亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要

鑒于瞬息萬變的政治局勢和新的安全風險,以及北約和盟軍面臨的軍事挑戰和情景,必須探索新的科學發現和先進的技術發展,提供靈活有效的教育和培訓機會。此外,各級軍事領導和決策者需要提供及時的決策支持,以應對日益復雜的局勢和挑戰。去年的研討會側重于個性化培訓和培訓機會,而今年的研討會主題特別關注復雜的多領域操作和培訓。本次研討會的主題、主題和提交的文稿由NMSG和研討會組織者選擇,旨在為復雜的多域作戰提供先進的教育、培訓和決策支持機會的重要先進方法、技術和經驗。

雖然各種M&S方法、技術和平臺已經在過去幾年和幾十年中得到廣泛應用,但在計算機培訓和決策支持方面,必須考慮在M&S應用中有效使用的新概念、先進的建模和仿真方法和技術,以及新技術能力。為廣泛的 M&S應用程序提供新功能和機會的此類開發示例包括人工智能方法、云計算和軟件即服務(SaaS)。在技??術方面,除了虛擬、增強和擴展現實 (VR/AR/XR) 或計算機游戲等傳感器和可視化技術的最新創新外,網絡和高性能并行和分布式計算基礎設施的能力不斷提高也為有效的M&S培訓和決策支持提供了額外的機會。本次研討會的主題演講、論文和海報展示討論了這些發展,并報告了新的概念方法、基礎設施、用例應用程序以及來自不同國家的經驗。總體而言,研討會為與會者提供了有關最新技術以及近期新觀點和要求的出色概述。

除了在本次研討會上提出的無可爭議的M&S成就和進展,我強烈建議NMSG應加強對重大問題的研究和活動,例如掌握現實中日益復雜的System-of-Systems的措施和相應的仿真應用。此外,研究和項目加強了堅實的方法基礎的開發,以及證實M&S數據源的可信度、質量、正確性和有效性(V&V)的工具、工具和結果要達到預期目的。

除了其科學和技術內容外,這次受covid-19限制的混合研討會再次由荷蘭當地組織者以及NMSG完美地組織和管理。繼去年的NMSG-177-Symposium以純虛擬活動的形式舉辦,主題相似,并基本上是針對相同的M&S 社區,除了有趣的演示,與會者非常享受今年再次提供的討論和面對面交流的機會。這種混合活動的組織可以作為組織未來專題討論會、研討會或技術會議的模式,因為它可以促進和激發更多的出席。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

該項目支持美國陸軍戰爭學院保持一個公認的領導者,并在與美國陸軍和全球陸軍應用有關的戰略問題上創造寶貴的思想。該項目于2018年由美國陸軍訓練與理論司令部總部要求,描述一個新的或修改過的作戰框架,以使陸軍部隊和聯合部隊在多域作戰(MDO)中對同行競爭者成功實現可視化和任務指揮。

由此主要形成一個在2019學年進行的學生綜合研究項目,該項目涉及4名美國陸軍戰爭學院學生和4名教員,由John A. Bonin博士領導。該項目研究了MDO的概念,即它如何影響任務指揮的理念和指揮與控制職能的執行。向MDO的過渡改變了陸軍指揮官和參謀人員在競爭連續體中進行物理環境作戰和信息環境作戰的傳統觀點。

該項目以第一次世界大戰期間美國陸軍引進飛機為案例,研究將新領域納入軍隊的挑戰。該項目還提供了對MDO的概述和分析,以及它正在改變我們的戰斗方式以及軍隊的角色和責任。這些變化將使聯合部隊能夠更有效地進行連續作戰,特別是在武裝沖突之下的競爭中。

向MDO的過渡將需要新的流程,該項目調查了多領域同步周期如何能帶來好處。物質系統、聯合專業軍事教育、聯合和陸軍理論以及總部人員結構將需要改變,因為領導人及其工作人員將需要不同的技能來在這個新環境中運作。

報告總結

陸軍新興的多域作戰(MDO)概念對最近修訂的陸軍任務指揮理論提出了新的挑戰。美國已經有75年沒有與同行競爭者作戰了;因此,個別軍種在概念上側重于打自己的對稱領域戰爭,而較少注意在其他領域支持其他軍種。隨著技術的變化和國防預算的縮減,各軍種正在迅速失去通過純粹的存在和數量來控制其領域的能力和實力。因此,各軍種需要從不同領域獲得不對稱的優勢,以便在其領域作戰中取得成功。

陸軍的指揮和控制方法是任務指揮。這種方法要求指揮官有能力理解、可視化、溝通和評估關鍵決策、風險以及關鍵情報和信息要求。多域作戰的任務指揮將要求指揮官在多個領域以及指揮梯隊之間和內部保持單領域的卓越和知識。同樣重要的是,指揮官必須創造、確保并維持對其自身決策過程的共同認識。風險分析和關鍵的情報和信息需求過程是必要的,以確保指揮官能夠設定條件,賦予下屬領導權力,并在多個領域的范圍內影響分布式行動。因此,為了滿足這些新的要求,需要有新的框架來理解和調整多領域的指揮關系和人員結構。

這些新的框架將需要一個多領域的同步化進程,為指揮官提供一個確定新需求并為其提供資源的方法。與使用軍事決策程序或聯合規劃程序的傳統作戰程序不同,這兩種程序都側重于單一領域的規劃,而多領域同步程序則是在整個規劃和執行周期中,從指揮官和參謀部之間的持續合作中演變而來,跨越所有領域和環境。這種演變創造了對關鍵決策、相關風險以及指揮官認為至關重要的關鍵情報和信息要求的共同理解。

這項研究支持美國陸軍戰爭學院繼續保持在創造與陸軍和全球陸軍應用相關戰略問題寶貴思想方面的公認領導地位。該研究考察了MDO概念的應用,即它如何影響任務指揮的理念以及指揮和控制功能的執行。第一次世界大戰期間飛機的引入提供了一個與當前情況相似的背景,因為1918年的陸軍在如何為大規模的地面行動提供最佳的指揮和控制,以對抗同行的對手,以及如何整合空中對陸地的支持。當陸軍試圖了解如何在多個領域進行整合時,從約翰-J-潘興將軍對飛機的整合中得到的啟示可以說明問題。威廉-米切爾在戰時和戰后的角色說明了我們在試圖執行MDO時可能面臨的一些挑戰,例如在未來大規模地面作戰行動中保衛網絡和空間領域

對MDO的概述和分析將提供陸軍對該概念的定義,并描述陸軍在競爭連續體中的作用。MDO概念將需要新的組織和人員框架來在沖突連續體的所有方面實施MDO。陸軍不能保持一個靜態的組織;陸軍必須既能在陸地領域贏得武裝戰斗,又能幫助塑造競爭以防止未來的沖突。

武裝沖突以下的行動歷來都是聯合部隊和陸軍的斗爭。陸軍在戰斗中指揮和控制的任務指揮方法將不足以組織在武裝沖突以下對對手的日常競爭。陸軍在競爭期間為聯合部隊執行重要的任務,特別是在信息環境中,這些任務在MDO下將會擴大。

目前的作戰流程專注于單一領域,對于支持特定領域以外的功能適用性有限。我們必須有新的流程,允許所有領域的資產同步,以優化我們的效率,同時將這些資產的風險降到最低。盡管適用于所有級別的指揮部,但擬議的流程主要集中在高級行動和戰略層面所需的規劃和數據收集。

從單一領域到多領域的重點變化,使得聯合部隊和陸軍的理論必須進行修訂和更新。聯合專業軍事教育課程和聯合學說將需要進行調整,以教導下一代領導人如何跨域整合。僅僅了解其他部門是不夠的;指揮官和參謀人員需要了解其他領域的能力如何支持他們的工作,以及他們在支持其他領域方面的要求是什么。長期以來,聯合部隊只是名義上的聯合,每個領域都在為贏得自己的戰斗而戰斗。MDO概念使聯合部隊能夠優化其有限的資源,既能應對危機,又能在最好的情況下防止競爭中的危機發生。

表3-1. 陸戰、空戰、海戰和信息戰的特點

圖3-3. 陸軍的指揮與控制方法。ADP 6-0

圖3-4. 多域作戰框架

圖3-5. 信息環境框架下的多域作戰

付費5元查看完整內容

摘要

基于人工智能 (AI) 實現的軍事情報(MI)自動化,在許多方面拓寬了情報收集程序和分析功能范圍。在當今的數字化世界中,每分鐘都以指數方式產生數據。世界各地的情報機構正在體驗新的信息維度,而這些信息在過去由于人類處理龐大數據集的能力有限而被忽視。人工智能/機器學習 (ML)的發展帶來了一種革命性的方法,可以收集大量數據并使用 ML 算法進行分析,從而為非戰時時期和戰時戰略、作戰和戰術指揮官生成各種情報信息摘要。為了應對傳統和非傳統威脅,基于機器學習的軍事情報數據收集和分析,將通過有監督、無監督、強化和深度學習方法進行,其中自動化程度通過人在回路和人在回路之外的方法確定。這些 ML 工具將有助于開發系統框架,能夠通過自適應學習技術感知和響應運行環境,從而從其經驗中學習,根據以前的學習和經驗適應不斷變化的環境。結合智能安全傳感器、監控無人機、地球觀測衛星、電子和虛擬源監控系統,可以增強軍事情報信息收集系統。數據分析和數據融合可以在信息源收集、存儲與處理、融合與分析、數據共享4層框架內,通過回歸、分類、時序分析、聚類分析、主題建模、協同過濾和關聯規則等方式進行。軍事云網絡和物聯網 (IoT)可以增強數據共享。與其他武裝軍種、相關部委、工程大學和商業利益相關者合作,將有助于制定未來的策略指南、研發、ML 算法開發計劃以及為各種基于 ML 的 MI 平臺和應用程序生產兼容的硬件。

1 引言

軍事情報 (MI) 是收集、解釋和向軍事指揮官傳播信息以協助其決策的過程。它研究廣泛的作戰環境,分析各種參與者,同步相關信息并監控非戰時、戰時正在進行的事件。隨著技術的進步,多源數據呈現多倍和多維度增加。這些數據來自戰略、作戰和戰術層面,包括政治、軍事、經濟、社會、商業、媒體和多背景職業人員。情報分析人員經常面臨從大量信息中得出適當結論的復雜任務。從可用數據中得出的假設不能被認為是結論性的,因為它無法通過最大程度收集的信息源進行驗證。由于生成的信息在時間和空間上是動態的,隨著形勢變化而快速演變;從一組信息中得出的結論通常需要驗證,由于處理如此大量的數據和信息的限制,有時甚至在給定的上下文中排除了驗證。此外,需要通過與其他來源的各種相關性分析,定期檢查來源的真實性,這對從這些信息中得出的假設有明顯的影響。

不可否認,由于各種來源的數據生成激增,在信息的收集、分析和相關性評估方面將有很大的改進空間。在收集和分析過程中使用人工智能 (AI) 和機器學習 (ML) 可能是未來最有效的方法。許多技術先進的國家正在用AI/ML改造他們的智能系統。因此,需要評估機器學習是否可用于情報信息的收集和后續分析,處理非戰時、戰時的海量數據流,以獲得戰場環境和當代全球形勢最準確的結論性圖景。

軍事情報是一個動態過程,這是由于各種參與者無處不在的活動,他們產生了連續的數據流。對數據進行評估和分析,將數據分發給利益相關者,采取適當的行動并監測相應的影響,這些都是不可分割的過程,可以通過機器學習系統驅動的自動化進行。此外,通過 ML 系統可以提高和更有效地運行指揮、控制、通信、計算機、情報、監視和偵察 (C4ISR) 系統的功能,其中集成系統可以從環境中學習,并根據迭代學習過程提出評估方法。因此,可以將軍事情報、偵察和監視集成在一個綜合指揮系統下,通過機器學習可以拓寬軍事視野。

2 軍事情報過程中機器學習模型的概念化

Shu-Hsien 等人(2003 年)強調了基于知識的未來軍事情報規劃系統架構。已經討論了許多應用 ML的系統架構和系統配置,其中介紹了自動和半自動分析方法的過渡。此外,還討論了一個具有假設系統實施策略的典型模型。

Prelipcien 等人 (2010) 強調了可用于分析和決策行為模型的各種 AI 算法。簡要介紹了神經網絡的應用、泛型算法、模糊邏輯和專家系統。一些模型描述了神經網絡可用于模式識別但在決策應用方面存在不足。泛型算法具有對環境動態適應的自學習原理,可廣泛用于開發多種決策方案。模糊邏輯被推薦用于基于輸入和期望輸出之間關系的決策規則。它有助于機動計劃和兵力分配,但缺乏具體的判斷決定。專家系統是基于知識規則進行識別和確定特定情況下的行動時間。并重點討論了各種算法模型設計的 ML 應用。

Dijk (2019) 在他之前關于國防應用中的 AI 和 ML 的會議上,為軍事情報分析方法編譯了許多 ML 模型。與實現研究目標相關的方法是無人傳感器和系統、使用 ML 方法對無人機進行聲學檢測、通過無人機系統進行態勢感知、可見光和熱光譜范圍內的視頻監控、用于視覺識別的神經網絡、用于行為識別的深度學習,提出了用于危險分類、信息提取和語義世界建模的深度神經網絡模型,和基于對象的深度學習多光譜圖像融合方法,應用于軍事情報分析。

Ahmed (2019) 強調了人工智能在孟加拉國 (BD) 武裝部隊監視領域應用的重要性。詳細闡述了 AI 實施路線圖架構,可用作探索預期目標的初始參考方案。調查已用于基于ML進行軍事情報分析框架的意見和指南。

Mitchell 等人(2019 年)討論了情報周期元素之間的相互聯系,并列舉了如何將 ML應用于情報周期的各個階段。通過人工智能實現自動化,所有情報機構都可以利用潛在的工作時間,這為情報機構在量化價值方面的效率加速程度提供了深入的見解。這為情報主體在情報過程中應用數學模型時的效率提供了定量比較。

中國(2017)強調了潛在的通用技術、支撐平臺和未來人工智能產業,以開發智能計算技術,用于未來人工智能驅動的重大科技項目。重要的是要發現知識計算技術是建立在自適應機器學習和分析推理技術之上的。其中,關鍵群體智能技術、跨媒體分析推理技術、知識計算與服務技術、混合增強智能架構、智能自主無人系統、智能虛擬現實技術、智能計算芯片與系統、自然語言處理技術,已成為探索未來軍事情報分析的重要創新。大數據智能理論、跨媒體感知理論、混合與增強智能理論、群體智能理論、自主協調與控制、優化決策理論、高級機器學習理論、類腦智能計算等學術研究發展規劃理論、群體智能理論和量子智能計算理論已被預測為 ML 應用于情報分析的指導學術話語。這些將通過機器學習為未來的軍事情報分析構建基于知識的架構。這些是基本的學術指導方針,持續發展將為 ML 用于軍事情報分析創建研發計劃。結合這一理論框架,Haridas(2015)提出了用于國家和軍事情報收集的大數據分析,基于大數據分析的情報可以為決策提供必要的支持。ML 被用作情報大數據分析工具,通過該工具可以實現威脅警報、社交媒體監控、信息挖掘、文檔分析和網絡安全監控。討論了基于大數據應用的情報收集系統的概念布局,其中可以對來自多個收集源的各種信息數據進行實時高級分析,以提供態勢感知、決策制定和戰斗評估。這些都為今后的研究和開發提供了較為詳細的理論概念。

Michael O'Hanlon (2019) 預測未來 20 年軍事技術將發生顯著變化,他專注于軍事技術的未來趨勢。在四類技術突破中,第一類是收集與軍事行動相關數據的傳感器,第二類是處理和分發這些數據的計算機和通信系統。預測了 2020-2040 年關鍵可部署技術的預計進展,其中顯示了傳感器和其他通信系統的部署概率。它對情報采集源、通信和信息處理技術的未來發展做出了清晰的預測。 Connable (2012) 強調了各種形式和格式的情報數據融合過程,并介紹了融合過程對于相關國家和國際參與者分析未來復雜環境的重要性。一個包含政治、經濟、軍事、社會和信息基礎設施的系統分析圖,解釋了信息流如何影響戰略和作戰重心,這驗證了未來情報數據收集和處理熱潮的顛覆性轉變。它描繪了融合的情報圖片如何更好地反映地面圖片,從而幫助情報人員了解復雜的社會-政治-軍事環境,并與大局建立聯系。因此,在未來復雜的作戰和戰略場景中,將在情報數據融合分析方面尋求范式轉變。

為了對來自不同來源的數據進行融合,Cruickshank (2019) 提出通過應用數據科學來開發軍事情報架構,為了從原始數據中提取知識的能力。建議使用 ML 和其他 AI 技術,數據科學將成為分析來自各種收集源結構化和非結構化數據的首選學科。在這方面,Kendrick (2019) 展示了一個在所有陸軍梯隊采用以數據為中心的框架。這允許在陸軍決策和執行的每一層面將數據科學有效地整合到陸軍情報中。數據科學工具可以自動化情報過程的復雜步驟,最終開發軍事情報數據庫。這些概念可以提供為軍事情報過程開發合適的 ML 模型。

Dopico 等人(2009 年)在他們的《人工智能百科全書》中匯編了大量關于當前人工智能技術發展的研究文章。在這些文章中,各種最新的智能系統建模、自適應技術、人工神經網絡、用于信息檢索的人工智能、認知建模、基于行為的神經網絡聚類、智能代理中的決策、面部表情識別程序、分層強化學習、自然語言處理程序、模糊邏輯系統的監督學習和群體智能方法模型,可以提供一個啟動框架,可用于說明 ML 如何用于解釋情報數據并將其轉換為可用信息。有了 ML 程序開發指南,對用于軍事情報分析的 ML 系統的研究和開發可能非常重要。

3 用于軍事情報分析的全球軍事機器學習應用平臺

機器學習是人工智能的一個子集,已被發達國家和發展中國家的軍隊廣泛用于其各種軍事應用和作戰平臺。 ML算法用于分析和學習數據(Bhatnagar,2018)。 ML 旨在通過分析示例和信息中有意義的關系和數據模式,來學習和調整其思維模式,這些示例和信息旨在以類似于人類認知邏輯的性質工作(Janiesch & Heinrich,2021)。在 2018 年美國國防戰略(Defense, 2018)中宣布,將人工智能作為未來打贏戰爭的關鍵技術,這已被美國(US)列為未來戰略。俄羅斯在 2017 年重申追求人工智能技術,因為俄羅斯總統公開宣布了其對未來軍事前景的立場(Simonite,2017)。中國在 2017 年發布了一項戰略,詳細說明了到 2030 年通過人工智能引領軍事技術的路線圖(Council,2017 年)。 Maven 項目是正在進行的領先的軍事 AI 實施項目之一,在伊拉克和敘利亞打擊 ISIS 的行動中,五角大樓通過算法戰跨職能團隊將無人機視頻轉換為可操作的情報,從而開始對 ML 進行軍事應用(WEISGERBER,2017 年)。

3.1 軍事情報流程的系統架構

軍事情報(MI)流程集成了情報、監視和偵察 (ISR),ISR開發了情報發送 (IC) 流程。通常,它結合了空間數據庫、屬性數據庫、案例庫、規則庫和知識庫,MI 過程通過這些知識庫進行工作。軍事偵察是獲取有關敵對部隊和自身作戰利益地形信息的過程。軍事監視是根據偵察數據對活動進行監測,以便保持有關的最新情況 。MI 結合了分析偵察和監視數據,并將原始信息轉換為對當前和未來行動具有軍事利益的有用情報的過程(Liao 等人,2003 年)。軍事 ISR 的框架如圖 1 所示。

圖1:軍事ISR框架(Liao等,2003)

從圖 1 可以明顯看出,MI 的相互交織的過程列舉了每個過程都與其他過程相輔相成,并且任何過程中缺乏活動都會導致整個 IC 過程出現故障。可以通過自動化以最小的錯誤概率加速持續的協調、修訂、更新和執行。因此,最新的人工智能強化學習方法通??過人機協作將整個過程納入情報分析框架。

MI過程是通過使用管理信息系統(MIS)進行的,通過該系統處理顯性知識。但在當今世界,有大量的數據產生,包括物理數據和虛擬數據,有屬性數據庫、空間數據庫、案例庫和知識庫等多種數據庫。地理信息系統(GIS)和基于知識的決策支持系統(KBDSS)被用于整合決策支持和知識管理功能,以增強顯性和隱性知識庫。在這方面,提出了結合情報戰支持系統(IOSS)結構,通過混合推理策略完成豐富的知識表示,證明了其在生產決策系統中的適用性(Xia & Rao,1999)。該系統的運行基于從書面知識中學習、從問題解決中學習、從問題解決失敗中學習和從遺忘中學習。這稱為自適應和強化學習,它是 ML 的主要屬性和 AI 的核心功能。由于情報收集、積累、分析和傳播功能的動態特性,基于強化學習的 ML 功能正變得越來越流行,并且依賴于 MI 過程。

3.2 軍事情報流程的層次結構和配置

MI 流程的層次結構和配置大致分為三個層次(Liao 等,2003)。第一層由作戰和戰術情報收集組織和單位組成,其通過偵察和監視手段收集數據、圖片、信號和網絡信息。這些手段大致可細分為人類智能、信號智能、圖像智能和通信智能。第二層次對提供的數據和信息進行不同的情報分析。在此層面上,分別根據日常和緊急需求提供常規和特殊情報報告。常規情報的存檔是這一層面的重要組成部分之一,它會定期更新并根據需要進行檢索。第三層是經常提出智能化要求的用戶組織、上級指揮部和高層領導。他們還定期更新態勢感知以及具有作戰和戰術價值的特殊情況。

MI的作戰流程分為常規任務和特殊任務。在常規任務中,作戰注意力集中在基于常規和標準操作程序的基本情報收集上。有時限的特殊任務側重于從特定事件、情況和人員中獲取特定情報。因此,這兩個作戰過程都闡釋了如圖 2 所示的 IC。

圖2:軍事情報作戰流程(Liao等,2003)

廣義情報作戰流程建立在對第一層情報采集組織和單位采集的原始數據處理之上。將原始數據轉換為信息的過程是由隱性和顯性知識庫完成的。這兩種類型的知識庫之間存在核心差異。隱性知識是任何智力主體的經驗、邏輯思維和膽識的積累,本質上更多的是個人屬性(Oliver, et al., 1997)。它因人而異,并且根據此類知識庫做出的決定通常是出乎意料的,可能不是基于邏輯推理(Hedlund,1994)。盡管在某些情況下,隱性知識被證明是根據情報預測任何結果的合理正確方法。但另一方面,顯性知識基于教義基礎的規則、方法和技術,本質上更精確、清晰和結構化(Zhang & Griffith,1997)。此外,程序性知識是由顯性知識支持的標準操作程序(Anderson,1985)。

3.3 為什么ML是MI分析的擾亂技術

在當今的數字化世界中,人類處于大量數據中,這些數據正以指數方式增長。數據的多樣性、數量、速度、矢量和無處不在不僅擾亂了當今的作戰前景,而且忽視了對通過它所承載的信息解釋,從而危及國家安全。在“信息就是力量”的格言下,作戰部隊必須具備解讀這種不斷增加的結構化和非結構化數據的能力,并找到有助于促進非戰時、戰時情報數據庫發展的模式。世界各地的情報機構正在重新定位和重組其傳統的情報作戰方法,以適應動態數據流并準備分析大型數據集。很明顯,在未來的技術時代,情報前景必須拓寬,并依賴于收集和組織大部分自己感興趣的數據來可視化未來態勢。

一般情報作戰由五個相互關聯、相互依賴的循環組成。分別是計劃、收集、處理、分析和傳播 (PCPAD)。收集、處理和分析 (CPA) 階段至關重要,需要從技術方面加以重視,因為操縱和處理的數量已經超過了人類的能力。數據收集來源包括傳感器、航空系統、衛星、無線電信號、開源互聯網、社交網絡、不同的組織、代理、對手等等。這些數據在不同的時間和空間以不同的格式在不同的介質中以二進制數據的數字格式或書面和口頭數據的形式出現。因此,它需要一個通用的解釋系統,可以處理、存儲、解釋所有類型的數據格式,并可以制作通用的情報圖。

根據 Desjardins(Desjardins,2019 年)的說法,世界正在產生大量數據,如圖 3 所示。

圖3:2019年中一天的數據(Desjardins, 2019)

Bulao (Bulao, 2020) 總結了以下關于互聯網世界中通過信息高速公路產生了多少數據的細節。

表 1:通過信息高速公路生成數據(Bulao,2020)

這些是在非戰時時期準備情報數據庫時需要分析的數據量和數據類型,以便在需要的時候幫助提取必要的信息。此外,在過去十年中,非傳統安全 (NTS) 威脅仍然很高,并且已經成為新的安全問題。因此,需要每天開發、更新和監控針對 NTS 威脅的情報,以便及時了解由于參與者的不可預測行為而導致的任何即將發生的情況。在戰時,在活躍的戰場情景下,持續的偵察和監視是任何作戰活動必不可少的組成部分。在戰場環境中,這些來自各種來源的數據被添加到以前的數據庫中,從而產生海量的數據流,這是人類操作員使用傳統的收集、存儲和分析方法無法處理和組織的。在正在進行的 AI 技術時代,有監督和無監督 ML 被廣泛用于收集大量數據。使用 ML 的優點是它可以自主或半自主地訓練自己來整理 MI 所需的數據,這使它能夠用可用的模式標記數據。因此,機器學習系統可以輕松篩選數十億字節的數據并捕獲所需的數據類型,為機器學習創建有意義的信息。雖然機器學習應用于數據收集,但系統通過數據挖掘(Chan,2020)通過正確識別、定位、分析、集成、清理和存儲來準備數據。

3.4 ML 在 MI 中的全球軍事應用

在討論了 MI 流程和系統架構的廣泛結構之后,不同國家的軍隊一直在通過監督學習和強化學習關注隱性知識和顯性知識來開發和重新定位其 MI 流程。隨后,對各種正在進行的MI流程系統進行了徹底的重組,這些系統將在可預見的未來主導MI流程的制定。簡要討論了一些最近開發的用于收集和分析 MI 流程的自動化系統。

? 多域指揮和控制系統(MDC2)是集中式平臺之一,收集和分析通過傳感器從陸地、空中、海洋和網絡空間收集的原始數據。這些數據與中央系統的融合是為了創建一個單一的信息庫,從而為決策者創建一個通用的作戰圖(CLARK,2017)。

? 邊境監視系統(BSS),對邊境沿線的物體和人員進行自動監視。它由傳感器、網絡資源和數據庫組成,其中開發了算法來計算指標,從而為威脅提供預測值。它不僅可以估計威脅程度,還可以評估一系列事件的不確定性程度。貝葉斯推理、背書理論、模糊推理和 Dempster Shafer 理論與編程算法一起用于 BSS 的設計(Albertus C. van den Broek,2019)。

? 聲學探測器,是一種通過機器學習方法運行的主動探測系統,可以跟蹤和探測空中和地面中的小型微型物體。 ML 方法用于使用來自各種傳感器和雷達的實時數據來檢測和評估多種算法的性能。這可以將各種音頻特征與可聽和不可聽頻譜區分開來。基于 ML 的檢測算法可以剔除噪聲并通過作戰環境產生可用的情報(Alexander Borghgraef,2019 年)

? 通過增強技術在可見光和熱光譜范圍內進行視頻監控,采用深度神經網絡記錄和檢測紋理和熱圖像。卷積神經網絡是在自適應學習算法下設計的,通過從各種來源獲取傳感器數據并做出決策。它在長波紅外和可見光譜范圍內的大規模多光譜熱世界數據集中特別有用(Vanessa Buhrmester,2019)。

? 基于深度學習的行為識別已經應用于監控系統中的傳感器數據分析。該系統致力于識別人的異常行為并跟蹤具有特定行為模式的人員(Maria Andersson,2019)。該系統通過預設的人與人、人與物、人在特定環境的行為模式來分析不同的行為特征。這是在監督學習模型上設計的,其中具備不同的行為類別和模式,通過這些模型分析和檢查受試者的行為特征,以篩選和檢測所需的感興趣的人。

? 通過結合和分析不同的情報輸入,開發了基于語義世界模型的信息提取技術。這些情報輸入的形式有人力情報(HUMINT)、圖像情報(IMINT)、開源情報(OMINT)、虛擬源情報(VIRINT)等。通過使用數據驅動的機器學習機制和語義世界建模,將信息整合、處理、融合產生一個通用的情報。這些是基于深度學習方法面向結構化和非結構化數據開發的(Almuth Hoffmann,2019)。

3.5 用于 MI 分析的 ML 算法開發模型

ML 在國防、經濟、醫療保健、交通、航空、空間技術、商業等領域的應用領域已經具有較大發展。有趣的是,這些領域的應用成果可以加速國防應用的發展。對于 MI,這些 ML 算法可以用于探索未來的應用,這些應用已經在理論研究中或已經在實際工業應用中。在此基礎上,討論了算法模型及其在模型分析中的應用范圍:

? 從互聯網資源和通信媒體中檢索多媒體信息會在高維空間中產生大量數據。主動學習支持向量機 (ALVSM) 一直在開發以處理此類高維系統,因此可以作為 MI 數據收集和分析的基本系統 (Jiang & Horace, 2009)。

? 基于智能體的智能系統建模被開發用于感知和響應作戰環境,作為一個自適應系統來獲取和存儲信息,從其經驗中學習,通過自動化或半自動化控制,調整方向,適應變化的環境。通過自適應學習不斷修改規則,使系統在不斷變化和演變的環境中做出必要的決策輸出。智能體的工作原理是通過基于代理的建模 (ABM) 結合人類和基于機器的數據進行監控、傾聽和響應 (Tang, et al., 2009)。

? 環境智能 (AmI) 通過物聯網 (IoT) 無縫集成智能設備和基礎設施。它通過語音識別和圖像轉換集成了所有的采集和監視傳感器、智能系統、人、計算機和社會交互。該系統通過認知推理的直觀界面工作,并向智能體提供合適的策略選擇(Sadri & Stathis,2009)。

? 面部表情識別系統 (FERS) 用于識別人類情緒并捕捉大量圖像序列中的面部表情。人機交互解釋面部運動并分析情緒狀態(Dornaika & Raducanu,2009)。

? 數據挖掘和數據倉庫被廣泛用于管理和分析大型數據集(基于模式識別技術)。數據倉庫可用于存儲可在需要時檢索的數據。數據挖掘用于壓縮龐大的信息存儲庫。它是一個涵蓋大數據集、模式識別、機器學習、信息與控制理論、信息檢索、并行與分布式計算和數據可視化的多學科領域(Zhou,2003)。與 MI 分析最相關的數據挖掘活動可能是關聯、序列、分類、聚類和通過神經網絡、決策樹、回歸分析和基于記憶的推理進行的預測(Wang 等人,2009 年)。

? 帶有傳感器、AI 和 ML 的地理信息系統 (GIS) 生成數字地圖,其中輸入來自地面傳感器、空中平臺和衛星。它生成定制的便攜式地圖,其中包含實時和空間放置的更新對象以及用于檢測和跟蹤系統的準確地理坐標。圖像和對象處理是通過自適應和監督機器學習的深度挖掘建模完成的(Matheson,2020)。

? 基于傳感器的認知平臺通過廣泛的神經網絡系統中的各種數據和圖像收集傳感器工作。該平臺通過模糊邏輯和遺傳算法進行操作,形成專家和學習系統(Hamblem,2017)。

4 機器學習在軍事情報中的應用潛力

要在大局下開發完整的情報概要,顯然需要關聯和融合來自多個收集源的所有情報數據。基于機器學習方法的工具可以分為三類,例如監督學習、無監督學習、強化學習和深度學習。 Alkire (Alkire, et al., 2016) 將分析工具分類為啟用分析、執行分析和支持分析。啟用監督學習方法下的分析工具可幫助智能體快速、準確、完整地執行特定的分析任務。這種半自動化工具通過人機交互和人在環結構中執行分析任務。執行分析是替代智能體的全自動工具;從而在具有人外循環結構的無監督學習方法下運行。執行分析工具可以通過基于任務和基于周期的方式進行操作。基于任務的工具從情報代理中卸載指定的任務并自主完成任務。基于循環的工具完全無需人工??干預即可執行智能循環的所有步驟。強化學習和深度學習下的分析工具通過自適應學習運行,它通過知識管理數據庫、建模、模擬環境、人際協作、縱向和橫向協作來支持智能體。

數據合成是情報數據分析的重要步驟。其目的是將來自各種收集源的所有不同元素組合在一起,以開發單個事件和情況的情報摘要。這種合成一般分三個層次進行。初級階段是基礎分析和開發,其中匯總來自單一來源的數據以制作情報產品。這是關鍵基礎,因為到下一層次的合成鏈取決于此數據組合階段。高級分析和開發層次目的在于解釋多源數據,由于來自多個來源的數據量和類型,分析和開發變得更加復雜。與此層次并行,可以創建多源分析和多情報融合,以發現情報產品之間的關系,這可以被認為是更深層次的階段。這樣做主要是為了找出數據模式,以便可以預測任何情報事件的概率。最后一個層次是所有源分析,其中所有可用數據被融合和合成在一起,并在時間、地點和行為方面對目標進行更準確的預測。這種類型的分析需要一種整體方法來組合所有類型的數據格式,這可以通過監督學習 ML 方法較好地完成。

人機界面和人機協作是將機器學習納入 MI 的重要階段。在 MI 流程的自主化方面,人在環系統一直是首選。可以通過多個層次開發將 ML 納入 MI 流程。這些層級是相互關聯的,可以從總部放置到外勤單位,以促進各種來源的信息流動。

4.1 第 1 層(數據來源)

第 1 層將主要包括人力、機械和電子來源。可以放置傳感器、無人機、衛星和雷達,以全天候收集來自全國各地和感興趣區域的圖像源,以用于作戰目的。傳感器是靜態設備,低成本設備,可以很容易地放置在感興趣的地方。傳感器之間可以建立局部連接,其中圖像數據可以收集在全國分布式服務器的數據庫中。此數據存儲功能將在第 2 層(存儲和處理)中進行協調,其中可以在中央數據庫中收集、分類和篩選來自傳感器的所有圖像數據。無人機和衛星分別是可以探測、跟蹤和定位靜止和移動物體的戰術和戰略設施。無人機可以將圖像數據發送到本地和中央數據庫,而衛星數據可以發送到中央數據庫。由于衛星范圍超出國家邊界,它可能用一個單獨的數據庫用于外部圖像存儲。雷達是靜態檢測系統,可以檢測飛行物體、移動物體。這些圖像數據可以通過光纖網絡直接存儲到中央數據庫。

圖4:第1層(數據來源)

智能安全傳感器、無人駕駛航空器(UAV)、地球觀測衛星(EOS)以及電子和虛擬源的功能

非戰時監視是 MI 部門的主要職能之一。為此,除了人工收集信息外,傳感器、無人機和地球觀測衛星(EOS)也可以在收集大量數據和信息方面發揮重要作用。

? 智能安全傳感器

智能安全傳感器是構建 MI 采集系統的關鍵元素。靜態的、通過物聯網(IoT)互聯的傳感器,可以在國家邊境形成一個大型監控網絡系統。它們可以執行各種功能,包括環境監測、武器控制、通信和信號攔截、監測軍事行動、犯罪檢測、入侵檢測、NBC 檢測等。有多種類型的傳感器可用 MI 目的。有源傳感器通過自己的輻射源發揮作用??,該輻射源在電磁頻譜的微波和無線電波長區域工作。它支持包括運動檢測和入侵檢測在內的各種 ML 算法。這些都是通過ML算法下的自動提取過程,從復雜的噪聲頻譜中處理無線電信號。智能傳感器通過強化學習機制發揮作用,這是一種多功能、自我診斷和自我補償的裝置。這些是由具有更高處理芯片的高分辨率圖像傳感處理器構建的,可以將數據從遠程站快速傳輸和共享到中央數據庫或本地數據庫。短波圖像輻射機制已證明它是用于 MI 目的的精密和可靠傳感器之一。微機電系統 (MEMS) 傳感器通過機電傳感器發揮作用,小型化機電傳感器尺寸,因其在短時間內快速部署而廣受歡迎。這些是在崎嶇不平地形和環境中長時間工作的理想傳感器。視覺解釋數據生成過程使其成為值得信賴的軍事檢測傳感器之一。納米傳感器被認為是用于 MI 的最先進技術。它們耐用、堅固、重量輕,并通過自適應學習算法工作。這些新興技術通過創建本地虛擬云網絡來共享數據。這些在難以接近的地形配置中提供了更好的連接性,該配置通過認知學習方法和通過增強現實 (AR) 界面進行工作(Electronicsforu,2018 年)。

? 監視無人機(UAV)

監視無人機(UAV) 是收集難以接近和易受攻擊的地形圖像和視頻數據的基本系統之一。由高分辨率計算機視覺和圖像處理技術建模的移動對象檢測和跟蹤 (MODAT) 框架,用于創建地理空間地圖和其他圖像文檔。對地形物體的監測、對運動物體的跟蹤和實時位置數據的更新,有助于對感興趣區域進行24小時監控。它們獨立運行,集群工作,分散方式通信,以確保最佳的安全性和應用靈活性。自動化 MODAT 框架在圖像對齊、運動檢測和對象跟蹤等三個模塊下運行。圖像數據的大量計算是基于強化學習的各種圖像處理算法進行的(Ibrahim等人,2010)。

? 地球觀測衛星

地球觀測衛星(EOS) 是一個覆蓋廣泛地形的寶貴情報收集系統,因此可以作為任何軍隊的戰略資產設施。 EOS可以從不同高度觀察獲取地形衛星圖像并將其發送回中央控制站。經過適當處理后,這些圖像可以通過機器學習研究地形配置模式的變化,并為潛在的越境入侵提供警報。對衛星圖像進行采集、存儲、處理和解釋的整個過程都是由各個ML算法模型自主完成的。

? 電子和虛擬來源

除了其他傳統和現有的情報來源之外,電子和虛擬來源對 MI 至關重要。數字簽名和潛在信息出現在各種電子媒體和虛擬信息高速公路(互聯網、社交媒體網絡和其他媒體資源)中,可以對任何即將發生的情況建立 360 度的視角和評估。通過有監督的算法建模框架來強化人工智能學習,可以從這些媒介中提取所需的信息。這需要人工的持續監督,可以通過監督學習程序來實現。互聯網上的電子資源是 ML 在檢測和提取所需信息方面發揮重要作用的主要信息來源之一。它可以通過自動化過程對所需信息進行分類和收集,由于數據量大,情報人員經常忽視這一過程。潛在情報來源包括互聯網網站、社交媒體平臺(Facebook、Twitter、Instagram 等)、視頻共享平臺(YouTube、Vimeo、TikTok 等)、新聞門戶(國內和國際)、媒體頻道(國內和國際)。這些來源的數據通常以非結構化的圖像和語音數據格式出現。外交機構是提供該國家最近在政治、經濟和軍事方面發展情況的真實來源之一,這些發展通常以結構化的形式出現。全球軍備合同和交易細節可以提供潛在對手的最新軍備能力。這些主要是結構化數據,收集來源通常需要在第 2 層進行驗證。除此之外,各種軍事技術開發計劃可能是了解未來軍事發展趨勢的最重要來源。這些數據采用結構化格式,通常需要在第 2 層進行驗證。

? 人力情報

人力資源仍將是最重要的信息來源,正如孟加拉國陸軍所流行的那樣。人力情報(HUMINT)可以通過各種人力和其他來源收集。這些可以分為常規、非常規、專業、按需和共享 HUMINT。常規 HUMINT 是從一般收集來源收集的,這些來源經過培訓并符合常規就業原則。從需要定期驗證的來源收集非常規的 HUMINT。這些來源必須符合個性配置文件下第 3 層中設置的驗證參數。專業的 HUMINT 是從高度機密的來源收集的,這些來源通常在感興趣的地方處于休眠狀態,基于自驅動機制收集信息。專業的來源通常在放置之前進行驗證,但需要與在第 3 層中執行的活動模式相匹配。 按需HUMINT 是常規 HUMINT 的擴展,其中來源通常在特定情況下放置在特定的時間范圍內。共享 HUMINT 是經常從其他組織按需或出于共同目的收到的共同情報。 HUMINT 的模式有書面、口頭和編碼格式的數據。這種結構化、半結構化甚至非結構化數據可以通過數據挖掘、NLP 和文本分析方法進行分析。非結構化信息管理架構 (UIMA) 可用于第 2 層,以處理半結構化和非結構化數據并創建通用結構化數據庫。

4.2 第 2 層(存儲和處理)

在第 2 層中,將協同進行數據存儲、數據處理、數據流、數據處理硬件。來自各種來源的數據可以存儲在分散的服務器中,該服務器可以將數據傳輸到中央數據庫。按需數據也可以通過軍用云網絡進行提取。數據處理可以通過 ML 算法進行。對于結構化數據,監督學習系統可以在有限的自主性下使用。對于圖像和語音數據,可以使用強化學習,使其可以從環境中學習,并可以繼承具有情境經驗的自適應配置。 NLP 可以應用于各種語音識別、語音解釋和語音定向。數據存儲可以通過大數據框架內的神經網絡來實現。數據流可以通過安全的光纖網絡進行。此外,機械采集源可以通過物聯網互連,從而可以即時和集中地執行數據流和設備控制。

圖5:第2層(存儲和處理)

基于機器學習的情報數據處理

通過各種收集源獲得的數據將形成大數據。不斷變化的數據結構需要基于ML的數據處理算法,這是一個不斷發展的研究領域。 ML算法對數據的處理是通過數據選擇(結構化、半結構化和非結構化)、數據處理、數據轉換、數據輸出和最終數據存儲來進行的。在不斷發展的數據科學領域,有多種 ML 算法方法。其中,回歸、分類、時間序列分析、主題建模、聚類分析、協同過濾、關聯規則和降維很流行,并在軍事和商業中得到廣泛應用(Bhatnagar,2018)。在使用 ML 算法進行數據處理時,可以采用三種學習類型的 ML 技術。被廣泛使用的 ML 的三個子領域是監督學習、強化學習和自動/無監督學習。在 ML 的這些子領域中,監督學習(神經網絡、貝葉斯網絡、樸素貝葉斯、支持向量機和馬爾可夫模型算法)用于對數據處理任務進行分類和估計。強化學習(Q-Learning、R-learning、TD 學習和 Sarsa 學習算法)用于從情報數據集中開發決策任務。無監督學習(k 均值、高斯模型、X 均值和 Dirichlet 過程模型算法)的主要功能是通過對形勢趨勢分析來產生數據聚類,以做出未來的預測事件(Bhatnagar,2018)。處理和分析各種來源生成的情報數據需要使用大數據框架。在眾多大數據處理框架中,Hadoop 框架最適合 MI 分析(Chowdhury,n.d.)。

4.3 第 3 層(融合和分析)

第 3 層通過融合各種數據集發揮作用,從而可以開發人格剖析模型、決策模型、動態情境模型和綜合預警 (EW) 系統。結合HUMINT,收集、協作和融合個人在社交網絡(OSN)和其他網站中的互動,創建軍事和非軍事感興趣者的內部動態人格檔案。這類人員的選擇范圍可能包括敵人的軍事和非軍事領導層以及非傳統威脅集團的嫌疑行為者。根據 (Souri, et al., 2018),艾森克三因素模型(精神病、外向、神經質 (PEN) 模型)、大五模型和另類五模型被廣泛用于描述人格概況。為此,可使用樸素貝葉斯、決策樹、神經網絡和支持向量機等 ML 算法來分析在線數據集。

基于強化學習,可以實現定期更新和重構的人格輪廓。根據一個人在不同情況下的各種行為反應所形成的一系列人格特征,編制了人格模型。這種個性模型將被廣泛用于開發大量決策模型,這些模型將成為戰略和作戰領導力的重要成分。類似地,基于某種情況下的各種活動,可以將活動元素的組合以隨機方式融合在一起,以預測即將到來的情況。因此,情景元素的融合將利用機器學習的自適應學習方法構建動態情景模型。所有這些模型將有助于創建關于相關人員和任何情況的綜合電子戰,特別是高級領導和一般部隊。

圖6:第3層(融合和分析)

MI 數據融合的特點

? 數據融合是機器學習將所有類型的數據處理成可用的格式,并為當前和未來情況準備統一圖景的方法。 ML一般通過數據的不不完整、數據的關聯、數據的不一致性和數據的分散性來進行這種數據融合。數據融合是處理多源數據和信息的集自動檢測、因果、關聯、估計和組合的多層次、多方面的過程(F.E.White,1991)。它是信息從不同來源和不同時空點轉換的過程。該過程提高了檢測能力和可靠性,減少了數據模糊性,并擴展了從國家邊界到興趣點區域的空間和時間覆蓋范圍。JDL模型是軍事領域中最常見、最流行的融合模型之一,它基于輸入的結構數據,通過對象、影響、情境和過程細化四個不斷增加的抽象層次產生輸出。 JDL 模型主要側重于輸入輸出數據,而不是處理。相反,Dasarthy 的框架允許輸入/輸出數據流和功能處理(Dasarthy,1994)。基于全球、區域和國家層面事件的不確定性,MI 通常需要適應隨機數據集。根據這些隨機數據集構建大量決策模型將很有用。在這方面,Goodman (Goodman, 1997) 隨機集就是一個非常有用的過程,它具有結合決策不確定性以及呈現不確定性選項的一般模式能力。

? 用于 MI 數據轉換的數據融合技術必須經過魯棒的自適應編程框架,以解決數據類型的不完善、數據類型的多樣性、傳感器技術的多樣性以及操作環境的性質和類型。

? 數據融合算法需要能夠承受智能體和傳感器從現場收集的不完美、不精確的數據類型。它還應該能夠導出冗余數據,從而減少測量中的噪聲。

? 數據融合系統應該能夠避免反直覺的結果,并且能夠以適當的注意力處理高度沖突的數據,從而消除決策錯誤的增加。

? 數據融合方案應該能夠同時處理同質和異構數據,如音頻、視頻、無線電信號和其他形式的信號源。

? 數據融合系統需要通過傳感器注冊來克服由單個傳感器模式引起的校準誤差。該處理可以集中式和分布式兩種方式完成。分布式融合過程在必須建立無線傳感器網絡的偏遠地區非常有用。

? 數據融合方法應針對多個時間尺度,以處理傳感器接收和發送數據的多個時間尺度變化。由于數據流通過的路由是可變的,因此可能存在數據亂序到達的可能性。為了解決這種性能變化的潛在缺陷,融合中心應該具有分布式融合設置。

? 融合過程必須通過強化學習方法進行操作,以便能夠快速適應變化并相應更新。

數據融合方法

實時數據融合系統將面臨許多挑戰,因為該方法仍在探索中。主要挑戰來自非結構化、不完整和不精確的數據。很明顯,MI 數據永遠不會具有完整的結構化格式,因為預測的來源包括人類傳感器、無人機、衛星和其他虛擬和在線平臺。 Khaleghi (Khaleghi, et al., 2011) 描述了數據融合系統中的幾個與數據相關的挑戰。數據融合方法的分類如圖 7 所示

圖7:數據融合方法的分類(Khaleghi等,2011)

無論數據結構如何,ML都可以使用數據融合算法,在多個數據模型中創建數據結構,以滿足MI的各種需求。其中,數據不完備性是數據融合系統面臨的最基本的挑戰,主要表現為不確定性、模糊性、不完全性和粒度性。有許多建議的不完善的數據融合框架來解決這些限制。流行的數據融合框架是概率、證據、模糊推理、可能性、粗糙集理論、混合和隨機集理論融合。該框架具有處理數據不確定性、模糊數據融合、模糊數據處理、不完整數據處理和不完整數據融合的能力。

4.4 第 4 層(數據共享)

第 4 層是數據共享平臺,將與內部和外部利益相關者共享完整的態勢模型和集成電子戰信息。這個集中的數據共享平臺將連接到所有編隊指揮部,使態勢感知可以即時到達。這些可以通過具有單獨通信集線器的光纖網絡連接到其他組織和利益相關者。

圖8: 第4層(數據共享)

軍事云計算在MI融合中的應用

軍事云計算(MCC)可以為通用情報數據和資源提供方便的按需共享網絡訪問。 MCC 至關重要的可訪問性功能使其可靠、耐用且安全,具有軍事級別的網絡攻擊保護。它將為所有情報大數據和其他資源提供一個動態的資源池和存儲設施,以便任何情報人員可以在世界任何地方隨時訪問它,同時可以在任何地方、時間上傳各種數據。這樣,MI 資源可以 24 小時共享和訪問。 MCC 可以在 4 層單獨的分散功能中構建。 Cheng & Liao (Cheng & Liao, 2011) 將它們命名為資源層、面向服務的架構層、面向服務的工具層和云計算應用層。資源層將保存所有的物理資源和邏輯資源。物理資源包括存儲配件、網絡設備、物理數據庫配件、服務器等。邏輯資源包括應用軟件和其他相關軟件。面向服務的架構層執行情報服務、通用服務和專業服務的資源共享。面向服務的工具層提供用戶接口和訪問接口,進行仿真建模和調試加密數據。

用于情報數據傳輸的軍事物聯網

軍事物聯網 (MIoT) 將是一個新興且必不可少的系統,用于連接同一軍用級網絡下的所有設備、傳感器、無人機、衛星和其他采集設備。它將人和機器互連在一起,促進人機協作。 MIoT將由除了采集設備之外的所有軍事平臺組成,因此也可以傳遞執行部署指令。這不僅允許信息不斷地流入中央數據庫,而且還將流出的信息傳播給最終用戶。

5 建議

基于上述關于將機器學習納入 MI 過程的各種因素討論,提出以下建議:

? 除了傳統的 MI 收集源之外,還可以在感興趣的領域中加入基于機器學習的收集源。

? 可引入數據融合中心,對各類數據進行組合融合,形成統一的情報圖。

? 可以與工程機構、政府機構和相關行業合作啟動研發,以幫助推動機器學習算法和配套硬件的自主創新和開發。

? 可規劃ML算法開發時間線及相關MI應用平臺,將MI過程向人機協作轉變。

? 可以在 MI 框架內引入情報層級框架,以便協同實現自動化。

? 必須通過充分更新的防火墻系統確保每一層來源的信息安全。

? 在 MI 流程的每一層都需要確保備份數據存儲。

6 總結

機器學習是人工智能的一個子集,已被發達國家和發展中國家的軍隊廣泛用于各種軍事應用和作戰平臺。為支持這一趨勢,發達國家通過機器學習重新定位其情報收集和分析過程,以更深入地了解情況并從各個角度進行分析。軍事ISR的框架包括空間數據庫、屬性數據庫、案例庫、規則庫和知識庫,這些過程相互交織。在機器學習應用的情報分析框架中,可以通過自動化以最小的錯誤概率要求人機協作,來加速持續的協調、修訂、更新和執行。地理信息系統(GIS)和基于知識的決策支持系統(KBDSS)被用于整合決策支持和知識管理,以增強顯性和隱性知識庫這兩種形式的情報知識方法。結合智能作戰支持系統(IOSS)結構,通過混合推理策略完成豐富的知識表示,證明了其在決策系統中的適用性。 MI的層次結構和配置大致分為三個層次;第一級由作戰和戰術情報收集組織和單位組成,第二級對收集組織和單位提供的數據和信息進行不同的情報分析,第三級是用戶組織,上級總部和高層領導經常對情報提出要求。第一級和第二級的數據收集和分析步驟可以通過結合基于人工智能的功能系統來實現自動化。

ML 在 MI 中的全球軍事應用的最新發展范圍,包括多域指揮和控制系統 (MDC2)、邊境監視系統 (BSS)、聲學探測器、視頻監視、基于深度學習的行為識別,及通過語義世界建模進行信息提取。這些系統或技術通過使用監督、強化和深度學習方法,來分析來自人力情報 (HUMINT)、圖像情報 (IMINT)、開源情報 (OMINT)、虛擬源情報 (VIRINT) 和許多其他來源的信息。用于 MI 分析的 ML 算法模型已經開發出來,該領域的一些重要成就是主動學習支持向量機 (ALVSM)、基于智能體的智能系統建模、環境智能 (AmI)、面部表情識別系統 (FERS)、數據挖掘和數據倉庫、帶有傳感器的地理信息系統 (GIS) 和基于傳感器的認知平臺。

MI 的收集、處理和分析 (CPA) 階段至關重要,需要從技術方面予以重視,因為操縱和處理龐大的數據量已經超過了人類的能力。數據來源的類型包括傳感器、航空系統、衛星、無線電信號、開源互聯網、社交網絡、不同的組織、代理、對手等等。在非戰時時期,非傳統安全 (NTS) 威脅在過去十年中一直居高不下,并已成為新的安全問題。在戰時,在活躍的戰場情景下,持續的偵察和監視是任何作戰活動必不可少的組成部分。在戰場環境中,這些來自各種來源的數據被添加到以前的數字數據庫中,從而產生大量數據流。 ML 系統可以輕松篩選數十億字節的數據,并捕獲所需的數據類型,為 MI 創建有意義的信息。當機器學習應用于數據收集時,系統通過正確識別、定位、分析、清理和存儲來準備數據。有各種 ML 方法利用復雜算法和預測建模來進行數據分析以預測未來的結果。監督學習適用于訓練和測試數據集,其中訓練數據集可用于 MI 智能體訓練 ML 系統。無監督學習用于查找數據集中的數據結構模式。強化學習使用復雜的算法從其經驗中學習并重新設計其程序以分析預測情況。深度學習通過人工神經網絡發揮作用,其中數據保存在多個層級中,以便通過可變數據接口層使用。在 MI 的自動化中,發現 AI的應用在 MI 過程的處理和分析階段帶來了最大影響。因此,機器學習的內在價值將為 MI 組織促進和利用“自動化紅利”,以便人類可以將節省的時間用于其他高優先級任務。

非戰時監視是 MI 部門的主要職能之一。除了手動和人工收集信息外,傳感器、無人機和 EOS 還可以在收集大量數據和信息方面發揮重要作用。智能安防傳感器可以通過物聯網互聯,可以形成跨越國界的大型監控網絡系統。監視無人機 (UAV) 是通過移動目標檢測和跟蹤 (MODAT) 框架收集無法訪問和易受攻擊的地形圖像和視頻數據的基本系統之一。地球觀測衛星 (EOS) 是一種覆蓋廣泛地形的寶貴情報收集系統,因此可以作為任何軍隊的戰略資產設施。通過監督算法建模框架來強化人工智能學習,可以從電子和虛擬資源中提取所需信息。 ML算法對數據的處理是通過數據選擇(結構化、半結構化和非結構化)、數據處理、數據轉換、數據輸出和最終數據存儲來進行的。用于情報數據處理的 Hadoop 框架作為大數據框架執行,用于處理和分析從各種來源生成的情報數據。數據融合是 ML 將所有類型的數據處理成可用的格式并準備好當前和未來情況的統一圖景的方法。 ML一般通過數據的不完善、數據的關聯、數據的不一致性和數據的分散性來進行數據融合。在各種融合系統中,Joint Director of Laboratories (JDL) 模型、Dasarthy 框架和 Goodman 隨機集執行各種數據融合、特征融合、決策融合和信息融合。流行的數據融合方法涵蓋了概率、證據、模糊推理、可能性、粗糙集理論、混合和隨機集等多種理論。數據合成是情報數據分析的一個重要步驟,它可以將來自各種收集源的所有不同元素組合在一起,以開發單個事件和情況的情報摘要。軍事云計算(MCC)的動態資源池和所有情報大數據及其他資源的存儲設施,可以為通用情報數據和資源提供便捷的按需共享網絡訪問,讓任何情報人員可以在世界任何地方的任何時間訪問它,同時可以在任何時間上傳各種數據。

數據收集、數據存儲和處理、數據融合和分析以及最后的數據共享四個層次的功能,可以通過監督和強化學習方法開發。這將允許全方位擴展 MI 的范圍,并且可以監視感興趣的物理和虛擬區域。因此,ML 的應用將促進 MI 收集和分析過程的自動化,以便可以查看自己興趣點的所有情況,并且戰略、作戰和戰術領導者清楚接下來會發生什么。

作者

Nizam Uddin Ahmed 中校, 在孟加拉國國防學院擔任高級研究員。他對國防技術發展有著廣泛的興趣。他在 Springers、Mirpur Papers 和 NDC 期刊上發表了多篇論文。目前,他正在研究將人工智能納入武裝部隊的可行性,并開發各種深度學習模型。

付費5元查看完整內容

作戰實驗室是將測試能力與作戰終端用戶結合在一起,以開發或增強作戰概念、程序和/或作戰人員培訓(北約定義)。

演講大綱

  • 全國民主聯盟戰斗實驗室概述
  • 多域運營挑戰
  • M&S的全新而不同的角色
  • 讓戰斗實驗室為MDO做好準備
  • 主要收獲和前進的道路
付費5元查看完整內容

摘要

北約和各國迫切需要進行團結和聯合集體訓練,以確保任務準備就緒:目前和未來的行動是多國性質的,任務和系統慢慢變得更加復雜,需要詳細準備和迅速適應不斷變化的情況。由于可用資源少、訓練范圍有限、避免對手關注第五代戰術和系統能力的挑戰以及政治決策和部署之間準備時間有限,多國背景下的現場訓練和任務準備的機會減少了。模擬已經成為解決我們軍隊訓練需求的重要工具,各國正朝著通過分布式模擬(MTDS)能力采用國家任務訓練的方向發展。聯合部隊正在尋找實況和模擬訓練與演習之間的新平衡,以提供兩全其美的效果。

北約建模和仿真組(NMSG)的若干倡議為北約MTDS愿景和行動概念的發展貢獻了寶貴的投入(MSG-106 NETN, MSG-128 MTDS, MSG-169 LVC-T)。基于這些結果,當前/最近的NMSG活動(MSG-163北約標準演變、MSG-165 MTDS- ii、MSG-180 LVC-T)致力于為聯合和聯合作戰開發一個通用MTDS參考體系結構(MTDS RA)。最近完成的MTDS RA版本以構建模塊、互操作性標準和模式的形式定義了指導方針,用于實現和執行分布式模擬支持的綜合集體訓練和演習,獨立于應用領域(陸地、空中、海上)。此外,MSG-164 (M&S作為服務II)開發了一種技術參考體系結構(MSaaS TRA),其中包含用于實現所謂MSaaS能力的構建塊。這些構建模塊可以與MTDS RA相結合,以包括作為服務執行綜合集體訓練和演習的指導方針。

MTDS RA的當前版本提供了一個基線,以詳細說明和確定應進行進一步需求/技術開發的領域。未來更新的主題包括網絡作戰和影響、危機管理、實時系統集成、多域或混合作戰等。

聯合MTDS對北約和國家戰備至關重要。本文提供了MTDS RA的背景、目標和原則,以及實現持久的北約范圍內綜合性集體訓練能力的前進方向。聯合MTDS RA的維護和繼續發展將是幾個北約國家、伙伴國家和組織在NMSG主持下的合作努力。

付費5元查看完整內容

無人機行業現在正處于黃金時期,它的增長有望呈指數級增長盡管人道主義救援人員已經使用這種技術10年了,但市場的擴大和技術的發展正在推動越來越多的組織裝備這種設備。無人駕駛飛機(Unmanned Aerial Vehicles,簡稱UAVs),也被稱為遠程駕駛飛機或“無人機”,是一種通過遠程控制或自主飛行的小型飛機。

這份報告關注的是非武裝民用無人機和無人機的使用情況。未來的報告可以探討無人水下航行器和地面無人機的影響和發展。2014年,人道主義協調廳在其人道主義應對政策文件中強調了無人機在人道主義行動中的不同用途,這表明無人機技術的使用越來越多。從理論上講,瑞士地雷行動基金會(Swiss Foundation for Mine action)在其報告《人道主義行動無人機(2016)4:測繪》中對無人機在人道主義行動中的應用進行了6類總結;向偏遠或難以到達的地點運送基本產品;搜索和救援(SAR);支持損害評估;提高態勢感知;監測變化(如城市和營地的增長、農業使用或道路或基礎設施的建設)。這份報告將揭示人工智能驅動的無人機是如何改進和修改這些用途的。

無人機的迅速采用可以通過現代無人機帶來的機遇和它們可以利用的日益增長的人工智能(AI)相關能力來解釋。一方面,它們的使用通過自治得到簡化和授權。另一方面,視覺分析性能的改進使得依賴于無人機圖像成為可能。這份報告旨在強調人工智能提高無人機能力的程度。

由于深度學習方法的普遍化,無人機可以進一步捕捉它們運行的環境,從而允許越來越復雜的任務。這項技術還可以顯著改善無人機的視覺識別和圖像分析。由于人工智能算法的使用需要較高的計算能力,因此它的應用往往發生在飛行后。這一表現將通過三個案例研究加以強調:

  • 用于北加州野火應急響應的無人機(2018年11月)

  • 聯合國兒童基金會在馬拉維使用無人機應對颶風“伊代”(2019年3月)

  • 報告還探討了無人機未來的潛在功能。

付費5元查看完整內容

本報告描述了北約第一個多領域小組IST-173所取得的成果。與會者包括來自不同小組和團體的科學家,以及來自北約機構和軍事利益攸關方、學術界和工業界的科學家,這為AI和軍事決策大數據這一主題創造了第一個利益共同體。該團隊在實踐中證明了一種新的STO方法的可行性,即任務導向研究,以激發公開對話、自我形成的研究合作和跨小組活動。此外,該方法還有助于為人工智能和軍事決策大數據這兩個主要能力領域聯合開發北約首個科技路線圖,以應對北約在這些領域面臨的作戰挑戰。由于新的組織(軍事利益相關者積極參與的多領域團隊)和這種創新方法的應用,確定了一些經驗教訓,應該支持軍事決策AI和大數據的進一步操作。

付費5元查看完整內容

美國國防部(DOD)報告稱,人工智能(AI)是一項革命性的技術,有望改變未來的戰場和美國面臨的威脅的速度。人工智能能力將使機器能夠執行通常需要人類智能的任務,如得出結論和做出預測此外,人工智能機器可以以人類操作員無法企及的速度操縱和改變戰術。由于AI具有廣泛用途的潛力,國防部將其指定為頂級現代化領域,并投入大量精力和資金開發和獲取AI工具和能力,以支持作戰人員。在2022財年,國防部為科學和技術項目申請了147億美元,以及8.74億美元用于直接支持其人工智能努力。根據國防部2018年的人工智能戰略,未能將人工智能能力納入武器系統可能會阻礙戰士保護我們的國家抵御近同行對手的能力其他國家正在這一領域進行大量投資,這可能會削弱美國的軍事技術和作戰優勢。

美國國防部(DOD)正在積極追求人工智能(AI)能力。人工智能指的是旨在復制一系列人類功能,并不斷在分配的任務上做得更好的計算機系統。GAO之前確定了三種AI類型,如下圖所示

國防部認識到開發和使用人工智能不同于傳統軟件。傳統軟件的編程是根據靜態指令執行任務,而人工智能的編程則是學習如何改進給定的任務。這需要大量的數據集、計算能力和持續監控,以確保功能按預期執行。支持國防部作戰任務的大部分人工智能能力仍在開發中。這些能力主要集中在分析情報,增強武器系統平臺,如不需要人工操作的飛機和艦船,并在戰場上提供建議(如將部隊轉移到哪里)。

當獲取依賴于復雜軟件的新能力時,國防部一直面臨著挑戰,例如長時間的獲取過程和熟練工人的短缺。GAO發現,它繼續面臨這些挑戰,同時還面臨人工智能特有的其他挑戰,包括有可用的數據來訓練人工智能。例如,人工智能探測對手的潛艇需要收集各種潛艇的圖像,并標記它們,這樣人工智能就可以學會自己識別。國防部還面臨著將訓練有素的人工智能集成到非為其設計的現有武器系統中的困難,以及在其人員中建立對人工智能的信任。國防部發起了一系列努力,如為人工智能和人工智能特定培訓建立一個跨服務的數字平臺,以應對這些挑戰,并支持其對人工智能的追求,但現在評估有效性還為時過早

付費5元查看完整內容
北京阿比特科技有限公司