利用基于Transformer的序列編碼器進行對比學習,在序列推薦方面取得了優勢。它最大化了共享相似語義的成對序列擴充之間的一致性。然而,現有的序列推薦對比學習方法主要以左右單向Transformer為基礎編碼器,由于用戶行為可能不是嚴格的從左到右的順序,因此對于序列推薦來說,這種方法不是最優的。為了解決這個問題,我們提出了一種新的框架,名為對比學習與雙向Transformer序列推薦(CBiT)。具體來說,我們首先在雙向Transformer中對長用戶序列應用滑動窗口技術,它允許對用戶序列進行更細粒度的劃分。然后我們結合完形填空任務掩碼和dropout掩碼生成高質量的正樣本,進行多對對比學習,與普通的一對對比學習相比,表現出更好的性能和適應性。此外,我們還引入了一種新的動態損失加權策略來平衡完形任務損失和對比任務損失。在三個公共基準數據集上的實驗結果表明,我們的模型在序列推薦方面優于最先進的模型。
//www.zhuanzhi.ai/paper/b6f7c83da0550bfea4e27ceaef3b0aed
時空表示學習是視頻自監督表示的關鍵。目前的學習方法主要是對比學習和前置任務。然而,這些方法都是通過潛在空間中的特征相似度來判別采樣實例來學習表征,而忽略了學習表征的中間狀態,從而限制了整體性能。在這項工作中,考慮采樣實例的相似程度作為中間狀態,我們提出了一個新的前置任務-時空重疊率(spatial - temporal overlap rate, STOR)預測。它源于人類能夠分辨視頻在空間和時間上的重疊率。這個任務鼓勵模型區分兩個生成樣本的STOR來學習表示。此外,我們采用結合前置任務和對比學習的聯合優化方法來進一步增強時空表示學習。我們還研究了所提出方案中各組成部分的相互影響。大量實驗表明,本文提出的語料存儲任務對對比學習和托詞學習都有較好的效果。聯合優化方案可以顯著提高視頻理解的時空表征。代碼可以在//github.com/Katou2/CSTP上找到。
Yann LeCun曾說“如果人工智能是一個蛋糕,則蛋糕的主要成分就是無監督學習”。這句話反應了無監督學習在深度學習領域扮演著重要的作用。當前普遍的方法集中在如何設計有效的代理任務來對無標注的輸入數據學習到好的視覺表征。在計算機視覺上,目前比較流行的直接有效的方法是對比學習,將訓練數據的每個實例當做單一的分類。基于這個實力判別,很多自監督方法在分類任務上得到了有效的提升。他們成功彌補了自監督方法和監督方法的代溝。然而,這項任務仍然具有挑戰:
a. 掩碼語言模型在自然語言領域得到了廣泛的應用。圖像是高維特征,多噪聲且相比于文本形式復雜。在視覺領域中,圖像的主要信息會被隨機分到不同的token中,如果這些token被隨機masked掉,將會導致很差的表現。這個隨機掩碼語言模型容易掩蓋圖像的關鍵區域的token,這樣會導致誤判且不適合直接應用于自監督視覺Transformers。
b. 很多自監督方法是利用全局特征學習圖像級別預測,對于像素級別預測優化不足。當前自監督學習方法也許對圖像分類任務過度擬合,對下游密集任務預測表現效果不好。
//www.zhuanzhi.ai/paper/51fc329856a3bcd21dfb8545d693e224
針對以上提出的問題,我們提出掩碼Transformer自監督學習方法,如下圖所示。MST創造性的引入了注意力特征圖引導掩碼策略并利用掩碼特征來恢復全局圖像特征任務。我們將介紹如何利用注意力特征引導掩碼策略幫助掩碼語言模型應用到視覺領域。最后我們將介紹網絡的結構和實驗細節。
論文題目:Contrastive Curriculum Learning for Sequential User Behavior Modeling via Data Augmentation(Applied Research Track )
作者:卞書青,趙鑫,周昆,蔡晶,何晏成,尹存祥,文繼榮
通訊作者:趙鑫
論文概述:在線App場景中,捕捉用戶連續行為的語義信息準確建模用戶興趣至關重要。然而,行為特征的動態性和稀疏問題使得難以有效訓練用戶表示來建模用戶順序行為。受到對比學習等最新技術的啟發,我們提出了一種新穎的對比課程學習 (CCL) 框架,用于生成對用戶連續行為建模的有效表示。本文在兩個方面做出了重要的技術改進,即數據質量和采樣順序。首先,我們通過擬合用戶屬性信息生成高質量的樣例設計了基于模型的數據生成器。通過給定目標用戶,可以利用融合的屬性語義來生成更接近真實序列的增廣數據。其次,我們提出了一種課程學習的策略,通過由易到難的學習過程進行對比學習。核心模塊是一個可學習的難度評估器,它可以對增強序列進行打分,并將它們安排在課程中以進一步增強對比學習的能力以更好地進行表示學習。同時我們在公開數據集和行業數據集上進行了廣泛的實驗,結果證明了我們的方法在三個下游任務上均有提升,取得了良好的效果。
近年來,圖已經成為表示各種真實世界數據集的抽象。作為一種圖結構數據進行機器學習的新興工具,圖神經網絡(GNN)通過遞歸聚合相鄰節點的內容(即特征或嵌入)來學習強大的圖表示,從而保留內容和結構信息。它們已被證明可以提高各種圖應用程序的性能,如節點和圖分類、推薦系統和圖生成。一般來說,GNN模型是使用(半)監督信息端到端的方式進行訓練的,不同的下游任務需要大量不同的標記數據。然而,在大多數現實場景中,大量的標記數據通常代價高昂。為了充分利用未標記的圖結構數據,最近部分工作從最近一些自然語言處理和計算機視覺中的預訓練技術中獲得了靈感,并提出在圖上進行預訓練的GNN模型。雖然這些GNN預訓練方法取得了很好的性能,但它們都是針對同構圖進行設計,其中每個節點或邊都屬于同一類型。相比之下,現有策略忽略了異構圖,其中多種類型的節點通過不同類型的邊相互作用。
現實生活中的網絡可以構成異構圖,這些圖體現了豐富的語義并組成由多種類型的節點和邊產生的獨特結構。如圖1(a)所示,為書目數據構建了一個簡單異構圖,該圖由作者、論文、會議和術語類型的節點以及作者論文、論文會議和論文術語類型的邊組成。不同類型的節點或邊通常表現出不同的網絡屬性,如度和聚類系數。例如,會議節點通常比作者節點具有更高的度。此外,這種異構性還產生了更復雜的語義上下文,涉及到多個節點之間的多方關系,例如,描述了“同一作者關于相似主題的兩篇論文”的語義語境。除了簡單的示例之外,異構圖在很多領域中也普遍存在,例如在用戶、產品、品牌和商店以各種方式交互的電子商務中,以及在疾病、蛋白質和藥物相互關聯的生物學中。考慮到它們的普遍性,為異構圖設計有效的GNN預訓練策略變得很重要。
在本文中,我們提出了一個對比預訓練的方案,它不僅考慮單個節點之間的差異,還保留了多個節點之間的高階語義。更具體的說,本文設計了一個預訓練任務來區分不同類型的兩個節點之間的關系類型(比如,作者-論文和論文-會議關系)來為下游任務編碼統一的基礎。受對比學習[42]的啟發,為了增強樣本的代表性,本文從兩個方面構造負關系級樣本:(1)來自不一致關系的負樣本,其中兩個節點與正樣本是不同的關系;(2)來自不相關節點的負樣本,其中兩個節點在圖中根本沒有鏈接。同時,本文提出了一個異構圖上的子圖級預訓練任務,使用元圖而不是元路徑來生成子圖實例進行對比學習,因此能夠對不同上下游任務相關的高階語義進行信息編碼。
論文題目:Contrastive Learning of User Behavior Sequence for Context-Aware Document Ranking
作者:朱余韜,聶建云,竇志成,馬正一,張鑫宇,杜潘,左笑晨,蔣昊
通訊作者:竇志成
論文概述:搜索會話中的上下文信息已被證明有益于捕捉用戶搜索意圖。現有研究以不同方式探索會話中的用戶行為序列,以增強查詢建議或文檔排序。然而,用戶行為序列往往被視為反映用戶行為的明確而準確的信號。實際上,用戶對同一意圖的查詢可能會有所不同,并且可能會點擊不同的文檔。為了學習更穩健的用戶行為序列表示,我們提出了一種基于對比學習的方法,該方法考慮了用戶行為序列的可能變化。具體來說,我們提出了三種數據增強策略來生成用戶行為序列的相似變體,并將它們與其他序列進行對比。這樣做時,模型被迫在可能的變化方面更加穩健。優化的序列表示被合并到文檔排序中。在兩個真實查詢日志數據集上的實驗表明,我們提出的模型顯著優于最先進的方法,這證明了我們的方法在上下文感知文檔排名方面的有效性。
本文探討了元學習在序列推薦中的應用,以緩解項目冷啟動問題。序列推薦旨在根據用戶的歷史行為序列捕獲用戶的動態偏好,是大多數在線推薦場景的關鍵組成部分。然而,大多數以前的方法難以推薦冷啟動項目,這在這些情況下是普遍存在的。由于在序列推薦任務的設置中通常沒有附加信息,所以當只有用戶-項目交互可用時,不能運用以前的冷啟動方法。因此,我們提出了一種基于元學習的冷啟動序列推薦框架,即Mecos,以緩解序列推薦中項目冷啟動問題。這項任務不是微不足道的,因為它的目標是一個重要的問題,在一個新穎的和具有挑戰性的背景下。Mecos有效地從有限的交互中提取用戶偏好,并學習將目標冷啟動項目與潛在用戶匹配。此外,我們的框架可以輕松地集成基于神經網絡的模型。在三個真實世界的數據集上進行的大量實驗驗證了Mecos的優越性,與最先進的基線方法相比,在HR@10的平均改進高達99%,91%和70%。
近年來,許多在線平臺(如亞馬遜和淘寶網)都取得了巨大成功。在線平臺上的用戶行為是動態變化的,且會隨著時間而發展。序列推薦的主要目標就是從用戶歷史行為中捕捉關鍵的信息,并基于此準確表征用戶興趣進而提供高質量的推薦[1,2,3]。已有研究人員基于深度學習提出很多序列推薦的模型,此外還有研究人員結合豐富的上下文信息(如商品屬性)一起進行用戶興趣建模,實驗表明,上下文信息對于提高推薦效果很重要。
盡管現有方法在一定程度上已被證明有效,但它們有兩個可能會影響推薦效果的缺陷。首先,他們主要依靠“下一個物品推薦”(Next Item Prediction)損失函數來學習整個模型。在使用上下文信息時,也仍然只使用這一個優化目標。已有研究表明,這種優化方法很容易受到數據稀疏性等問題的影響。此外,它們過分強調最終的推薦性能,而上下文數據和序列數據之間的關聯或融合卻沒有在數據表示中被很好地捕獲。多個領域的實驗結果表明[4,5,6],更有效的數據表示方法(例如,預先訓練的上下文信息嵌入)已成為改善現有模型或體系結構性能的關鍵因素。因此,有必要重新考慮學習范式并開發更有效的序列推薦系統。
為了解決上述問題,我們借鑒了自監督學習的思想來改進序列推薦的方法。自監督學習是一個新興的學習范式,旨在讓模型從原始數據的內在結構中學習。自監督學習的一般框架是首先從原始數據中構建新的監督信號,然后通過這些額外設計的優化目標來對模型進行預訓練。如之前討論的,有限的監督信號和低效的數據表示是現有的神經序列推薦方法的兩個主要問題。幸運的是,自監督學習似乎為解決這兩個問題提供了解決方案:它通過內在數據相關性來設計輔助訓練目標以提供豐富的自監督信號,并通過預訓練的方法增強數據表示。對于序列推薦,上下文信息以不同的形式存在,包括物品,屬性,子序列和序列。開發統一表征這種數據相關性的方法并不容易。對于這個問題,我們借鑒最近提出的互信息最大化(Mutual Information Maximization, MIM)方法,其已被證明可以有效捕獲原始輸入的不同視圖(或部分)之間的相關性。
基于以上,我們提出了一種基于自監督學習方法的序列推薦模型(Self-Supervised Learning Sequential Recommendation, S3-Rec)。基于自注意力機制的體系結構[3],我們首先使用設計的自監督訓練目標對模型進行預訓練,然后根據推薦任務對模型進行微調。此工作的主要新穎之處在預訓練階段,我們基于MIM的統一形式精心設計了四個自監督的優化目標,分別用于捕獲物品-屬性間,序列-物品間,序列-屬性間和序列-子序列間的相關性。因此,S3-Rec能夠以統一的方式來表征不同粒度級別或不同形式數據之間的相關性,并且也可以靈活地適應新的數據類型或關聯模式。通過這樣的預訓練方法,我們可以有效地融合各種上下文數據,并學習屬性感知的上下文化的數據表示。最后,將學習到的表示輸入推薦模型,并根據推薦任務對其進行優化。
為了驗證S3-Rec的有效性,我們在6個不同領域的真實數據集上進行了充分的實驗。實驗結果表明,S3-Rec超過了目前的SOTA,并且在訓練數據非常有限的情況表現得尤為明顯。另外S3-Rec還可以有效得適應其他類別的神經體系結構,例如GRU[1]和CNN[2]。我們的主要貢獻概括如下:(1)據我們所知,這是首次采用MIM進行自監督學習來改善序列推薦任務的工作;(2)我們提出了4個自監督優化目標來最大化不同形式或粒度的上下文信息的互信息;(3)在6個數據集上的充分實驗證明了我們方法的有效性。