亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

【簡介】隨著深度表示學習的發展,強化學習(RL)已經成為了一個強大的學習框架,其可以在高維度空間中學習復雜的規則。這篇綜述總結了深度強化學習(DRL)算法,提供了采用強化學習的自動駕駛任務的分類方法,重點介紹了算法上的關鍵挑戰和在現實世界中將強化學習部署在自動駕駛方面的作用,以及最終評估,測試和加強強化學習和模仿學習健壯性的現有解決方案。

論文鏈接: //arxiv.org/abs/2002.00444

介紹:

自動駕駛(AD)系統由多個感知級任務組成,由于采用了深度學習架構,這些任務現在已經達到了很高的精度。除了感知任務之外,自主駕駛系統還包含多個其他任務,傳統的監督學習方法已經不再適用。首先,當對agent行為的預測發生變化時,從自動駕駛agent所處的環境中接收到的未來傳感器觀察到的結果,例如獲取市區最佳駕駛速度的任務。其次,監督信號(如碰撞時間(TTC),相對于agent最佳軌跡的側向誤差)表示agent的動態變化以及環境中的不確定性。這些問題都需要定義隨機損失函數來使其最大化。最后,agent需要學習當前環境新的配置參數,預測其所處的環境中每一時刻的最優決策。這表明在觀察agent和其所處環境的情況下,一個高維度的空間能夠給出大量唯一的配置參數。在這些場景中,我們的目標是解決一個連續決策的問題。在這篇綜述中,我們將介紹強化學習的概念,強化學習是一種很有前景的解決方案和任務分類方法,特別是在驅動策略、預測感知、路徑規劃以及低層控制器設計等領域。我們還重點回顧了強化學習在自動駕駛領域當中各種現實的應用。最后,我們通過闡述應用當前諸如模仿學習和Q學習等強化學習算法時所面臨的算力挑戰和風險來激勵使用者對強化學習作出改進。

章節目錄:

section2: 介紹一個典型的自動駕駛系統及其各個組件。

section3: 對深度強化學習進行介紹,并簡要討論關鍵概念。

section4: 探討在強化學習基本框架上對其進行更深層次,更加復雜的擴展。

section5: 對強化學習用于自動駕駛領域的所面臨的問題提供一個概述。

section6: 介紹將強化學習部署到真實世界自動駕駛系統中所面臨的挑戰。

section7: 總結

付費5元查看完整內容

相關內容

 ,又稱為無人駕駛汽車、電腦駕駛汽車或輪式移動機器人,是自動化載具的一種,具有傳統汽車的運輸能力。作為自動化載具,自動駕駛汽車不需要人為操作即能感測其環境及導航。完全的自動駕駛汽車仍未全面商用化,大多數均為原型機及展示系統,部分可靠技術才下放至商用車型,但有關于自駕車逐漸成為現實,已經引起了很多有關于道德的討論。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

自動駕駛一直是人工智能應用中最活躍的領域。幾乎在同一時間,深度學習的幾位先驅取得了突破,其中三位(也被稱為深度學習之父)Hinton、Bengio和LeCun獲得了2019年ACM圖靈獎。這是一項關于采用深度學習方法的自動駕駛技術的綜述。我們研究了自動駕駛系統的主要領域,如感知、地圖和定位、預測、規劃和控制、仿真、V2X和安全等。由于篇幅有限,我們將重點分析幾個關鍵領域,即感知中的二維/三維物體檢測、攝像機深度估計、數據、特征和任務級的多傳感器融合、車輛行駛和行人軌跡的行為建模和預測。

//arxiv.org/abs/2006.06091

付費5元查看完整內容

最新的技術進步提高了交通運輸的質量。新的數據驅動方法為所有基于控制的系統(如交通、機器人、物聯網和電力系統)帶來了新的研究方向。將數據驅動的應用與運輸系統相結合在最近的運輸應用程序中起著關鍵的作用。本文綜述了基于深度強化學習(RL)的交通控制的最新應用。其中,詳細討論了基于深度RL的交通信號控制(TSC)的應用,這在文獻中已經得到了廣泛的研究。綜合討論了TSC的不同問題求解方法、RL參數和仿真環境。在文獻中,也有一些基于深度RL模型的自主駕駛應用研究。我們的調查廣泛地總結了這一領域的現有工作,并根據應用程序類型、控制模型和研究的算法對它們進行了分類。最后,我們討論了基于深度可編程邏輯語言的交通應用所面臨的挑戰和有待解決的問題。

付費5元查看完整內容

深度強化學習(deep reinforcement learning, DRL)方法在經濟學中的普及度呈指數級增長。DRL通過從增強學習(RL)到深度學習(DL)的廣泛功能,為處理復雜的動態業務環境提供了巨大的機會。DRL的特點是可擴展性,有可能應用于高維問題,并結合經濟數據的噪聲和非線性模式。本文首先對DL、RL和深度RL方法在經濟學中不同應用的簡要回顧,提供了對現有技術的深入了解。此外,為了突出DRL的復雜性、魯棒性、準確性、性能、計算任務、風險約束和盈利能力,還研究了DRL在經濟應用中的體系結構。調查結果表明,與傳統算法相比,DRL在面臨風險參數和不確定性不斷增加的現實經濟問題時,可以提供更好的性能和更高的精度。

付費5元查看完整內容

【簡介】自然語言處理(NLP)能夠幫助智能型機器更好地理解人類的語言,實現基于語言的人機交流。目前隨著計算能力的發展和大量語言數據的出現,推動了使用數據驅動方法自動進行語義分析的需求。由于深度學習方法在計算機視覺、自動語音識別,特別是NLP等領域取得了顯著的進步,數據驅動策略的應用已經非常的普遍。本綜述對NLP領域中所應用的深度學習進行了分類和討論。它涵蓋了NLP的核心任務和應用領域,并對深度學習方法如何推進這些領域的發展進行了細致的描述。最后我們進一步分析和比較了不同的方法和目前最先進的模型。

原文連接://arxiv.org/abs/2003.01200

介紹

自然語言處理(NLP)是計算機科學的一個分支,能夠為自然語言和計算機之間提高溝通的橋梁。它幫助機器理解、處理和分析人類語言。NLP通過深入地理解數據的上下文,使得數據變得更有意義,這反過來又促進了文本分析和數據挖掘。NLP通過人類的通信結構和通信模式來實現這一點。這篇綜述涵蓋了深度學習在NLP領域中所扮演的新角色以及各種應用。我們的研究主要集中在架構上,很少討論具體的應用程序。另一方面,本文描述了將深度學習應用于NLP問題中時所面臨的挑戰、機遇以及效果評估方式。

章節目錄

section 2: 在理論層面介紹了NLP和人工智能,并將深度學習視為解決現實問題的一種方法。

section 3:討論理解NLP所必需的基本概念,包括各種表示法、模型框架和機器學習中的示例性問題。

section 4:總結了應用在NLP領域中的基準數據集。

section 5:重點介紹一些已經被證明在NLP任務中有顯著效果的深度學習方法。

section 6:進行總結,同時解決了一些開放的問題和有希望改善的領域。

付費5元查看完整內容

題目: A survey of deep learning techniques for autonomous driving

簡介: 本文目的是研究自動駕駛中深度學習技術的最新技術。首先介紹基于AI的自動駕駛架構、CNN和RNN、以及DRL范例。這些方法為駕駛場景感知、路徑規劃、行為決策和運動控制算法奠定基礎。該文研究深度學習方法構建的模塊化“感知-規劃-執行”流水線以及將傳感信息直接映射到轉向命令的端到端系統。此外,設計自動駕駛AI架構遇到的當前挑戰,如安全性、訓練數據源和計算硬件等也進行了討論。該工作有助于深入了解深度學習和自動駕駛AI方法的優越性和局限性,并協助系統的設計選擇。

付費5元查看完整內容

題目: A Survey and Critique of Multiagent Deep Reinforcement Learning

簡介: 近年來,深度強化學習(RL)取得了出色的成績。這使得應用程序和方法的數量急劇增加。最近的工作探索了單智能體深度強化之外的學習,并考慮了多智能體深度強化學習的場景。初步結果顯示在復雜的多智能體領域中的成功,盡管有許多挑戰需要解決。本文的主要目的是提供有關當前多智能體深度強化學習(MDRL)文獻的概述。此外,我們通過更廣泛的分析對概述進行補充:(i)我們回顧了以前RL中介紹的基礎內容,并強調了它們如何適應多智能深度強化學習設置。 (ii)我們為該領域的新開業者提供一般指導:描述從MDRL工作中汲取的經驗教訓,指出最新的基準并概述研究途徑。 (iii)我們提出了MDRL的實際挑戰(例如,實施和計算需求)。

作者介紹: Pablo Hernandez-Leal,Borealis AI的研究員,在此之前,曾與Michael Kaisers一起參與過阿姆斯特丹CWI的智能和自治系統。研究方向:單智能體環境開發的算法以及多智能體。計劃開發一種算法,該算法使用博弈論,貝葉斯推理和強化學習中的模型和概念在戰略交互中得到使用。

付費5元查看完整內容
北京阿比特科技有限公司