亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

自然語言數據的一個重要子集包括跨越數千個token的文檔。處理這樣長的序列的能力對于許多NLP任務是至關重要的,包括文檔分類、摘要、多跳和開放域問答,以及文檔級或多文檔關系提取和引用解析。然而,將最先進的模型擴展到較長的序列是一個挑戰,因為許多模型都是為較短的序列設計的。一個值得注意的例子是Transformer模型,它在序列長度上有二次計算代價,這使得它們對于長序列任務的代價非常昂貴。這反映在許多廣泛使用的模型中,如RoBERTa和BERT,其中序列長度被限制為只有512個tokens。在本教程中,我們將向感興趣的NLP研究人員介紹最新和正在進行的文檔級表示學習技術。此外,我們將討論新的研究機會,以解決該領域現有的挑戰。我們將首先概述已建立的長序列自然語言處理技術,包括層次、基于圖和基于檢索的方法。然后,我們將重點介紹最近的長序列轉換器方法,它們如何相互比較,以及它們如何應用于NLP任務(參見Tay等人(2020)最近的綜述)。我們還將討論處理長序列的關鍵的各種存儲器節省方法。在本教程中,我們將使用分類、問答和信息提取作為激勵任務。我們還將有一個專注于總結的實際編碼練習。

付費5元查看完整內容

相關內容

自然語言處理(NLP)是語言學,計算機科學,信息工程和人工智能的一個子領域,與計算機和人類(自然)語言之間的相互作用有關,尤其是如何對計算機進行編程以處理和分析大量自然語言數據 。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

由于其在非歐幾里德數據(如圖或流形)建模方面的強大能力,圖的深度學習技術(即圖神經網絡(GNNs))為解決具有挑戰性的圖相關NLP問題打開了一扇新的大門。將深度學習技術應用于自然語言處理的研究興趣大增,并在許多自然語言處理任務中取得了相當大的成功,包括句子分類、語義角色標注和關系抽取等分類任務,以及機器翻譯、問題生成和摘要等生成任務。盡管取得了這些成功,但面向NLP的圖深度學習仍然面臨許多挑戰,包括自動將原始文本序列數據轉換為高度圖結構的數據,以及有效地建模復雜數據,這些數據涉及基于圖的輸入和其他高度結構的輸出數據(如序列、樹、樹)之間的映射。以及節點和邊中都有多種類型的圖數據。本教程將涵蓋在圖形技術上應用深度學習的相關和有趣的主題,包括用于NLP的自動圖形構建、用于NLP的圖形表示學習、用于NLP的基于高級GNN模型(例如,graph2seq、graph2tree和graph2graph),以及GNN在各種NLP任務中的應用(例如,機器翻譯、自然語言生成、信息提取和語義解析)。此外,還將包括動手演示會議,以幫助觀眾獲得使用我們最近開發的開源庫Graph4NLP應用gnn解決具有挑戰性的NLP問題的實踐經驗。Graph4NLP是第一個為研究人員和實踐者方便地使用GNN完成各種NLP任務的庫。

//github.com/dlg4nlp/dlg4nlp.github.io

付費5元查看完整內容

深度學習已經成為自然語言處理(NLP)研究的主導方法,特別是在大規模語料庫中。在自然語言處理任務中,句子通常被認為是一系列標記。因此,流行的深度學習技術如循環神經網絡(RNN)和卷積神經網絡(CNN)在文本序列建模中得到了廣泛的應用。

然而,有大量的自然語言處理問題可以用圖結構來最好地表達。例如,序列數據中的結構和語義信息(例如,各種語法分析樹(如依賴分析樹)和語義分析圖(如抽象意義表示圖))可以通過合并特定任務的知識來擴充原始序列數據。因此,這些圖結構化數據可以對實體標記之間的復雜成對關系進行編碼,以學習更多的信息表示。然而,眾所周知,深度學習技術對歐幾里德數據(如圖像)或序列數據(如文本)具有破壞性,但不能立即適用于圖結構數據。因此,這一差距推動了對圖的深度學習的研究,特別是圖神經網絡(GNN)的發展。

這種在圖的深度學習和自然語言處理的交叉領域的研究浪潮影響了各種自然語言處理任務。應用/開發各種類型的GNN的興趣激增,并在許多自然語言處理任務中取得了相當大的成功,從分類任務如句子分類、語義角色標注和關系提取,到生成任務如機器翻譯、問題生成和摘要。

盡管取得了這些成功,NLP的圖深度學習仍然面臨許多挑戰,包括自動將原始文本序列數據轉換為高度圖結構的數據,以及有效地建模復雜數據,包括基于圖的輸入和其他高度結構化的輸出數據 (如序列、樹、并在節點和邊均具有多種類型的圖數據。本教程將涵蓋在NLP中運用深度學習圖技術的相關和有趣的主題,包括NLP的自動圖構造、NLP的圖表示學習、NLP的高級基于GNN的模型(例如graph2seq、graph2tree和graph2graph),以及GNN在各種NLP任務中的應用 (例如:機器翻譯、自然語言生成、信息提取和語義解析)。此外,還將包括動手演示課程,以幫助觀眾獲得應用GNN解決具有挑戰性的NLP問題的實際經驗,使用我們最近開發的開源庫——Graph4NLP,這是第一個為研究人員和從業者提供的庫,用于輕松地使用GNN解決各種NLP任務。

付費5元查看完整內容

摘要

Transformers 在自然語言處理、計算機視覺和音頻處理等許多人工智能領域都取得了巨大的成功。因此,自然會引起學術界和工業界研究人員的極大興趣。到目前為止,各種各樣的Transformer變種(即X-formers)已經被提出,但是,關于這些Transformer器變種的系統和全面的文獻綜述仍然缺乏。在這項綜述中,我們提供了一個全面的Transformer綜述。我們首先簡單介紹了普通的Transformer,然后提出了一個x-former的新分類。接下來,我們將從三個方面介紹不同的x -former架構修改,預訓練和應用。最后,展望了未來的研究方向。

//www.zhuanzhi.ai/paper/f03a47eb6ddb5d23c07f51662f3220a0

引言

Transformer[136]是一種出色的深度學習模型,被廣泛應用于自然語言處理(NLP)、計算機視覺(CV)和語音處理等各個領域。Transformer最初是作為一種用于機器翻譯的序列到序列模型提出的[129]。后來的工作表明,基于Transformer的預訓練模型(PTMs)[100]可以在各種任務上實現最先進的性能。因此,Transformer已經成為NLP的首選架構,特別是對于PTMs。除了語言相關的應用,Transformer也被應用于CV[13, 33, 94],音頻處理[15,31,41],甚至其他學科,如化學[113]和生命科學[109]。

由于成功,各種各樣的Transformer 變種(即x -former)在過去幾年里被提出。這些X-formers從不同的角度改進了vanilla Transformer。

(1) 模型的效率。應用Transformer的一個關鍵挑戰是它在處理長序列時效率低下,這主要是由于自注意力模塊的計算和存儲復雜性。改進方法包括輕量級注意力(例如稀疏注意變體)和分治法(例如循環和分層機制)。

(2) 模型泛化。由于Transformer是一種靈活的體系結構,并且很少對輸入數據的結構偏差進行假設,因此很難對小規模數據進行訓練。改進方法包括引入結構偏差或正則化、對大規模無標記數據進行預處理等。

(3) 模型的適應。該工作旨在使Transformer適應特定的下游任務和應用程序。

在這個綜述中,我們的目的是提供一個Transformer及其變體的全面綜述。雖然我們可以根據上面提到的觀點來組織x-former,但許多現有的x前輩可能會解決一個或幾個問題。例如,稀疏注意變量不僅降低了計算復雜度,而且在輸入數據上引入了結構先驗,緩解了小數據集上的過擬合問題。因此,將現有的各種X-formers進行分類,并根據它們改進Transformer的方式提出新的分類方法會更有條理: 架構修改、預訓練和應用。考慮到本次綜述的受眾可能來自不同的領域,我們主要關注于一般的架構變體,而只是簡單地討論了預訓練和應用的具體變體。

到目前為止,基于普通Transformer的各種模型已經從三個角度被提出:架構修改的類型、預訓練的方法和應用。圖2給出了Transformer變種的分類說明。

盡管“x-formers”已經證明了他們在各種任務上的能力,但挑戰仍然存在。除了目前關注的問題(如效率和泛化),Transformer的進一步改進可能在以下幾個方向:

(1) 理論分析。Transformer的體系結構已被證明能夠支持具有足夠參數的大規模訓練數據集。許多工作表明,Transformer比CNN和RNN有更大的容量,因此有能力處理大量的訓練數據。當Transformer在足夠的數據上進行訓練時,它通常比CNN或RNN有更好的性能。一個直觀的解釋是,Transformer對數據結構沒有什么預先假設,因此比CNN和RNN更靈活。然而,理論原因尚不明確,我們需要對Transformer能力進行一些理論分析。

(2) 注意力機制之外的全局交互機制更加完善。Transformer的一個主要優點是使用注意力機制來建模輸入數據中節點之間的全局依賴關系。然而,許多研究表明,對大多數節點來說,完全注意力是不必要的。在某種程度上,不可區分地計算所有節點的注意力是低效的。因此,在有效地建模全局交互方面仍有很大的改進空間。一方面,自注意力模塊可以看作是一個具有動態連接權的全連接神經網絡,通過動態路由聚合非局部信息; 因此,其他動態路由機制是值得探索的替代方法。另一方面,全局交互也可以通過其他類型的神經網絡來建模,比如記憶增強模型。

(3) 多模態數據統一框架。在許多應用場景中,集成多模態數據對于提高任務性能是非常有用和必要的。此外,一般的人工智能還需要能夠捕獲跨不同模式的語義關系。由于Transformer在文本、圖像、視頻和音頻方面取得了巨大的成功,我們有機會建立一個統一的框架,更好地捕捉多模態數據之間的內在聯系。但是,在設計中對模式內和模式間的注意還有待改進。

付費5元查看完整內容

近年來,在大量原始文本上預先訓練的大型語言模型徹底改變了自然語言處理。現有的方法,基于因果或隱藏的語言模型的變化,現在為每一個NLP任務提供了事實上的方法。在這個演講中,我將討論最近在語言模型預訓練方面的工作,從ELMo、GPT和BERT到更近期的模型。我的目標是對總體趨勢進行廣泛的報道,但提供更多關于我們最近在Facebook AI和華盛頓大學開發的模型的細節。其中特別包括序列到序列模型的預訓練方法,如BART、mBART和MARGE,它們提供了一些迄今為止最普遍適用的方法。

付費5元查看完整內容

本教程的目標讀者是對幫助機器理解自然語言文本(特別是文本中描述的真實事件)的人工智能技術感興趣的研究人員和實踐者。這些方法包括提取一個事件關于其主角、參與者和屬性的內部結構,以及關于多個事件的成員關系、時間和因果關系的外部結構。本教程將向讀者系統地介紹(i)事件的知識表示,(ii)自動提取、概念化和預測事件及其關系的各種方法,(iii)事件過程和屬性的歸納,以及(iv)大量受益于上述技術的NLU和常識理解任務。我們將概述這一領域中出現的研究問題,以此結束本教程。

//cogcomp.seas.upenn.edu/page/tutorial.202102/

人類語言總是涉及對現實世界事件的描述。因此,對事件的理解在自然語言理解中起著至關重要的作用。例如,敘事預測可以通過學習事件的因果關系來預測故事接下來會發生什么;機器理解文件可能包括理解影響股票市場的事件,描述自然現象或識別疾病表型。事實上,事件理解在諸如開放域問題回答、意圖預測、時間軸構建和文本摘要等任務中也廣泛地發現了它的重要用例。由于事件不只是簡單的、獨立的謂詞,對事件理解的前沿研究通常面臨兩個關鍵挑戰。一個挑戰是精確地歸納事件之間的關系,這些關系描述了事件的成員關系、共同參照、時間順序和因果關系。另一種是理解事件的內在結構和屬性,涉及其參與者、粒度、位置和時間。

在本教程中,我們將全面回顧文獻中以事件為中心的知識表示的現有范式,并關注它們對NLU任務的貢獻。除了介紹事件提取的部分標簽和無監督學習方法外,我們還將討論最近的約束學習和結構化推理方法,用于從文本中提取多方面的事件-事件關系。我們還將回顧最近用于事件預測任務的數據驅動方法,包括事件過程歸納和概念化,以及以事件為中心的語言模型如何有利于敘事預測。此外,我們將說明遠程監督的方法如何幫助解決對事件的時間和因果常識的理解,以及如何應用它們來構建大規模的可能性知識庫。與會者將了解該主題的最新趨勢和新出現的挑戰,獲得現成模型的代表性工具和學習資源,以及相關模型和技術如何有利于最終使用的NLU應用。

付費5元查看完整內容

近年來,規模在自然語言處理的快速發展中發揮了核心作用。雖然基準測試被越來越大的模型所主導,但高效的硬件使用對于它們的廣泛采用和該領域的進一步發展至關重要。在這個尖端的教程中,我們將概括自然語言處理的最先進技術。在建立這些基礎之后,我們將介紹廣泛的提高效率的技術,包括知識蒸餾、量化、修剪、更高效的架構,以及案例研究和實際實現技巧。

//2020.emnlp.org/tutorials

付費5元查看完整內容

使用正式的查詢語言指定用戶的興趣通常是一項具有挑戰性的任務,這在多模型數據管理上下文中變得更加困難,因為我們必須處理數據多樣性。它通常缺乏統一的模式來幫助用戶發出查詢,或者由于數據來自不同的來源,所以模式不完整。多模型數據庫(mmdb)已經成為處理此任務的一種有前途的方法,因為它們能夠在單個系統中容納和查詢多模型數據。本教程旨在全面介紹多種mmdb查詢語言,并從多個角度比較它們的屬性。我們將討論跨模型查詢處理的本質,并對研究挑戰和未來工作的方向提供見解。本教程還將向參與者提供應用mmdb來發出多模型數據查詢的實際經驗。

//www.helsinki.fi/en/node/93817

付費5元查看完整內容

【導讀】這一份最新216頁的ppt概述《深度學習自然語言處理》,包括神經網絡基礎,詞向量表示,序列句子表示,分類標注、生成句子,預訓練。

付費5元查看完整內容
北京阿比特科技有限公司