亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要: 手語識別涉及計算機視覺、模式識別、人機交互等領域,具有重要的研究意義與應用價值。深度學習技術的蓬勃發展為更加精準、實時的手語識別帶來了新的機遇。該文綜述了近年來基于深度學習的手語識別技術,從孤立詞與連續語句兩個分支展開詳細的算法闡述與分析。孤立詞識別技術劃分為基于卷積神經網絡(CNN)、3維卷積神經網絡(3D-CNN)和循環神經網絡(RNN) 3種架構的方法;連續語句識別所用模型復雜度更高,通常需要輔助某種長時時序建模算法,按其主體結構分為雙向長短時記憶網絡模型、3維卷積網絡模型和混合模型。歸納總結了目前國內外常用手語數據集,探討了手語識別技術的研究挑戰與發展趨勢,高精度前提下的魯棒性和實用化仍有待于推進。

付費5元查看完整內容

相關內容

 機器學習的一個分支,它基于試圖使用包含復雜結構或由多重非線性變換構成的多個處理層對數據進行高層抽象的一系列算法。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

摘要:近年來,基于深度學習的表面缺陷檢測技術廣泛應用在各種工業場景中.本文對近年來基于深度學習的表面缺陷檢測方法進行了梳理,根據數據標簽的不同將其分為全監督學習模型方法、無監督學習模型方法和其他方法三大類,并對各種典型方法進一步細分歸類和對比分析,總結了每種方法的優缺點和應用場景.本文探討了表面缺陷檢測中三個關鍵問題,介紹了工業表面缺陷常用數據集.最后,對表面缺陷檢測的未來發展趨勢進行了展望.

付費5元查看完整內容

摘要: 大數據時代,數據呈現維度高、數據量大和增長快等特點。如何有效利用其中蘊含的有價值信息,以實現數據的智能化處理,已成為當前理論和應用的研究熱點。針對現實普遍存在的多義性對象,數據多標簽被提出并被廣泛應用于數據智能化組織。近年來,深度學習在數據特征提取方面呈現出高速、高精度等優異性,使基于深度學習的多標簽生成得到廣泛關注。文中分五大類別總結了最新研究成果,并進一步從數據、關系類型、應用場景、適應性及實驗性能方面對其進行對比和分析,最后探討了多標簽生成面臨的挑戰和未來的研究方向。

付費5元查看完整內容
北京阿比特科技有限公司