亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

通過使用用大規模標記數據訓練的深度學習模型,計算機視覺取得了令人印象深刻的進展。然而,標簽需要專業知識和管理,而且收集起來很貴。如果不使用顯式管理的標簽,人們能發現有用的視覺表示嗎?在這次演講中,我將介紹幾個探索自我監督學習范式的案例研究——將原始數據作為自己的監督。我們將討論在高維空間中定義目標函數的幾種方法,包括使用一般對抗網絡(GANs)直接從數據中學習目標函數。將展示圖像合成中的應用,包括自動著色、成對和非成對圖像到圖像的轉換(aka pix2pix和cycleGAN)、基于好奇心的探索

付費5元查看完整內容

相關內容

自監督學習(self-supervised learning)可以被看作是機器學習的一種“理想狀態”,模型直接從無標簽數據中自行學習,無需標注數據。

來自UIUC最新《自監督學習》教程,

  • 數據預測
  • 彩色化
  • Transformation 預測
  • 上下文預測,拼圖游戲解決,旋轉預測
  • 深度聚類和實例預測
  • 對比學習
  • PIRL, MoCo, SimCLR, SWaV
  • 自我監督
  • 音頻、視頻、語言

付費5元查看完整內容

Unsupervised Machine Translation

雖然現代機器翻譯依賴于大量的平行語料庫,但最近的一項研究已經成功地在無監督的情況下訓練機器翻譯系統,僅使用單語語料庫。現有的方法大多依賴于跨語言單詞嵌入或深度多語言預訓練來進行初始化,并通過迭代反翻譯來進一步完善該系統。在這次演講中,我將對這一領域做一個概述,重點介紹我們自己在跨語言單詞嵌入映射以及無監督神經和統計機器翻譯方面的工作。

//nlp.stanford.edu/seminar/details/mikelartetxe.shtml

付費5元查看完整內容

題目: A survey on Semi-, Self- and Unsupervised Learning for Image Classification

摘要:

盡管深度學習策略在計算機視覺任務中取得了出色的成績,但仍然存在一個問題:當前的策略嚴重依賴大量的標記數據。在許多實際問題中,創建如此大量的帶標簽的訓練數據是不可行的。因此,通常將未標記的數據合并到訓練過程中,以較少的標記達到相同的結果。由于進行了大量并行研究,因此很難跟蹤最新動態。本文概述了標簽較少的圖像分類中常用的思想和方法。詳細比較了25種方法。在分析中,確定了三個主要趨勢。

  • 最先進的方法基于其準確性可擴展到實際應用。
  • 為獲得與所有標簽的使用效果可比的結果而需要的監督程度正在降低。
  • 所有方法都有共同的想法,而只有少數幾種方法將這些想法結合起來以實現更好的性能。

基于這三個趨勢,發現了未來的研究機會。

付費5元查看完整內容

【導讀】Yann Lecun在紐約大學開設的2020春季《深度學習》課程,干貨滿滿。最新的一期是來自Facebook AI的研究科學家Ishan Misra講述了計算機視覺中的自監督學習最新進展,108頁ppt,很不錯報告。

在過去的十年中,許多不同的計算機視覺問題的主要成功方法之一是通過對ImageNet分類進行監督學習來學習視覺表示。并且,使用這些學習的表示,或學習的模型權值作為其他計算機視覺任務的初始化,在這些任務中可能沒有大量的標記數據。

但是,為ImageNet大小的數據集獲取注釋是非常耗時和昂貴的。例如:ImageNet標記1400萬張圖片需要大約22年的人類時間。

因此,社區開始尋找替代的標記過程,如社交媒體圖像的hashtags、GPS定位或自我監督方法,其中標簽是數據樣本本身的屬性。

什么是自監督學習?

定義自我監督學習的兩種方式:

  • 基礎監督學習的定義,即網絡遵循監督學習,標簽以半自動化的方式獲得,不需要人工輸入。

  • 預測問題,其中一部分數據是隱藏的,其余部分是可見的。因此,其目的要么是預測隱藏數據,要么是預測隱藏數據的某些性質。

自監督學習與監督學習和非監督學習的區別:

  • 監督學習任務有預先定義的(通常是人為提供的)標簽,

  • 無監督學習只有數據樣本,沒有任何監督、標記或正確的輸出。

  • 自監督學習從給定數據樣本的共現形式或數據樣本本身的共現部分派生出其標簽。

自然語言處理中的自監督學習

Word2Vec

  • 給定一個輸入句子,該任務涉及從該句子中預測一個缺失的單詞,為了構建文本前的任務,該任務特意省略了該單詞。

  • 因此,這組標簽變成了詞匯表中所有可能的單詞,而正確的標簽是句子中省略的單詞。

  • 因此,可以使用常規的基于梯度的方法對網絡進行訓練,以學習單詞級表示。

為什么自監督學習

自監督學習通過觀察數據的不同部分如何交互來實現數據的學習表示。從而減少了對大量帶注釋數據的需求。此外,可以利用可能與單個數據樣本相關聯的多個模式。

計算機視覺中的自我監督學習

通常,使用自監督學習的計算機視覺管道涉及執行兩個任務,一個前置任務和一個下游任務。

  • 下游任務可以是任何類似分類或檢測任務的任務,但是沒有足夠的帶注釋的數據樣本。

  • Pre-text task是為學習視覺表象而解決的自監督學習任務,其目的是利用所學習的表象,或下游任務在過程中獲得的模型權值。

發展Pre-text任務

  • 針對計算機視覺問題的文本前任務可以使用圖像、視頻或視頻和聲音來開發。

  • 在每個pre-text任務中,都有部分可見和部分隱藏的數據,而任務則是預測隱藏的數據或隱藏數據的某些屬性。

下載鏈接: 鏈接: //pan.baidu.com/s/1gNK4DzqtAMXyrD1fBFGa-w 提取碼: ek7i

付費5元查看完整內容

強化學習(RL)是學習采取行動解決任務的強大框架。然而,在許多情況下,一個代理必須將所有可能的任務的大得令人難以置信的空間縮小到當前要求它解決的單個任務。我們是否可以將任務的空間限制在語義上有意義的范圍內呢?在這項工作中,我們介紹了一個使用弱監督的框架來自動地把這個語義上有意義的子空間的任務從巨大的無意義的“雜碎”任務中分離出來。我們證明了這個學習得的子空間能夠進行有效的探索,并提供了捕獲狀態之間距離的表示。對于各種具有挑戰性的、基于視覺的連續控制問題,我們的方法帶來了大量的性能收益,特別是隨著環境的復雜性的增長。

付費5元查看完整內容

【導讀】如何利用未標記數據進行機器學習是當下研究的熱點。最近自監督學習、對比學習等提出用于解決該問題。最近來自Google大腦團隊的Luong博士介紹了無標記數據學習的進展,半監督學習以及他們最近重要的兩個工作:無監督數據增強和自訓練學習,是非常好的前沿材料。

深度學習盡管取得了很大成功,但通常在小標簽訓練集中表現不佳。利用未標記數據改善深度學習一直是一個重要的研究方向,其中半監督學習是最有前途的方法之一。在本次演講中,Luong博士將介紹無監督數據增強(UDA),這是我們最近的半監督學習技術,適用于語言和視覺任務。使用UDA,我們僅使用一個或兩個數量級標記較少的數據即可獲得最先進的性能。

在本次演講中,Luong博士首先解釋了基本的監督機器學習。在機器學習中,計算機視覺的基本功能是利用圖像分類來識別和標記圖像數據。監督學習需要輸入和標簽才能與輸入相關聯。通過這樣做,您可以教AI識別圖像是什么,無論是對象,人類,動物等。Luong博士繼續進一步解釋神經網絡是什么,以及它們如何用于深度學習。這些網絡旨在模仿人類大腦的功能,并允許AI自己學習和解決問題。

付費5元查看完整內容

題目: Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey

摘要: 為了在計算機視覺應用中從圖像或視頻中獲得更好的視覺特征學習性能,通常需要大規模的標記數據來訓練深度神經網絡。為了避免大規模數據集收集和標注的大量開銷,作為無監督學習方法的一個子集,提出了一種自監督學習方法,在不使用任何人類標注的標簽的情況下,從大規模無標記數據中學習圖像和視頻的一般特征。本文對基于深度學習的自監督一般視覺特征學習方法進行了廣泛的綜述。首先,描述了該領域的動機、通用管道和術語。在此基礎上,總結了常用的用于自監督學習的深度神經網絡體系結構。接下來,回顧了自監督學習方法的模式和評價指標,然后介紹了常用的圖像和視頻數據集以及現有的自監督視覺特征學習方法。最后,總結和討論了基于基準數據集的定量性能比較方法在圖像和視頻特征學習中的應用。最后,對本文的研究進行了總結,并提出了一套具有發展前景的自監督視覺特征學習方法。

付費5元查看完整內容

報告主題: Energy-Based Self-Supervised Learning

報告摘要:

在監督或多任務學習中,將不會獲得像人類一樣可以泛化的智能。監督學習是有效的,但需要許多帶標簽的樣本,通過舉例而不是編程來訓練機器,當輸出錯誤時,調整機器的參數。在整個領域中可能需要在基于能量的學習方法上做更多的工作,能量函數在AI領域已經存在數十年了,無需創建大量帶有標簽的數據集,也不用花費數千個小時訓練模型,而只是獲取一些豐富的原始數據,讓機器變得足夠大,由此可以訓練機器預測,預測與現實之間的兼容性就是所謂的能級。能量越少越好,更兼容、更準確,因此神經網絡需要努力達到理想的低能量狀態。

嘉賓介紹:

Yann Lecun是一位法裔美國計算機科學家,主要研究領域為機器學習、計算機視覺、移動機器人和計算神經科學。他是紐約大學Courant數學科學研究所的銀牌教授,也是Facebook的副總裁兼首席人工智能科學家。他以研究卷積神經網絡(CNN)的光學字符識別和計算機視覺而聞名,是卷積網絡的創始人之一。他也是DjVu圖像壓縮技術的主要創建者之一(與Leon Bottou和Patrick Haffner一起)。他與Leon Bottou共同開發了Lush編程語言。他是2018年ACM A.M.的聯合獲獎者因為他在深度學習方面的工作獲得了圖靈獎。

付費5元查看完整內容
北京阿比特科技有限公司