亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

人形機器人商業化持續推進。人形機器人發展到高動態階段為未來多樣化應用場景落地創造了豐富的想象空間,多家企業已就實際應用場景開展了商業化初試,其中1Xtechnologies的機器人EVE和AgilityRobotics的機器人Digit取得了不錯的成績,通過復盤他們的發展情況,我們認為人形機器人成功實現商業化需要從以下幾點考量:(1)找到降本路徑實現規模化,提升機器人應用經濟性;(2)提升智能化水平;(3)功能設計與實用場景匹配助力應用,比如EVE、Digit。   多維度賦能,人形機器人發展有望提速。在ChatGPT的加持下,人形機器人有望迎來新一輪進化,科技龍頭紛紛入局,技術革新蓄勢待發。同時,相關政策激勵也將推動人形機器人應用落地。未來,隨著技術創新和成本下探,人形機器人具備可觀發展潛力,有望迎來廣闊的商業化應用前景空間   特斯拉入局,人形機器人有望實現“0-1”。2022年特斯拉人形機器人Optimus原型機在AIday首次亮相,基于特斯拉強大的儲備技術,Optimus實現了快速迭代,到2023年5月,其力度精準控制、環境感知能力等方面都有了較大的提升。我們認為基于特斯拉電動車的快速擴產能力以及專注于技術降本的強大的創新研發能力將加快Optimus的經濟性提升,人形機器人有望實現“0-1”。

付費5元查看完整內容

相關內容

虛擬人產業受技術與需求驅動,擬人化是重要發展方向:虛擬人可分為功能型與身份型虛擬人,功能型虛擬人主要以替代日常工作為主要目的;身份型虛擬人以IP形象為特征,是認知與需求的投射,市場空間更廣闊。虛擬人已進入快速成長期,AI大背景下虛擬人產業從基礎層、平臺層、應用層到交互層均迎來較大變革,傳統虛擬人已過渡至AI虛擬人時期,根據艾媒咨詢數據,到2025年虛擬人核心市場規模有望達到480.6億元。

  AI推動虛擬人降本增效,交互能力提升,技術、應用、商業化良性循環:AI與虛擬人產業結合度持續提升,AI逐步實現虛擬人制作全流程覆蓋,虛擬人制作降本增效,AI建模、驅動替代傳統的CG建模與中之人驅動;虛擬人接入大模型大幅提升虛擬人多模態交互能力,應用場景持續拓展。AI帶來降本增效,打開虛擬人行業商業化空間,應用場景拓展進一步豐富虛擬人產業的商業模式,AI虛擬人產業有望實現商業化、技術進步、應用拓展良性循環。

  AI驅動虛擬人應用場景加速拓展,細分賽道有望受益于AI賦能:隨著AI等技術進步對虛擬人形象與交互能力的提升,AI能夠在更多場景替代人力。廣告營銷領域,虛擬人通過第三方合作與品牌自有的形式提升營銷效果;直播電商領域,AI數字人替代真人直播,直播時長大幅提升;陪伴場景下,虛擬人交互能力提升,能夠滿足人的情感需求;泛娛樂場景下,數字人擬人化程度提升,能夠參與泛娛樂活動,實現與真人交互。  

付費5元查看完整內容

 AI技術發展,機器視覺正從傳統標準化場景過渡到非標準化應用場景。機器視覺行業經過多年發展,目前已被廣泛應用在各行各業,發揮著識別、測量、定位及檢測功能,但其使用場景主要聚焦在標準化檢測領域,整體呈現出自動化、標準化程度高等特點,但伴隨AI技術發展,機器視覺有望從過去標準化應用場景逐步過渡到非標準化應用場景,市場規模有望進一步打開。

  在AI賦能下,行業有望迎來空前發展機會。(1)深度學習算法不斷迭代,人工智能生成內容百花齊放。根據GGII數據,國內機器視覺市場規模有望從21年138億元增長至25年349億元。(2)AI背景下,SAM模型應用不斷拓展。近日Meta發布SAM模型是機器視覺領域的底層突破性技術,極大降低了圖像處理門檻,有望更好推動機器視覺在下游各場景領域的應用。     國產機器視覺廠商正逐步崛起,成為國內市場中堅力量。雖然國內機器視覺行業起步較晚,但經過多年發展,目前也已陸續涌現出優秀的機器視覺廠商,逐步實現進口替代。如以光源為代表的核心零部件已逐步實現國產替代,且正往高端化趨勢發展;3D視覺傳感器正不斷探索潛在的細分領域應用,尋找潛在的增長爆點;而軟件算法亦伴隨AI技術發展不斷升級更新。我們認為:伴隨以SAM模型為代表的AI技術發展,軟件算法門檻有望極大降低,因此更應該關注具備核心技術能力  

付費5元查看完整內容

AI+制造業賦能,META發布SAM助力機器視覺迎來GPT時刻。機器視覺技術使得工業設備能夠“看到”它正在進行的操作并進行快速決策,完整機器視覺系統由硬件+軟件組成,分別進行成像和圖像處理工作。目前,以“AI+人類感知”融合為代表的新興技術開始逐漸滲透至工業制造各環節,機器視覺作為AI+制造業的種業落地技術已經介入制造業生產環節的跟蹤、產品質量的檢測等。我們認為人工智能是機器視覺的母身,深度學習為機器視覺的技術堡壘,近期Meta發布SAM模式有望助力機器視覺迎來GPT時刻。  機器視覺下游的高景氣反哺明顯,AI與機器視覺成為剛需。AI+機器視覺技術優勢明顯,政策加持+社會需求(人口紅利退潮)驅動中長期發展,我國機器視覺待滲透空間較大。隨著工業4.0等概念的持續深化+研發技術的不斷突破,AI+機器視覺持續賦能下游工業應用領域,有望受益于下游賽道的高景氣,從行業領域來看,高景氣賽道的半導體、汽車、新能源有望成為未來行業的最重要驅動力之一,電子領域在中長期仍是應用范圍最廣的下游。從應用深度來看,AI賦予機器視覺的高精度優勢,使得機器視覺成為不少行業的剛需標配,機器視覺已逐漸嵌入半導體、汽車、新能源鋰電池與光伏的生產檢測環節,提高汽車電子的裝配質量、突破光伏缺陷檢測瓶頸以提高產品良率等。  機器視覺成本集中在上游,核心環節的國產替代化方興未艾。25年全球有望達到千億市場規模,中國增速領先全球(CAGR為15%)。剖析產業鏈,機器視覺產業鏈的上游硬件(奧普特/海康/大恒/中光學/舜宇/福光)鏡頭、工業相機、光源以及軟件(凌云光/奧普特/海康/鼎捷),中游為裝備制造/系統集成廠商(天準/凌云光/大恒/矩子/華興源創/精測電子),成本集中在技術壁壘高筑的工業相機(價值量占比23%)以及軟件算法(35%);競爭格局方面,全球機器視覺市場以康耐視(美國)、基恩士(日本)、巴斯勒(德國)為代表的企業占據全球>50%市場份額,以康耐視和基恩士為代表的雙巨頭以入局早、扎實產品技術、廣泛應用場景經驗的優勢提前據市場優勢。國內機器視覺上游行業仍處于成長階段,增長速度大致相當,關注國產替代+AI迭代下工業相機與軟件環節發展。

付費5元查看完整內容

ChatGPT與工業的結合將以何種技術路徑呈現?

  宏觀而言,ChatGPT的推出標志著人工智能進入加速發展階段。在數字經濟的發展背景下,工業數據潛在價值凸顯,ChatGPT助力人工智能技術與工業深度融合,進而將推動工業4.0加速落地。   具體而言,有望沿著三個方向進行技術演化:①挖掘數據價值并生成工業模型;②憑借優異的代碼開發能力降低工業軟件編程門檻;③憑借NLP(自然語言處理)優勢提升人機交互能力。   我國工業發展階段:工業3.0已趨成熟,工業4.0由萌芽期即將步入高速成長期。   2013-2015年是我國工業3.0大發展時期。2012年對應我國勞動力人口的“劉易斯拐點”,人口紅利消失直接催生了工業機器人行業的爆發式增長。   工業機器人是衡量工業自動化/信息化水平的重要指標。2021年我國工業機器人密度為322臺/萬人,達全球第五,保有量全球占比34.91%;2013年以來,與之配套的自動化生產、檢測、物流、倉儲均得到了極大發展。   2015年中國工業4.0開始萌芽。繼2012年美國提出先進制造業戰略、2013年德國提出工業4.0后,2015年5月我國國務院提出“中國制造2025”,標志著我國工業4.0的萌芽。   工業軟件作為工業4.0時代的核心產品,是衡量工業智能化/數字化水平的重要指標。2020年我國工業增加值占全球比例為24.97%,工業軟件市場規模占全球比例為15.00%,工業軟件發展與整體工業規模尚不匹配。   復盤2013-2015年“十倍股”機器人(300024)的市場表現,對當下投資的啟示。   新松機器人市值增長了約10倍,其中21%來自于業績增長的貢獻,79%來自于估值的提升(37X——253X)。   為何是新松?①新松是工業3.0時代硬件技術的典型代表,進而承載了彼時對工業4.0朦朧認知的審美;②占據產業高點,龍頭屬性突出;③歷史業績成長性良好,2009-2015H1均延續了業績正增長。   結論:建議從技術屬性、龍頭地位、業績成長三方面選擇賽道和個股。   技術屬性:ChatGPT與工業結合的三大技術演化方向,就是可選賽道的技術特征點,這決定了β屬性。   競爭格局:龍頭公司優秀的競爭格局和頭部效應,是α邏輯兌現的保障。   業績成長性:業績成長確定性將提供安全邊際。   受益標的:景嘉微、中控技術、川儀股份、億嘉和、景業智能、邁赫股份、埃斯頓等。   工業軟件:工業軟件能力成為衡量工業4.0時代企業核心競爭力的重要指標,未來高端工業軟件的研發和突破是我國邁向工業4.0的必經之路。   服務機器人:2022年服務機器人占比首超工業機器人,GPT等人工智能技術將為服務機器人的交互帶來質變,服務機器人行業將迎拐點。   特種機器人:GPT類技術將使特種機器人擁有更高的自主性和適應性,以及更優秀的協作能力,行業有望持續高增。   工業機器人:近年我國政府及相關部門出臺了一系列政策,鼓勵工業機器人產業發展,5G、云計算、AI等技術變革將助推工業機器人加速實現國產化、智能化、高端化。   基于機器人平臺的工業旅游項目:我國工業旅游具有廣闊發展空間,ChatGPT助力實現自然的人機交互,增強工業旅游體驗,引領行業新未來。   GPU:GPU是人工智能發展過程中的算力底座,在ChatGPT等NLP語言模型升級過程中,GPU行業也將迎來歷史性的上升通道。   傳感器:工業4.0轉型過程中,傳感器是感知層核心設備,進口替代需求迫切,GPT類技術為高端工業傳感器帶來新機遇。

專知便捷查看

便捷下載,請關注專知公眾號(點擊上方藍色專知關注)

后臺回復或發消息“G362” 就可以獲取《【干貨書】生成式對抗學習:架構與應用,362頁pdf****》專知下載鏈接

專知,專業可信的人工智能知識分發,讓認知協作更快更好!歡迎注冊登錄專知www.zhuanzhi.ai,獲取100000**+AI**(AI與軍事、醫藥、公安等)主題干貨知識資料! 歡迎微信掃一掃加入專知人工智能知識星球群,獲取最新AI專業干貨知識教程資料和與專家交流咨詢 點擊“閱讀原文”,了解使用**專知,查看獲取100000+AI主題知識資料**

付費5元查看完整內容

來源:中國信息通信研究院、人工智能關鍵技術和應用評測工業和信息化部重點實驗室

隨著“十四五”規劃等國家政策的深化落地,人工智能(AI)發展迎來又一輪紅利,特別是以ChatGPT為代表的生成AI產品預示著AI商業變現過程將進一步提速,AI工程化熱度進一步提升。人工智能研發運營體系(MLOps)作為AI工程化重要組成部分,呈現出方法論逐漸成熟、落地應用持續推進的態勢。

2023年3月16日,“AI工程化論壇暨MLOps實踐指南發布會”在京舉辦。會上,中國信息通信研究院(簡稱”中國信通院“)發布《人工智能研發運營體系(MLOps)實踐指南(2023年)》。

指南從組織如何布局和落地MLOps的角度出發,以模型的高質量、可持續交付作為核心邏輯,系統性梳理MLOps概念內涵、發展過程、落地挑戰,為組織高效構建MLOps框架體系和關鍵能力提供方法論和實踐案例的參考與借鑒,并研判MLOps未來發展趨勢。

指南核心觀點

**1. MLOps概念漸晰,為解決AI生產過程管理問題意義明顯。**MLOps是通過構建和運行機器學習流水線(Pipeline),統一機器學習(ML)項目研發(Dev)和運營(Ops)過程的一種方法,目的是為了提高AI模型生產質效,推動AI從滿足基本需求的“能用”變為滿足高效率、高性能的“好用”,有效化解模型全鏈路生命周期管理存在問題,包括跨團隊協作難度大、過程和資產管理欠缺、生產和交付周期長等。

**2. 國內外MLOps發展百花齊放,落地仍面臨問題和挑戰。**2015年至今,從業界意識到機器學習項目技術債給AI生產上線帶來的潛在巨大影響伊始,MLOps前后經歷了斟酌發酵、概念明確、落地應用三大階段,且隨著新工具不斷涌現,在IT、金融、電信等行業得到了廣泛應用和落地。但在這個漸進式發展過程中,MLOps落地面臨著諸多挑戰,包括組織落地驅動力不足、支撐工具選型難集成難、模型治理和可信道阻且長、環境間的交互難以平衡等。

**3. 圍繞流水線的構建,MLOps框架體系逐步完善。**基于機器學習項目全生命周期,以CI/CD/CT/CM為核心,通過構建各條機器學習流水線,包含需求分析與開發、數據工程流水線、模型實驗工程流水線、持續集成流水線、模型訓練流水線、模型服務流水線、持續監控流水線,MLOps全生命周期閉環框架逐步完善。

**4. 漸進式建設關鍵能力,MLOps落地效應逐步形成。**通過數據處理、模型訓練、構建繼承、模型服務、運營監控、模型重訓、實驗管理和流水線管理等能力的建設,形成MLOps過程管理能力的全面把控。通過特征管理、模型管理和倉庫管理等能力的建設,形成制品管理能力的提升。同時以模型安全作為AI生產過程中的關鍵保障之一,MLOps落地效應日益凸顯。

隨著國家新型基礎設施建設發展戰略(2020)、國家“十四五規劃和 2035 年遠景目標綱要”等系列政策的出臺,人工智能(AI)發展迎來新一輪紅利,科技革命和產業升級處于進行時。近年來,AI 工程化的研究熱度持續提升,其目的是幫助組織在數智化轉型過程中,更高效、大規模地利用 AI 創造業務價值。人工智能研發運營體系(MLOps)作為 AI 工程化重要組成部分,其核心思想是解決 AI 生產過程中團隊協作難、管理亂、交付周期長等問題,最終實現高質量、高效率、可持續的 AI 生產過程。 MLOps 的發展呈現出逐漸成熟的態勢,近幾年國內外 MLOps 落地應用正持續快速推進,特別是在 IT、銀行、電信等行業取得明顯效果。與此同時,MLOps 行業應用成熟度不足,使得組織在制度規范的建立、流程的打通、工具鏈的建設等諸多環節面臨困難。因此本指南旨在成為組織落地 MLOps 并賦能業務的“口袋書”,圍繞機器學習全生命周期,為模型的持續構建、持續交付、持續運營等過程提供參考,推進組織的 MLOps 落地進程,提高組織 AI 生產質效。 本指南由中國信通院云計算與大數據研究所、人工智能關鍵技術和應用評測工業和信息化部重點實驗室聯合發布。本指南站在組織如何布局和落地 MLOps 的視角,以模型的高質量、可持續交付作為核心邏輯,系統性梳理 MLOps 概念內涵、發展過程、落地挑戰等現狀,并基于 MLOps 的理論研究和實踐案例分析組織如何構建 MLOps 框架體系和關鍵能力,最后總結和展望其發展趨勢。由于 AI 產業的快速變革,MLOps 落地應用持續深入,工具市場不斷迭代,我們對 MLOps 的認識還有待繼續深化,本指南可能仍存在不足之處,歡迎大家批評指正。

付費5元查看完整內容

來源:中國信息通信研究院

人工智能技術是釋放數字化疊加倍增效應、加快戰略新興產業發展、構筑綜合競爭優勢的必然選擇。縱觀全球,國內外人工智能相關不斷強化,持續推動釋放人工智能紅利;以深度學習為代表的人工智能技術飛速發展,新技術開始探索落地應用;工程化能力不斷增強,在醫療、制造、自動駕駛等領域的應用持續深入;可信人工智能技術引起社會廣泛關注。人工智能治理受到全球高度關注,各國規制進程不斷加速,基于可信人工智能的產業實踐不斷深入。

近日,中國信息通信研究院正式發布《人工智能白皮書(2022年)》,全面回顧了2021年以來全球人工智能在政策、技術、應用和治理等方面的最新動向,重點分析了人工智能所面臨的新發展形勢及其所處的新發展階段,致力于全面梳理當前人工智能發展態勢,為各界提供參考,共同推動人工智能持續健康發展。

白皮書核心觀點

1、人工智能邁入新階段,將由技術創新、工程實踐、可信安全“三維”坐標來定義和牽引

第一個維度突出創新,圍繞著算法和算力方面的創新仍會不斷涌現。第二個維度突出工程,工程化能力逐漸成為人工智能大規模賦能千行百業的關鍵要素。第三個維度突出可信,發展負責任和可信的人工智能成為共識,將抽象的治理原則落實到人工智能全生命流程將成為重點。

2、人工智能技術創新仍是主旋律,新算法不斷涌現

超大規模預訓練模型推動技術效果不斷提升,繼續朝著規模更大、模態更多的方向發展;“生成式人工智能”技術不斷成熟,未來聽、說、讀、寫等能力將有機結合;知識計算成為推動人工智能從感知智能向認知智能轉變的重要探索;人工智能與科學研究融合不斷深入,開始“顛覆”傳統研究范式。

3、人工智能工程化聚焦工具體系、開發流程、模型管理全生命流程的高效耦合

工具體系層面:體系化與開放化成為研發平臺技術工具鏈的發展特點。 開發流程層面:工程化關注人工智能模型開發的生命流程,追求高效且標準化的持續生產、持續交付和持續部署,最終以最佳的模型進入應用層面產生商業價值。 模型管理層面:企業需要建設對模型生命周期的管理機制,對模型的版本歷程、性能表現、屬性、相關數據、衍生的模型檔案等進行標準化的管理運維。

4、人工智能治理邁入軟硬法協同和場景規制新階段

人工智能治理實質化進程加速推進:各國人工智能治理側重各有不同,但整體上呈現加速演進態勢,即從初期構建以“軟法”為導向的社會規范體系,開始推進以“硬法”為保障的風險防控體系。 典型場景化治理加速落地:各國紛紛注意到人工智能應用場景多樣化和差異化給治理帶來的復雜性,典型場景的治理成為各國的工作重點,特別聚焦于自動駕駛、智慧醫療和人臉識別等領域。

付費5元查看完整內容
北京阿比特科技有限公司