亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本書側重于基于python的工具和技術,以幫助您在典型數據科學棧的所有方面(如統計分析、可視化、模型選擇和特性工程)變得高效。

您將回顧日常業務流程中潛伏的低效率和瓶頸,并使用實際的解決方案來解決它們。重復數據科學任務的自動化是貫穿全書的一個關鍵思維模式。您將學習如何在Python生態系統中已經存在的高級庫和包的幫助下擴展現有的編碼實踐,以高效地處理更大的數據集。

這本書關注的主題包括如何測量機器學習模型的內存占用和執行速度,數據科學管道的質量測試,以及為應用程序開發模塊化數據科學管道。您將回顧Python庫,這些庫在自動化和加速日常任務方面非常有用。

最后,您將理解并執行傳統方法之外的數據科學和機器學習任務,并利用Python數據科學生態系統的全部范圍來提高生產率。

你將學習

  • 為數據科學和機器學習編寫快速高效的代碼
  • 構建文件且富有表現力的數據科學處理流程
  • 測量機器學習方法的內存和CPU配置文件
  • 充分利用GPU在數據科學任務中的潛力
  • 高效地處理大而復雜的數據集

付費5元查看完整內容

相關內容

 是一種面向對象的解釋型計算機程序設計語言,在設計中注重代碼的可讀性,同時也是一種功能強大的通用型語言。

Python是訪問、操作和從各種數據中獲得見解的理想選擇。Python for Data Science通過根植于實際示例和實踐活動的邊做邊學的方法向您介紹Python的數據分析世界。您將學習如何編寫Python代碼來獲取、轉換和分析數據,為業務管理、市場營銷和決策支持中的用例實踐最先進的數據處理技術。

您將發現Python豐富的用于基本操作的內置數據結構集,以及用于數據科學的健壯的開源庫生態系統,包括NumPy、pandas、scikit-learn、matplotlib等。這些示例展示了如何以各種格式加載數據,如何簡化、分組和聚合數據集,以及如何創建圖表、地圖和其他可視化功能。后面的章節將深入展示真實世界的數據應用,包括使用位置數據為出租車服務提供動力,市場籃子分析來識別共同購買的商品,以及機器學習來預測股票價格。

這本書從數據處理和分析的概念介紹開始,解釋一個典型的數據處理管道。然后,我們將介紹Python的內置數據結構和一些廣泛用于數據科學應用程序的第三方Python庫。接下來,我們將探討用于獲取、組合、聚合、分組、分析和可視化不同大小和數據類型的數據集的日益復雜的技術。隨著本書的深入,我們將把Python數據科學技術應用到商業管理、市場營銷和金融領域的實際用例中。每一章都包含“練習”部分,這樣你就可以練習和鞏固你剛剛學到的知識。

第一章: 數據的基礎知識為理解使用數據的基本要素提供了必要的背景知識。您將了解到數據有不同的類別,包括結構化、非結構化和半結構化數據。然后,您將了解典型數據分析過程中涉及的步驟。

第二章:Python數據結構介紹Python內置的四種數據結構:列表、字典、元組和集合。您將看到如何使用每個結構,以及如何將它們組合成更復雜的結構,可以表示現實世界的對象。

第三章:Python數據科學庫討論了Python健壯的第三方數據分析和操作庫生態系統。您將看到pandas庫及其主要數據結構Series和DataFrame,它們已經成為面向數據的Python應用程序的實際標準。您還將了解NumPy和scikit-learn,這兩個庫通常用于數據科學。

第四章:從文件和api訪問數據深入了解獲取數據并將其加載到腳本中的細節。您將學習如何將不同來源的數據(如文件和api)加載到Python腳本中的數據結構中,以便進行進一步處理。

第五章:使用數據庫繼續討論將數據導入Python,涵蓋了如何使用數據庫數據。您將看到訪問和操作存儲在不同類型數據庫中的數據的示例,包括關系數據庫(如MySQL)和NoSQL數據庫(如MongoDB)。 第六章:聚合數據通過對數據進行分組并進行聚合計算來解決匯總數據的問題。您將學習使用pandas對數據進行分組,并生成小計、總計和其他聚合。 第七章:結合數據集介紹了如何將來自不同數據源的數據組合為一個單獨的數據集。您將學習SQL開發人員用于連接數據庫表的技術,并將它們應用于內置的Python數據結構、NumPy數組和pandas DataFrames。 第八章:創建可視化討論可視化是最自然的方式揭露隱藏的數據中的模式。您將了解不同類型的可視化,如線形圖、條形圖和直方圖,并將了解如何使用用于繪圖的主要Python庫Matplotlib創建它們。您還將使用Cartopy庫來生成映射。 第九章:分析位置數據解釋如何使用geopy和Shapely庫處理位置數據。您將學習獲取和使用靜止和移動物體的GPS坐標的方法,并將探索拼車服務如何為給定的皮卡識別最佳汽車的現實世界示例。 第十章:分析時間序列數據提出了一些分析技術可以應用于時間序列數據中提取有意義的數據。特別地,本章中的例子說明了時間序列數據分析如何應用于股票市場數據。 第十一章:從數據中獲得洞察力探討了從數據中獲得洞察力的策略,以便做出明智的決定。例如,您將學習如何發現超市中銷售的產品之間的關聯,從而確定在一次交易中經常一起購買的商品組(對推薦和促銷有用)。 第十二章:機器學習數據分析涵蓋了使用scikitlearn先進的數據分析任務。您將訓練機器學習模型,根據產品的星級評級對產品評論進行分類,并預測股票價格的趨勢。

付費5元查看完整內容

使用Scikit-Multiflow框架設計、開發和驗證帶有流數據的機器學習模型。這本書是一個快速入門指南,為數據科學家和機器學習工程師尋求實現機器學習模型流數據與Python產生實時見解。

本書首先介紹流數據、與它相關的各種挑戰、它的一些實際業務應用程序和各種窗口技術。然后,您將研究增量學習算法和在線學習算法,以及使用流數據進行模型評估的概念,并將介紹Python中的Scikit-Multiflow框架。接下來回顧了各種變化檢測/概念漂移檢測算法,以及使用Scikit-Multiflow實現各種數據集。

本書還介紹了流數據的各種有監督和無監督算法,以及它們使用Python在各種數據集上的實現。本書最后簡要介紹了其他可用于流媒體數據的開源工具,如Spark、MOA(大規模在線分析)、Kafka等。

你會學習到: 理解流數據的機器學習概念 回顧增量學習和在線學習 開發檢測概念漂移的模型 探索流數據上下文中的分類、回歸和集成學習技術 應用最佳實踐來調試和驗證流數據上下文中的機器學習模型 介紹其他處理流數據的開源框架。

付費5元查看完整內容

深入機器學習模型的超參數調優,關注什么是超參數以及它們是如何工作的。這本書討論了超參數調優的不同技術,從基礎到高級方法。

這是一個循序漸進的超參數優化指南,從什么是超參數以及它們如何影響機器學習模型的不同方面開始。然后通過一些基本的(蠻力的)超參數優化算法。進一步,作者提出了時間和內存約束的問題,使用分布式優化方法。接下來,您將討論超參數搜索的貝葉斯優化,它從以前的歷史中學習。

這本書討論了不同的框架,如Hyperopt和Optuna,它們實現了基于順序模型的全局優化(SMBO)算法。在這些討論中,您將關注不同的方面,比如搜索空間的創建和這些庫的分布式優化。

機器學習中的超參數優化創建了對這些算法如何工作的理解,以及如何在現實生活中的數據科學問題中使用它們。最后一章總結了超參數優化在自動機器學習中的作用,并以創建自己的AutoML腳本的教程結束。

超參數優化是一項繁瑣的任務,所以請坐下來,讓這些算法來完成您的工作。

//link.springer.com/book/10.1007/978-1-4842-6579-6#about

你會:

了解超參數的變化如何影響模型的性能。

將不同的超參數調優算法應用于數據科學問題

使用貝葉斯優化方法創建高效的機器學習和深度學習模型

使用一組機器來分配超參數優化

利用超參數優化方法實現自動機器學習

付費5元查看完整內容

利用Kubernetes快速采用新興技術。Kubernetes是企業平臺開發的未來,它已經成為當今最流行的、通常被認為是最健壯的容器編配系統。這本書集中在平臺技術的力量的物聯網,區塊鏈,機器學習,和許多層的數據和應用管理支持他們。

付費5元查看完整內容

本書提供了實際的示例和注意事項,以幫助您創建健壯和高效的數據庫解決方案。在整個文本中,提供了實際問題、問題和常見陷阱,以幫助您識別最佳解決方案,以便在可能遇到的不同應用程序場景中獲得最大成功。

付費5元查看完整內容

本書建立在基本的Python教程的基礎上,解釋了許多沒有被常規覆蓋的Python語言特性:從通過利用入口點作為微服務扮演雙重角色的可重用控制臺腳本,到使用asyncio高效地整理大量來源的數據。通過這種方式,它涵蓋了基于類型提示的linting、低開銷測試和其他自動質量檢查,以演示一個健壯的實際開發過程。

Python的一些功能強大的方面通常用一些設計的示例來描述,這些示例僅作為一個獨立示例來解釋該特性。通過遵循從原型到生產質量的真實應用程序示例的設計和構建,您不僅將看到各種功能是如何工作的,而且還將看到它們如何作為更大的系統設計過程的一部分進行集成。此外,您還將受益于一些有用的附加說明和庫建議,它們是Python會議上問答會議的主要內容,也是討論現代Python最佳實踐和技術的主要內容,以便更好地生成易于維護的清晰代碼。

高級Python開發是為已經能用Python編寫簡單程序的開發人員準備的,這些開發人員希望了解什么時候使用新的和高級語言特性是合適的,并且能夠以一種自信的方式這樣做。它對于希望升級到更高級別的開發人員和迄今為止使用過較老版本Python的非常有經驗的開發人員特別有用。

你將學習

  • 理解異步編程
  • 檢查開發插件架構
  • 使用類型注釋
  • 回顧測試技術
  • 探索打包和依賴項管理

這本書是給誰的 -已經有Python經驗的中高級開發人員。

付費5元查看完整內容

【導讀】Python現在是編程首選語言,但是面向數據科學家的Python的教程并非那么好上手。最近Wenqiang Feng, Xu Gao and Upendra Madam三位數據科學家撰寫了一本《給數據科學家的Python技能秘籍》,簡明扼要,非常實用,使用與數據科學家相關的詳細演示代碼和示例來共享一些用于數據科學家工作的有用python技巧,值得放在身旁學習查看

avatar

地址: //runawayhorse001.github.io/PythonTipsDS/pd.html

為什么寫這本筆記?

不管你喜歡與否,Python一直是最流行的編程語言之一。我已經使用Python將近4年了。坦白地說,在第一次使用Python時,我并沒有被它所吸引。在開始工作后,我不得不使用Python。漸漸地,我認識到了Python的優雅之處,并將其作為我的主要編程語言之一。但我相信:

  • 大多數強調編程的Python書籍或教程會淹沒新入門的用戶。

  • 雖然大多數用于數據科學家或數據分析的Python書籍或教程都沒有涵蓋工程師方面的一些基本技能。

所以我想保留一些有價值的建議,這些建議在我的日常工作中得到了廣泛的應用。

付費5元查看完整內容
北京阿比特科技有限公司