亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

自深度學習革命以來,機器學習文獻中的一個總體趨勢是大型深度模型將持續優于小型淺模型。然而,這種趨勢也帶來了計算需求不斷增加的缺點,最近許多最先進的成果所需的資源遠遠超出了頂級行業實驗室的范圍。這些問題引發了關于機器學習研究民主化的非常現實的擔憂,如果不加以解決,最終可能會導致更多的權力和財富集中在今天能夠向其人工智能研究項目投資巨額資金的機構中。

遷移學習技術是這些問題的潛在解決方案,它允許大型的、通用的模型經過一次訓練,然后在各種情況下重用,只需要最少的計算來適應它們。本文探索了遷移學習的新算法和應用,包括分層強化學習、生成式建模和計算社會科學等領域。在分層強化學習領域內,本文提出一種算法,允許在選項之間遷移(即在不同的選項之間遷移)。例如,時間上抽象的動作),用于獨立但相似的任務。在生成建模領域,我們提出了一種算法,可以在新的數據上重用現有的可逆生成模型,而不產生任何額外的訓練成本。最后,在計算社會科學領域,本文表明,可以從人類設計的模型中遷移知識,以檢測針對排名算法的惡意活動。

在這篇論文中提出的所有算法之間的共同線索是它們本質上是貝葉斯的。我們認為,貝葉斯范式自然適合于遷移學習應用,因為貝葉斯先驗可以作為適應性強的通用模型,通過推理過程可以轉換為特定任務的后驗。

付費5元查看完整內容

相關內容

是一所英國研究型大學,也是羅素大學集團、英國“G5超級精英大學”,歐洲頂尖大學科英布拉集團、歐洲研究型大學聯盟的核心成員。牛津大學培養了眾多社會名人,包括了27位英國首相、60位諾貝爾獎得主以及數十位世界各國的皇室成員和政治領袖。2016年9月,泰晤士高等教育發布了2016-2017年度世界大學排名,其中牛津大學排名第一。

機器學習模型通常訓練存儲在通過網絡連接的多臺計算機上的數據。由于網絡的穩定性,單臺中央樞紐計算機處理和傳播信息通常是不可行的。克服這一瓶頸的解決方案是考慮類似于點對點和自組織無線網絡的去中心化網絡。也就是說,計算機在同一時間與其他計算機的一個子集通信,然后信息自然地通過網絡傳播。

本文研究了在這種分散框架下產生的模型的統計性能。通過將計算機網絡建模為圖中的代理,我們研究了兩種不同的統計設置:同質性,即存儲在計算機之間的數據遵循相同的分布;異質性,當分布不同時。在齊次環境下,受經驗風險最小化問題的激勵,我們考慮了一個簡單分散算法的學習性能:分布式梯度下降。具體地說,我們證明了在非參數回歸的情況下,可以通過隱式正則化和計算運行時的線性加速來保證學習性能,前提是計算機有足夠的數據量。相比之下,之前的工作主要是通過更通用的共識優化框架來關注優化性能,這并沒有對幕后更精細的統計結構進行編碼。更準確地說,我們演示了這種結構可以用于以下兩方面:允許通過算法參數隱式地控制模型復雜性; 并且由于統計集中的現象,代理所持有的信息可以是相似的。在非均相情況下,考慮了由高光譜解混引起的設置。具體來說,我們考慮同時恢復稀疏信號(與代理相關)的集合,這些稀疏信號以反映網絡拓撲的方式相關。簡而言之,底層分布中的差異是通過反映網絡的總變異懲罰來編碼的。當信號充分相關時,該方法比group lasso風格的方法節省了樣本復雜度。

//ora.ox.ac.uk/objects/uuid:40f1cd4d-4f43-46cf-a633-8301a6383e73

付費5元查看完整內容

在本文中,我們的目標是改進深度強化學習中的泛化。對任何類型的學習來說,泛化都是一項基本挑戰,它決定了如何將已獲得的知識轉移到新的、以前從未見過的情況中。本文專注于強化學習,這是一個描述人工智能體如何學習與環境交互以實現目標的框架。近年來,利用神經網絡表示智能體取得了顯著的成功,并極大地擴展了其可能的應用范圍。本文的目標是通過允許這些智能體更快地學習,學習更好的解決方案,并對以前未見過的情況做出魯棒的反應,從而提高它們的性能。在這個探索中,我們探索了一系列不同的方法和途徑。我們專注于將額外的結構,也稱為歸納偏差,納入主體。專注于特定的,但廣泛適用的問題領域,我們可以開發專門的架構,從而大大提高性能。在第3章中,我們關注的是部分可觀察環境,在這種環境中,智能體每時每刻都不能完全訪問所有與任務相關的信息。在第4章中,我們將注意力轉向多任務和遷移學習,并設計了一種新的訓練方法,允許訓練分層結構的智能體。我們的方法優化了單個解決方案的可重用性,大大提高了傳輸設置中的性能。

//ora.ox.ac.uk/objects/uuid:9fdfadb0-e527-4421-9a22-8466c9fed9c8 在本文的第二部分中,我們將注意力轉向正則化,這是另一種形式的歸納偏差,作為提高深度智能體泛化的方法。在第五章中,我們首先探討了強化學習(RL)中的隨機正則化。雖然這些技術已被證明在監督學習中非常有效,但我們強調并克服了將它們直接應用到在線RL算法中的困難,這是RL中最強大和應用最廣泛的學習類型之一。在第6章中,我們通過探索訓練數據中的瞬態非平穩性如何干擾神經網絡的隨機梯度訓練,并使其偏向較差的解,在更基本的水平上研究了深度rl中的泛化。許多先進的RL算法將這些類型的非平穩性引入到訓練中,甚至在平穩環境中,通過使用持續改進的數據收集策略。我們提出了一個新的框架,以減少經過訓練的策略所經歷的非平穩性,從而允許改進的泛化。

付費5元查看完整內容

由于在計算機視覺和自然語言處理等領域的成功應用,深度學習方法經歷了一場革命。在這篇論文中,我們描述了幾種利用深度學習應用于臨床前藥物發現的新方法。

首先,我們提出了一種包含基本3D信息的生成式分子連接器設計方法。在大規模測試中,我們發現我們的方法在性能上大大優于基于數據庫的方法,即之前解決這個問題的事實上的方法。通過一系列案例研究,我們展示了我們的方法在支架跳躍、片段連接和PROTAC設計中的應用。然后,我們擴展了這個框架,以包含物理上有意義的3D結構信息,為生成過程提供了更豐富的先驗,并將我們的方法應用于分子細化任務,如R-group設計。

然后我們將注意力轉向預測建模,特別是基于結構的虛擬篩選。我們發現,用于一般計算機視覺任務的卷積神經網絡(CNNs)的進展適用于基于結構的虛擬篩選。此外,我們提出了兩種技術來將領域特定的知識合并到這個框架中。首先,我們展示了對接的局限性,需要使用多姿勢評分,并演示了平均評分策略的好處。其次,利用蛋白質家族之間的差異知識,提出了一種遷移學習方法來構建蛋白質家族特定模型。

最后,我們研究了生成方法如何用于改進基于結構的虛擬篩選中使用的訓練和基準集。我們提出了一種深度學習方法,該方法根據用戶偏好的規格生成誘餌,以控制誘餌偏差或構造具有定義偏差的集合。我們表明,我們的方法顯著減少了這些集合中包含的偏差。我們驗證了我們生成的分子在基于對接的方法中分離生物活性化合物時比之前的誘餌更具挑戰性。此外,我們表明,基于CNN的基于結構的虛擬篩選方法可以訓練這些化合物。

付費5元查看完整內容

傳統的機器學習范式在單個任務上訓練特定任務模型,已經在許多領域(如計算機視覺和自然語言處理)取得了最先進的性能。為了使機器學習模型具有更廣泛的適用性,遷移學習旨在適應從源任務中學習到的知識,以提高在其他目標任務中的表現。然而,現有的遷移學習范式還有待進一步研究,因此我們對其潛在的局限性、潛在的機制以及實現更智能遷移的解決方案的認識有限。特別是,當知識從一個不太相關的來源轉移時,可能會對目標性能造成負面影響,這種現象稱為負轉移。然而,負遷移的原因尚不明確,負遷移如何影響模型的泛化和樣本效率也不清楚。在這篇論文中,我們的目標是徹底描述和解決機器學習模型中的負遷移,我們仔細研究了流行的視覺和自然語言處理設置中的負遷移,收集了其原因的見解,并提出了提高泛化和樣本效率的解決方案。本文由三個部分組成。第一部分對當前遷移學習模型中的負遷移現象進行了系統的分析。我們在領域適應和多語言自然語言處理模型中正式描述了其條件,并證明任務沖突是負遷移的一個關鍵因素。在第二部分,我們提出了各種對齊方法,通過更好的對齊表示和梯度解決上述任務沖突,增強可轉移模型的泛化。最后,在第三部分,我們探索了有效樣本遷移學習算法,使用較少的訓練和/或校準數據來緩解負遷移。本文的主要貢獻包括對遷移學習中的負遷移問題提出了新的見解,提出了一系列實用的方法和算法,提高了模型的泛化和效率。

//www.lti.cs.cmu.edu/sites/default/files/wang%2C%20zirui%20-%20final%20thesis.pdf

付費5元查看完整內容

人工神經網絡在解決特定剛性任務的分類問題時,通過不同訓練階段的廣義學習行為獲取知識。由此產生的網絡類似于一個靜態的知識實體,努力擴展這種知識而不針對最初的任務,從而導致災難性的遺忘。

持續學習將這種范式轉變為可以在不同任務上持續積累知識的網絡,而不需要從頭開始再訓練。我們關注任務增量分類,即任務按順序到達,并由清晰的邊界劃分。我們的主要貢獻包括:

(1) 對持續學習技術的分類和廣泛的概述;

(2) 一個持續學習器穩定性-可塑性權衡的新框架;

(3) 對11種最先進的持續學習方法和4條基準進行綜合實驗比較。

考慮到微型Imagenet和大規模不平衡的非自然主義者以及一系列識別數據集,我們以經驗的方式在三個基準上仔細檢查方法的優缺點。我們研究了模型容量、權重衰減和衰減正則化的影響,以及任務呈現的順序,并從所需內存、計算時間和存儲空間等方面定性比較了各種方法。

//www.zhuanzhi.ai/paper/c90f25024b2c2364ce63299b4dc4677f

引言

近年來,據報道,機器學習模型在個人任務上表現出甚至超過人類水平的表現,如雅達利游戲[1]或物體識別[2]。雖然這些結果令人印象深刻,但它們是在靜態模型無法適應其行為的情況下獲得的。因此,這需要在每次有新數據可用時重新啟動訓練過程。在我們的動態世界中,這種做法對于數據流來說很快就變得難以處理,或者可能由于存儲限制或隱私問題而只能暫時可用。這就需要不斷適應和不斷學習的系統。人類的認知就是這樣一個系統的例證,它具有順序學習概念的傾向。通過觀察例子來重新審視舊的概念可能會發生,但對保存這些知識來說并不是必要的,而且盡管人類可能會逐漸忘記舊的信息,但完全丟失以前的知識很少被證明是[3]。相比之下,人工神經網絡則不能以這種方式學習:在學習新概念時,它們會遭遇對舊概念的災難性遺忘。為了規避這一問題,人工神經網絡的研究主要集中在靜態任務上,通常通過重組數據來確保i.i.d.條件,并通過在多個時期重新訪問訓練數據來大幅提高性能。

持續學習研究從無窮無盡的數據流中學習的問題,其目標是逐步擴展已獲得的知識,并將其用于未來[4]的學習。數據可以來自于變化的輸入域(例如,不同的成像條件),也可以與不同的任務相關聯(例如,細粒度的分類問題)。持續學習也被稱為終身學習[18]0,[18]1,[18]2,[18]3,[18]5,[18]4,順序學習[10],[11],[12]或增量學習[13],[14],[15],[16],[17],[18],[19]。主要的標準是學習過程的順序性質,只有一小部分輸入數據來自一個或幾個任務,一次可用。主要的挑戰是在不發生災難性遺忘的情況下進行學習:當添加新的任務或域時,之前學習的任務或域的性能不會隨著時間的推移而顯著下降。這是神經網絡中一個更普遍的問題[20]的直接結果,即穩定性-可塑性困境,可塑性指的是整合新知識的能力,以及在編碼時保持原有知識的穩定性。這是一個具有挑戰性的問題,不斷學習的進展使得現實世界的應用開始出現[21]、[22]、[23]。

為了集中注意力,我們用兩種方式限制了我們的研究范圍。首先,我們只考慮任務增量設置,其中數據按順序分批到達,一個批對應一個任務,例如要學習的一組新類別。換句話說,我們假設對于一個給定的任務,所有的數據都可以同時用于離線訓練。這使得對所有訓練數據進行多個時期的學習成為可能,反復洗刷以確保i.i.d.的條件。重要的是,無法訪問以前或將來任務的數據。在此設置中優化新任務將導致災難性的遺忘,舊任務的性能將顯著下降,除非采取特殊措施。這些措施在不同情況下的有效性,正是本文所要探討的。此外,任務增量學習將范圍限制為一個多頭配置,每個任務都有一個獨占的輸出層或頭。這與所有任務共享一個頭的更有挑戰性的類增量設置相反。這在學習中引入了額外的干擾,增加了可供選擇的輸出節點的數量。相反,我們假設已知一個給定的樣本屬于哪個任務。

其次,我們只關注分類問題,因為分類可以說是人工神經網絡最既定的任務之一,使用相對簡單、標準和易于理解的網絡體系結構具有良好的性能。第2節對設置進行了更詳細的描述,第7節討論了處理更一般設置的開放問題。

付費5元查看完整內容

摘要

多任務學習(Multi-Task Learning, MTL)是機器學習中的一種學習范式,其目的是利用多個相關任務中包含的有用信息來幫助提高所有任務的泛化性能。

本文從算法建模、應用和理論分析三個方面對MTL進行了綜述。在算法建模方面,給出了MTL的定義,并將不同的MTL算法分為特征學習、低秩、任務聚類、任務關系學習和分解五類,并討論了每種方法的特點。

為了進一步提高學習任務的性能,MTL可以與半監督學習、主動學習、無監督學習、強化學習、多視圖學習和圖形模型等學習范式相結合。當任務數量較大或數據維數較高時,我們回顧了在線、并行和分布式的MTL模型,以及維數降維和特征哈希,揭示了它們在計算和存儲方面的優勢。

許多現實世界的應用程序使用MTL來提高它們的性能,我們在本文中回顧了代表性的工作。最后,我們對MTL進行了理論分析,并討論了MTL的未來發展方向。

引言

人類可以同時學習多個任務,在這個學習過程中,人類可以使用在一個任務中學習到的知識來幫助學習另一個任務。例如,根據我們學習打網球和壁球的經驗,我們發現打網球的技巧可以幫助學習打壁球,反之亦然。多任務學習(Multi-Task learning, MTL)[1]是機器學習的一種學習范式,受人類這種學習能力的啟發,它的目標是共同學習多個相關的任務,使一個任務中包含的知識能夠被其他任務利用,從而提高手頭所有任務的泛化性能。

在其早期階段,MTL的一個重要動機是緩解數據稀疏問題,即每個任務都有有限數量的標記數據。在數據稀疏性問題中,每個任務中標記數據的數量不足以訓練出一個準確的學習器,而MTL則以數據增強的方式將所有任務中的標記數據進行聚合,從而為每個任務獲得更準確的學習器。從這個角度來看,MTL可以幫助重用已有的知識,降低學習任務的手工標注成本。當“大數據”時代在計算機視覺和自然語言處理(NLP)等領域到來時,人們發現,深度MTL模型比單任務模型具有更好的性能。MTL有效的一個原因是與單任務學習相比,它利用了更多來自不同學習任務的數據。有了更多的數據,MTL可以為多個任務學習到更健壯、更通用的表示形式和更強大的模型,從而更好地實現任務間的知識共享,提高每個任務的性能,降低每個任務的過擬合風險。

MTL與機器學習中的其他學習范式有關,包括遷移學習[2]、多標簽學習[3]和多輸出回歸。MTL的設置與遷移學習相似,但存在顯著差異。在MTL中,不同任務之間沒有區別,目標是提高所有任務的性能。而遷移學習是借助源任務來提高目標任務的性能,因此目標任務比源任務起著更重要的作用。總之,MTL對所有的任務一視同仁,但在遷移學習中目標任務最受關注。從知識流的角度來看,遷移學習中的知識轉移流是從源任務到目標任務,而在多任務學習中,任何一對任務之間都存在知識共享流,如圖1(a)所示。持續學習[4]是一個一個地學習任務,任務是有順序的,而MTL是將多個任務一起學習。在多標簽學習和多輸出回歸中,每個數據點都與多個標簽相關聯,這些標簽可以是分類的或數字的。如果我們把所有可能的標簽都當作一個任務,那么多標簽學習和多輸出回歸在某種意義上可以看作是多任務學習的一種特殊情況,不同的任務在訓練和測試階段總是共享相同的數據。一方面,這種多標簽學習和多輸出回歸的特點導致了與MTL不同的研究問題。例如,排名損失使得與數據點相關的標簽的分數(例如分類概率)大于沒有標簽的分數,可以用于多標簽學習,但它不適合MTL,因為不同的任務擁有不同的數據。另一方面,這種在多標簽學習和多輸出回歸中的特性在MTL問題中是無效的。例如,在2.7節中討論的一個MTL問題中,每個任務都是根據19個生物醫學特征預測患者帕金森病的癥狀評分,不同的患者/任務不應該共享生物醫學數據。總之,多標簽學習和多輸出回歸與圖1(b)所示的多任務學習是不同的,因此我們不會對多標簽學習和多輸出回歸的文獻進行綜述。此外,多視圖學習是機器學習的另一種學習范式,每個數據點與多個視圖相關聯,每個視圖由一組特征組成。雖然不同的視圖有不同的特征集,但是所有的視圖是一起學習同一個任務的,因此多視圖學習屬于具有多組特征的單任務學習,這與圖1(c)所示的MTL是不同的。

在過去的幾十年里,MTL在人工智能和機器學習領域引起了廣泛的關注。許多MTL模型已經被設計出來,并在其他領域得到了廣泛的應用。此外,對MTL的理論問題也進行了大量的分析。本文從算法建模、應用和理論分析三個方面對MTL進行了綜述。在算法建模方面,首先給出了MTL的定義,然后將不同的MTL算法分為5類: 特征學習方法,又可分為特征轉換與特征選擇方法、低秩方法、任務聚類方法、任務關系學習方法和分解方法。然后,我們討論了MTL與其他學習范式的結合,包括半監督學習、主動學習、無監督學習、強化學習、多視圖學習和圖形模型。為了處理大量的任務,我們回顧了在線、并行和分布式的MTL模型。對于高維空間中的數據,引入特征選擇、降維和特征哈希作為處理這些數據的重要工具。MTL作為一種很有前途的學習范式,在計算機視覺、生物信息學、健康信息學、語音、自然語言處理、web等領域有著廣泛的應用。從理論分析的角度,對MTL的相關工作進行回顧。最后,討論了MTL的未來發展方向。

付費5元查看完整內容
北京阿比特科技有限公司