亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

【導讀】數據挖掘頂會KDD 2020接收論文列表已公布,你的文章中了嗎?

KDD2020官方今日發布接收論文,共有1279篇論文提交到Research Track,共有216篇接受,接受率16.8%。

ACM SIGKDD(國際數據挖掘與知識發現大會,簡稱 KDD)是世界數據挖掘領域的最高級別的學術會議,由 ACM 的數據挖掘及知識發現專委會(SIGKDD)主辦,被中國計算機協會推薦為 A 類會議。

自 1995 年以來,KDD 已經連續舉辦了二十余屆大會,今年是第26屆。今年的 KDD 大會將于 2020 年 8 月 23 日 ~27 日在美國美國加利福尼亞州圣地亞哥舉行。

付費5元查看完整內容

相關內容

【導讀】計算機視覺頂會ECCV 2020接收論文列表,剛剛已公布,你的文章中了嗎?

據張博老師微博,ECCV 2020官方今日發布接收論文,共有5025篇論文投稿,共有1361篇接受,接受率27%。

ECCV是European Conference on Computer Vision的縮寫,即歐洲計算機視覺大會。今年第16屆ECCV原定于2020年8月23-28日在英國格拉斯哥舉行。

ECCV官方發布了一篇“組織者的來信”,表示受COVID-19影響,決定ECCV 2020將完全以虛擬方式進行

付費5元查看完整內容

【導讀】作為世界數據挖掘領域的最高級別的學術會議,ACM SIGKDD(國際數據挖掘與知識發現大會,簡稱 KDD)每年都會吸引全球領域眾多專業人士參與。今年的 KDD大會計劃將于 2020 年 8 月 23 日 ~27 日在美國美國加利福尼亞州圣地亞哥舉行。上周,KDD 2020官方發布接收論文,共有1279篇論文提交到Research Track,共216篇被接收,接收率16.8%。近期KDD官網公布了接受論文列表,為此,上個月專知小編為大家整理了圖神經網絡相關的論文,這期小編繼續為大家奉上KDD 2020必讀的五篇圖神經網絡(GNN)相關論文-Part 2——多層次GCN、無監督預訓練GCN、圖Hash、GCN主題模型、采樣

KDD 2020 Accepted Paper: //www.kdd.org/kdd2020/accepted-papers

KDD2020GNN_Part1、CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、

1. Multi-level Graph Convolutional Networks for Cross-platform Anchor Link Prediction

作者:Hongxu Chen, Hongzhi Yin, Xiangguo Sun, Tong Chen, Bogdan Gabrys, Katarzyna Musial

摘要:跨平臺的賬號匹配在社交網絡分析中發揮著重要作用,并且有利于廣泛的應用。然而,現有的方法要么嚴重依賴于高質量的用戶生成內容(包括用戶興趣模型),要么只關注網絡拓撲結構,存在數據不足的問題,這使得研究這個方向變得很困難。為了解決這一問題,我們提出了一種新的框架,該框架統一考慮了局部網絡結構和超圖結構上的多級圖卷積。該方法克服了現有工作中數據不足的問題,并且不一定依賴于用戶的人口統計信息。此外,為了使所提出的方法能夠處理大規模社交網絡,我們提出了一種兩階段的空間協調機制,在基于網絡分區的并行訓練和跨不同社交網絡的帳戶匹配中對齊嵌入空間。我們在兩個大規模的真實社交網絡上進行了廣泛的實驗。實驗結果表明,該方法的性能比現有的模型有較大幅度的提高。

網址:

2. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training

作者:Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang

摘要:圖表示學習已經成為解決現實問題的一種強有力的技術。包括節點分類、相似性搜索、圖分類和鏈接預測在內的各種下游圖學習任務都受益于它的最新發展。然而,關于圖表示學習的現有技術集中于領域特定的問題,并為每個圖訓練專用模型,這通常不可轉移到領域之外的數據。受自然語言處理和計算機視覺在預訓練方面的最新進展的啟發,我們設計了圖對比編碼(Graph Contrastive Coding,GCC)一個無監督的圖表示學習框架來捕捉跨多個網絡的通用網絡拓撲屬性。我們將GCC的預訓練任務設計為網絡內部和網絡之間的子圖級別的實例判斷,并利用對比學習來增強模型學習內在的和可遷移的結構表征能力。我們在三個圖學習任務和十個圖數據集上進行了廣泛的實驗。結果表明,GCC在一組不同的數據集上進行預訓練,可以獲得與從頭開始的特定任務訓練的方法相媲美或更好的性能。這表明,預訓練和微調范式對圖表示學習具有巨大的潛力。

網址:

代碼鏈接:

3. GHashing: Semantic Graph Hashing for Approximate Similarity Search in Graph Databases

作者:Zongyue Qin, Yunsheng Bai, Yizhou Sun

摘要:圖相似搜索的目的是根據給定的鄰近度,即圖編輯距離(GED),在圖形數據庫中找到與查詢最相似的圖。這是一個被廣泛研究但仍具有挑戰性的問題。大多數研究都是基于剪枝驗證框架,該框架首先對非看好的圖進行剪枝,然后在較小的候選集上進行驗證。現有的方法能夠管理具有數千或數萬個圖的數據庫,但由于其精確的剪枝策略,無法擴展到更大的數據庫。受到最近基于深度學習的語義哈希(semantic hashing)在圖像和文檔檢索中的成功應用的啟發,我們提出了一種新的基于圖神經網絡(GNN)的語義哈希,即GHash,用于近似剪枝。我們首先用真實的GED結果訓練GNN,以便它學習生成嵌入和哈希碼,以保持圖之間的GED。然后建立哈希索引以實現恒定時間內的圖查找。在回答一個查詢時,我們使用哈希碼和連續嵌入作為兩級剪枝來檢索最有希望的候選對象,并將這些候選對象發送到精確的求解器進行最終驗證。由于我們的圖哈希技術利用了近似剪枝策略,與現有方法相比,我們的方法在保持高召回率的同時,實現了顯著更快的查詢時間。實驗表明,該方法的平均速度是目前唯一適用于百萬級數據庫的基線算法的20倍,這表明GHash算法成功地為解決大規模圖形數據庫的圖搜索問題提供了新的方向。

網址:

4. Graph Structural-topic Neural Network

作者:Qingqing Long, Yilun Jin, Guojie Song, Yi Li, Wei Lin

摘要:圖卷積網絡(GCNS)通過有效地收集節點的局部特征,取得了巨大的成功。然而,GCNS通常更多地關注節點特征,而較少關注鄰域內的圖結構,特別是高階結構模式。然而,這種局部結構模式被顯示為許多領域中的節點屬性。此外,由于網絡很復雜,每個節點的鄰域由各種節點和結構模式的混合組成,不只是單個模式,所有這些模式上的分布都很重要。相應地,在本文中,我們提出了圖結構主題神經網絡,簡稱GraphSTONE,這是一種利用圖的主題模型的GCN模型,使得結構主題廣泛地從概率的角度捕捉指示性的圖結構,而不僅僅是幾個結構。具體地說,我們使用 anonymous walks和Graph Anchor LDA(一種LDA的變體,首先選擇重要的結構模式)在圖上建立主題模型,以降低復雜性并高效地生成結構主題。此外,我們設計了多視圖GCNS來統一節點特征和結構主題特征,并利用結構主題來指導聚合。我們通過定量和定性實驗對我們的模型進行了評估,我們的模型表現出良好的性能、高效率和清晰的可解釋性。

網址:

代碼鏈接:

5. Minimal Variance Sampling with Provable Guarantees for Fast Training of Graph Neural Networks

作者:Weilin Cong, Rana Forsati, Mahmut Kandemir, Mehrdad Mahdavi

摘要:抽樣方法(如節點抽樣、分層抽樣或子圖抽樣)已成為加速大規模圖神經網絡(GNNs)訓練不可缺少的策略。然而,現有的抽樣方法大多基于圖的結構信息,忽略了最優化的動態性,導致隨機梯度估計的方差較大。高方差問題在非常大的圖中可能非常明顯,它會導致收斂速度慢和泛化能力差。本文從理論上分析了抽樣方法的方差,指出由于經驗風險的復合結構,任何抽樣方法的方差都可以分解為前向階段的嵌入近似方差和后向階段的隨機梯度方差,這兩種方差都必須減小,才能獲得較快的收斂速度。我們提出了一種解耦的方差減小策略,利用(近似)梯度信息自適應地對方差最小的節點進行采樣,并顯式地減小了嵌入近似引入的方差。理論和實驗表明,與現有方法相比,該方法即使在小批量情況下也具有更快的收斂速度和更好的泛化能力。

網址:

付費5元查看完整內容

?據陳怡然老師微博,ICML 2020官方今日發布接收論文,共有4990篇論文投稿,共有1088篇接受,接受率21.8%。

ICML是 International Conference on Machine Learning的縮寫,即國際機器學習大會。今年第37屆ICML原定于2020年7月12-18日在奧地利維也納舉行。

ICML官方發布了一篇“組織者的來信”,表示受COVID-19影響,無法預測7月份的情況,決定ICML 2020將完全以虛擬方式進行。

一些接受論文搶先看:

Sparse Sinkhorn Attention //arxiv.org/abs/2002.11296 Random Matrix Theory Proves that Deep Learning Representations of GAN-data Behave as Gaussian Mixtures, GradientDICE: Rethinking Generalized Offline Estimation of Stationary Values Deep k-NN for Noisy Labels Likelihood-free MCMC with Amortized Approximate Ratio Estimators Revisiting Spatial Invariance with Low-Rank Local Connectivity

付費5元查看完整內容

【導讀】作為世界數據挖掘領域的最高級別的學術會議,ACM SIGKDD(國際數據挖掘與知識發現大會,簡稱 KDD)每年都會吸引全球領域眾多專業人士參與。今年的 KDD大會計劃將于 2020 年 8 月 23 日 ~27 日在美國美國加利福尼亞州圣地亞哥舉行。上周,KDD 2020官方發布接收論文,共有1279篇論文提交到Research Track,共216篇被接收,接收率16.8%。近期一些Paper放出來了,為此,專知小編提前為大家整理了五篇KDD 2020 圖神經網絡(GNN)相關論文,供大家參考。——圖結構學習、多元時間序列預測、負采樣、多任務多視角圖表示學習、多興趣推薦

CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、

1. Graph Structure Learning for Robust Graph Neural Networks

作者:Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, Jiliang Tang

摘要:圖神經網絡(GNNs)是圖表示學習的有力工具。但是,最近的研究表明,GNN容易受到精心設計的擾動(稱為對抗攻擊)的攻擊。對抗性攻擊很容易欺騙GNN來預測下游任務。對于對抗攻擊的脆弱性使人們越來越關注在安全關鍵型應用中應用GNN。因此,開發穩健的算法來防御對抗攻擊具有重要意義。防御對抗攻擊的一個自然想法是清理受干擾的圖。很明顯,真實世界的圖共享一些內在屬性。例如,許多現實世界的圖都是低秩和稀疏的,兩個相鄰節點的特征往往是相似的。事實上,我們發現對抗攻擊很可能會違背這些圖的性質。因此,在本文中,我們利用這些特性來防御針對圖的對抗攻擊。特別是,我們提出了一個通用框架Pro-GNN,該框架可以從受這些特性指導的擾動圖中聯合學習結構圖和魯棒圖神經網絡模型。在真實圖上的大量實驗表明,即使在圖受到嚴重干擾的情況下,我們所提出的框架也比現有的防御方法獲得了顯著更好的性能。我們將Pro-GNN的實現發布到我們的DeepRobust存儲庫,以進行對抗性攻擊和防御。

網址: //arxiv.org/pdf/2005.10203.pdf

代碼鏈接:

2. Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks

作者:Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, Chengqi Zhang

摘要:多變量時間序列的建模長期以來一直吸引著來自經濟、金融和交通等不同領域的研究人員的關注。多變量時間序列預測背后的一個基本假設是其變量之間相互依賴,但現有方法未能充分利用變量對之間的潛在空間相關性。同時,近些年來,圖神經網絡(GNNs)在處理關系依賴方面表現出了很高的能力。GNN需要定義良好的圖結構來進行信息傳播,這意味著它們不能直接應用于事先不知道依賴關系的多變量時間序列。本文提出了一種專門針對多變量時間序列數據設計的通用圖神經網絡框架。該方法通過圖學習模塊自動提取變量間的單向關系,可以方便地集成變量屬性等外部知識。在此基礎上,提出了一種新的max-hop傳播層和一個dilated inception層來捕捉時間序列中的時間和空間依賴關系。圖學習、圖卷積和時間卷積模塊在端到端框架中聯合學習。實驗結果表明,我們提出的模型在4個基準數據集中的3個數據上優于最新的基線方法,并且在提供額外結構信息的兩個交通數據集上,與其他方法具有同等的性能。

網址:

3. Understanding Negative Sampling in Graph Representation Learning

作者:Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, Jie Tang

摘要:在最近的幾年中,對圖表示學習進行了廣泛的研究。盡管它有可能為各種網絡生成連續的嵌入,但是在大型節點集中得到有效高質量的表示仍然具有挑戰性。采樣是實現該性能目標的關鍵點。現有技術通常側重于正向節點對的采樣,而對負向采樣的策略探索不夠。為了彌補這一差距,我們從目標和風險兩個角度系統地分析了負采樣的作用,從理論上論證了負采樣在確定優化目標和結果方差方面與正采樣同等重要。據我們所知,我們是第一個推導該理論并量化負采樣分布應與其正采樣分布成正相關但亞線性相關的方法。在該理論的指導下,我們提出了MCNS,用自對比度近似法近似正分布,并通過Metropolis-Hastings加速負采樣。我們在5個數據集上評估了我們的方法,這些數據集涵蓋了19個實驗設置,涵蓋了廣泛的下游圖學習任務,包括鏈接預測,節點分類和個性化推薦。這些相對全面的實驗結果證明了其穩健性和優越性。

網址:

4. M2GRL: A Multi-task Multi-view Graph Representation Learning Framework for Web-scale Recommender Systems

作者:Menghan Wang, Yujie Lin, Guli Lin, Keping Yang, Xiao-ming Wu

摘要:將圖表示學習與多視圖數據(邊信息)相結合進行推薦是工業上的一種趨勢。現有的大多數方法可以歸類為多視圖表示融合,它們首先構建一個圖,然后將多視圖數據集成到圖中每個節點的單個緊湊表示中。這些方法在工程和算法方面都引起了人們的關注:1)多視圖數據在工業中是豐富而且有用的,并且可能超過單個矢量的容量;2)由于多視圖數據往往來自不同的分布,可能會引入歸納偏置(inductive bias)。在本文中,我們使用一種多視圖表示對齊方法來解決這個問題。特別地,我們提出了一個多任務多視角圖表示學習框架(M2GRL)來學習web級推薦系統中的多視角圖節點表示。M2GRL為每個單視圖數據構造一個圖,從多個圖中學習多個單獨的表示,并執行對齊以建立模型的交叉視圖關系。M2GRL選擇了一種多任務學習范式來聯合學習視圖內表示和交叉視圖關系。此外,M2GRL在訓練過程中利用同方差不確定性自適應地調整任務的損失權重。我們在淘寶部署了M2GRL,并對570億個實例進行了訓練。根據離線指標和在線A/B測試,M2GRL的性能明顯優于其他最先進的算法。對淘寶多樣性推薦的進一步研究表明,利用M2GRL產生的多種表征是有效的,對于不同側重點的各種工業推薦任務來說,M2GRL是一個很有前途的方向。

網址:

5. Controllable Multi-Interest Framework for Recommendation

作者:Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, Jie Tang

摘要:近年來,由于深度學習的快速發展,神經網絡在電子商務推薦系統中得到了廣泛的應用。我們將推薦系統形式化為一個序列推薦問題,目的是預測可能與用戶交互的下一個項目。最近的研究通常從用戶的行為序列中給出一個整體的嵌入。然而,統一的用戶嵌入不能反映用戶在一段時間內的多個興趣。本文提出了一種新穎的可控多興趣序列推薦框架,稱為ComiRec。我們的多興趣模塊從用戶行為序列中捕獲多個興趣,可用于從大規模項目集中檢索候選項目。然后將這些項目送入聚合模塊以獲得總體推薦。聚合模塊利用一個可控因素來平衡推薦的準確性和多樣性。我們在兩個真實的數據集Amazon和Taobao進行序列推薦實驗。實驗結果表明,我們的框架相對于最新模型取得了重大改進。我們的框架也已成功部署在離線阿里巴巴分布式云平臺上。

網址:

代碼鏈接:

付費5元查看完整內容
北京阿比特科技有限公司