這種組合方案可以被視為提高魯棒性的另一種方法。在每個實驗中,通過比較分類的準確性來衡量魯棒性,同時對抗性擾動 (ε) 逐漸增加。實際上,這項工作中魯棒性的度量似乎是在保持給定精度的同時可以容忍的擾動程度。
在最后一個示例中,進行了一項相對簡單的工作 [71]。對圖像分類器的輸入進行預處理是通過將輸入饋入高斯核來實現的,其效果相當于平滑低通濾波器,其中平滑程度取決于內核的標準偏差參數。該實驗是使用 MNIST 數據集進行的,并測量了平滑和各種對抗性噪聲水平的不同組合的準確度。結果表明,為了優化給定水平的對抗性噪聲的準確性,存在一個最佳的平滑水平。在這種情況下,用于魯棒性的度量是針對給定數量的對抗性噪聲的成功攻擊的百分比。該度量允許直接比較使用和不使用平滑的性能。
對抗性魯棒性可以衡量為對抗性攻擊[47]擾動輸入的模型準確性。由于評估取決于應用的對抗性攻擊,因此很難衡量模型的實際對抗魯棒性。
文獻中的大多數作品通過使用在其訓練階段使用的相同或相似的對抗性攻擊方法和損失函數,來展示其方法的對抗性魯棒性。在[48]中已經表明,通過改變損失函數和生成對抗樣本的方法,可以實現比原始論文中報道的更低的對抗魯棒性。實際上,[48] 中指出,在 49 個案例中,有 13 個案例的魯棒性變化大于 10%,在 8 個案例中大于 30%。
在 [49] 中,通過將幾個深度神經網絡的性能與人類觀察者進行不同類型的操作進行比較,進行了類似的評估。在這項工作中,已經表明,只有在訓練階段知道所應用的操作時,深度神經網絡才能達到人類水平的性能。對于未知的操作,深度神經網絡的性能會急劇下降。此外,文獻中提出的許多防御策略都被更強大的對手打破了[48] [50]。因此,應仔細比較在不同方法下獲得的魯棒性,以確保評估盡可能有效[47]。
對抗魯棒性被報告為從擾動集中獲取的最壞情況輸入的模型精度。除了準確性之外,還可以測量兩種類型的性能指標來評估模型的魯棒性。第一個指標是對抗頻率,它衡量模型多久無法保持穩健[51]。第二個是對抗性嚴重性,用于衡量從原始輸入到對抗性樣本的預期最小距離 [51] [52],即模型被愚弄的難易程度。事實上,引用[51]:
“頻率和嚴重性捕獲了不同的魯棒性行為。神經網絡可能具有高對抗頻率但對抗嚴重程度低,這表明大多數對抗樣本距離原始點有非常小的距離。相反,神經網絡可能具有較低的對抗頻率但較高的對抗嚴重性,這表明它通常是魯棒的,但偶爾會嚴重不魯棒。頻率通常是更重要的指標,因為具有低對抗頻率的神經網絡在大多數情況下都是魯棒的。實際上,對抗性頻率對應于用于衡量魯棒性的對抗性樣本的準確性。嚴重性可用于區分具有相似對抗頻率的神經網絡。”
混合戰爭表明可能有許多系統和許多模型,因此如果假設人工智能將在混合戰爭系統的集合中使用,那么多種錯誤來源具有破壞人工智能在軍事領域應用的巨大潛力。
因此,上述當前技術的標準和調查都與了解將 AI 和 ML 應用于混合軍事領域的潛在弱點相關,因此在涉及與 AI 和 ML 的魯棒性有關的考慮時,顯然需要確保未來進行廣泛的評估。很明顯,有一個重要的考慮領域和可用的度量方法。然而,正如之前在第 2 節中提出的,這些度量方法適用于不同的利益相關者、不同的模型和潛在的不同任務。
因此,當前的問題是如何為特定模型確定和找到正確的度量方法,以獲得混合戰爭系統所需的置信度。 IST-169 打算推進這項初步調查來做到這一點。我們相信,開發各種類型的魯棒性及其適用于不同類型 AI 階段的圖形表示,將有助于全面了解 AI 魯棒性格局。這將加強并采取更嚴格的方法對人工智能應用進行開發。
我們為網絡上的多智能體影響博弈提供了一種多項式時間的、可擴展的均衡計算算法,將 Bindel、Kleinberg 和 Oren (2015) 的工作從單智能體擴展到多智能體場景。在影響力博弈中,智能體具有有限的宣傳預算來影響某些網絡中節點對其初始傾向,但節點的最終決策取決于網絡上 DeGroot 意見動態的靜止狀態。在多智能體系統中,智能體應該如何花費他們的預算來傳播網絡,以最大限度地利用它們來預測其他宣傳智能體和網絡動態?我們證明了這個博弈的納什均衡是純粹的并且(在弱假設下)是唯一的,并且可以在多項式時間內計算;我們通過使用鏡像下降計算隨機圖上的兩個智能體案例的均衡來測試我們的模型。
圖 1:頂部圖顯示均衡時預算的百分比變化(來自統一策略);節點按它們在鄰接矩陣的第二個特征向量中的分量排序,反映了圖結構。底部圖說明了均衡計算算法的收斂速度。紅色和藍色節點用點突出顯示。從左到右:1000 個節點和度參數為 3 的 Barabasi-Albert 圖,10000 個節點和度參數為 3 的 Barabasi-Albert 圖,以及 1000 個節點,初始度為 3,重連概率為 0.2 的 WattsStrogatz 圖。
人工智能領域的進展繼續擴大這組技術的潛在軍事應用范圍。本文探討了信任在人機聯合作戰中的關鍵作用,以及依靠人工智能來補充人類認知的潛在影響。如果依靠人工智能來準確處理傳感器數據,操作自主系統和平臺,或通過擬議的作戰概念(如以決策為中心的戰爭)提供有利的決策支持,設想機器智能的中央指揮和控制作用,那么信任機器智能將是未來作戰中的一個關鍵組成部分。鑒于這些技術和理論的發展,信任的概念對于機器智能在戰術和作戰層面的軍事行動中的使用變得高度相關,正確校準的信任水平是安全和有效行動的基礎。在簡要回顧了機器智能的最新進展和對信任概念的探索之后,本文概述了人工智能在戰場上的當前和潛在應用,以及由不充分或不合理的高信任度帶來的挑戰。
縱觀歷史,技術已經擴大了武裝沖突的領域,戰術交戰的節奏,戰場的地理范圍,以及指揮官與部隊溝通的手段。技術創新--包括軍事和民用--改變了軍隊的作戰方式以及國家計劃和進行這些沖突的方式。在21世紀,迄今為止,很少有進步能像統稱為人工智能(AI)的一組技術那樣獲得如此多的關注。人工智能正準備迎來一個新的時代,在這個時代,機器智能和自主性正在為軍事行動的規劃和執行產生明顯的新概念。算法戰爭可能會帶來一些獨特的東西:增強甚至取代人類決策過程的系統,其速度可能超過人類規劃者的認知能力。
新興技術的整合提出了任何數量的基本組織和倫理問題,值得關注。本文將采用定性的社會科學方法,重點討論人類-自治團隊(HAT)的一個重要方面:鼓勵對機器智能的適當信任程度。有大量的學術文獻關注自動化或機器人技術中的信任問題,但有關具體軍事應用的工作較少。當人工智能在聯合作戰中被實際部署時,在信任方面有哪些挑戰和機會?在簡要回顧人工智能和概述機器智能在戰場上的可能應用之后,本文在分析鼓勵適當信任水平的陷阱和潛在解決方案之前,探討了信任和信任校準的概念。
幾十年來,人類一直對賦予機器某種形式的人工智能的可能性著迷,Nils Nilsson將其定義為 "致力于使機器智能化的活動,而智能是使一個實體在其環境中適當運作并具有預見性的品質"。在數字時代的早期,出現了兩種廣泛的人工智能方法。自上而下的專家系統方法使用復雜的預編程規則和邏輯推理來分析一個特定的數據集。對于具有可預測規則的明確定義的環境--諸如分析實驗室結果或下棋等應用--專家系統或 "符號 "人工智能(基于符號邏輯)的性能主要取決于處理速度和算法的質量。另一大類使用自下而上的機器學習方法,模擬人類通過檢測數據中的模式進行學習的方式。神經網絡是一種以人腦為模型的機器學習形式,能夠通過使用多個(因此是 "深")人工神經元層來識別復雜的模式,是被稱為 "深度學習 "的技術的基礎。通過其在數據集中尋找關系的能力,這種技術也被稱為 "連接主義"。
自上而下、基于規則的符號系統和自下而上的機器學習連接主義技術之間的差異是很大的,特別是關于它們的潛在應用范圍和靈活性。深度學習方法的顯著特點是能夠將學習與它所訓練的數據集分開,因此可以應用于其他問題。基于規則的算法可以在狹義的任務中表現得非常好,而深度學習方法能夠迅速找到模式,并在 "蠻力 "專家系統計算方法無效的情況下有效地自學應用。最近的一些人工智能進展顯示了模仿創造力的能力,產生了有效的解決問題的方法,這些方法對人類來說可能是反直覺的。
然而,總的來說,人工智能仍然是狹窄的或 "脆弱的",即它們在特定的應用中功能良好,但在用于其他應用時仍然不靈活。與人類的認知相比,鑒于機器的計算速度遠遠超過人腦,機器智能在將邏輯規則應用于數據集時要優越得多,但在嘗試歸納推理時,它必須對數據集或環境進行一般性的觀察,這就顯得不足。大多數機器學習仍然需要大量的訓練數據集,盡管新的方法(包括生成對抗網絡(GAN)和 "小于一次 "或LO-shot學習)正在出現,需要非常小的數據集。圖像識別算法很容易被混淆,不能像人類那樣立即或直觀地理解情景背景。這種脆性也延伸到了其他問題,比如游戲。雖然人工智能在視頻游戲中經常表現出超人的能力,但他們往往不能將這種專業知識轉移到具有類似規則或玩法的新游戲中。
雖然人工智能技術繼續在變得更加適應方面取得重大進展,但任何接近人類的人工通用智能仍然難以實現。評估人工智能的近期前景因該技術的漸進式進展而變得更加復雜。圍繞著人工智能的炒作--在很大程度上被深度學習方法的成功所推動--既導致了對該技術未來的不切實際的期望,也導致了對其非常大的進展的正常化。正如一份報告所指出的,"人工智能將一項新技術帶入普通人的視野,人們對這項技術習以為常,它不再被認為是人工智能,而出現了更新的技術"。盡管象征性的人工智能和各種形式的機器學習構成了該領域最近的大部分進展,也許除了融合這兩種方法的嘗試之外,未來仍然不確定。一些人猜測,機器學習技術帶來的進展可能會趨于平穩,而另一些人則保持樂觀。相關的技術進步,如短期內的計算機芯片設計和長期內的量子計算,可能會影響進一步進展的速度。
將多個領域的軍事能力融合以提高效能的學說預示著國防的新時代,其特點是能夠承受更高的作戰規模和節奏,這得益于戰場自動化和協作水平的提高。然而,要獲得這些技術進步的潛在好處,前提是要找到應對無數挑戰的成功解決方案,以便在競爭環境中實現智能、異構、交互資源的更高效和可擴展的操作。換句話說,提高防御能力的自動化和協作需要更智能的“戰場操作系統”——一個在排除人類參與時間尺度上管理復雜自動化任務的系統,同時賦予作戰人員足夠的控制權。我們將此操作系統稱為戰場物聯網 (IoBT)。
在本文中,我們將重點關注維護 IoBT 所依據的三個優勢原則(在現代沖突中)所面臨的挑戰。即,
(i) 時間是武器;贏家是那些將傳感器和行動者之間的延遲最小化的人
(ii) IoBT 是一個戰斗網絡;所有功能都必須經受住主動、堅定和技術成熟的對手
(iii) 需要機器智能;需要一種新型的 AI 解決方案,可以快速預測到需要的點,在那里它們可以在嚴酷的現場操作環境中生存,而不是將 AI 限制運行在更高級別數據中心的解決方案中。
戰場物聯網協作研究聯盟(由政府和學術界研究機構組成的聯盟,由美國陸軍作戰能力發展司令部資助,稱為 DEVCOM,陸軍研究實驗室 (ARL))針對上述挑戰制定的解決方案是討論了:
我們特別關注涉及機器自動化和危害人工智能本身的威脅。雖然國防科學在研究保護有形資源的解決方案方面有著悠久的歷史,但一旦自動化進入循環并被依賴作為手動操作的優越替代方案,自動化或人工智能 (AI) 就需要同樣強調保護,因為它對作戰優勢至關重要。因此,戰場物聯網解決的一個關鍵挑戰是保護 IoBT 本身的效率、功效和完整性。
圖1:多域作戰(MDO)效應循環圖
圖2:分布式虛擬試驗場(DVPG)的概念架構