亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

最近鄰搜索是尋找數據庫中的數據點,使它們到查詢的距離最小,這是計算機視覺、推薦系統和機器學習等各個領域的一個基本問題。哈希是計算效率和存儲效率最廣泛使用的方法之一。隨著深度學習的發展,深度哈希方法顯示出比傳統方法更多的優點。本文對深度哈希算法進行了全面的研究。在損失函數的基礎上,將深度監督哈希方法按照相似度保留的方式分為:兩兩相似度保留、多相似度保留、隱式相似度保留和量化。此外,我們還介紹了其他一些主題,如深度無監督哈希和多模態深度哈希方法。同時,我們還介紹了一些常用的公共數據集和深度哈希算法的性能測試方案。最后,我們在結論中討論了一些可能的研究方向。

付費5元查看完整內容

相關內容

由于計算和存儲效率的提高,哈希被廣泛應用于大規模數據庫檢索中的近似近鄰搜索。深度哈希技術是一種利用卷積神經網絡結構來挖掘和提取圖像語義信息或特征的技術,近年來受到越來越多的關注。在這個綜述中,我們對幾種圖像檢索的深度監督哈希方法進行了評估,總結出深度監督哈希方法的三個主要不同方向。最后提出了幾點意見。此外,為了突破現有哈希方法的瓶頸,我提出了一種影子周期性哈希(SRH)方法作為嘗試。具體來說,我設計了一個CNN架構來提取圖像的語義特征,并設計了一個loss function來鼓勵相似的圖像投影接近。為此,我提出了一個概念: CNN輸出的影子。在優化的過程中,CNN的輸出和它的shadow互相引導,盡可能的達到最優解。在數據集CIFAR-10上的實驗表明,該算法具有良好的性能。

//arxiv.org/abs/2006.05627

付費5元查看完整內容

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

摘要:近年來,基于深度學習的表面缺陷檢測技術廣泛應用在各種工業場景中.本文對近年來基于深度學習的表面缺陷檢測方法進行了梳理,根據數據標簽的不同將其分為全監督學習模型方法、無監督學習模型方法和其他方法三大類,并對各種典型方法進一步細分歸類和對比分析,總結了每種方法的優缺點和應用場景.本文探討了表面缺陷檢測中三個關鍵問題,介紹了工業表面缺陷常用數據集.最后,對表面缺陷檢測的未來發展趨勢進行了展望.

付費5元查看完整內容

智能視頻監控(IVS)是當前計算機視覺和機器學習領域的一個活躍研究領域,為監控操作員和取證視頻調查者提供了有用的工具。人的再識別(PReID)是IVS中最關鍵的問題之一,它包括識別一個人是否已經通過網絡中的攝像機被觀察到。PReID的解決方案有無數的應用,包括檢索顯示感興趣的個體的視頻序列,甚至在多個攝像機視圖上進行行人跟蹤。文獻中已經提出了不同的技術來提高PReID的性能,最近研究人員利用了深度神經網絡(DNNs),因為它在類似的視覺問題上具有令人信服的性能,而且在測試時執行速度也很快。鑒于再識別解決方案的重要性和廣泛的應用范圍,我們的目標是討論在該領域開展的工作,并提出一項最先進的DNN模型用于這項任務的調查。我們提供了每個模型的描述以及它們在一組基準數據集上的評估。最后,我們對這些模型進行了詳細的比較,并討論了它們的局限性,為今后的研究提供了指導。

付費5元查看完整內容

主題: Deep Learning on Knowledge Graph for Recommender System: A Survey

摘要: 最近的研究表明,知識圖譜(KG)在提供有價值的外部知識以改進推薦系統(RS)方面是有效的。知識圖譜能夠編碼連接兩個對象和一個或多個相關屬性的高階關系。借助于新興的GNN,可以從KG中提取對象特征和關系,這是成功推薦的一個重要因素。本文對基于GNN的知識感知深度推薦系統進行了綜述。具體來說,我們討論了最新的框架,重點是它們的核心組件,即圖嵌入模塊,以及它們如何解決實際的推薦問題,如可伸縮性、冷啟動等。我們進一步總結了常用的基準數據集、評估指標以及開源代碼。最后,我們對調查結果進行了總結,并提出了這一快速發展領域的潛在研究方向。

付費5元查看完整內容

簡介:

深度學習技術在圖像降噪方面獲得了極大的關注。但是,處理噪聲的不同類型的學習方法有很大的差異。具體來說,基于深度學習的判別式學習可以很好地解決高斯噪聲。基于深度學習的優化模型方法對真實噪聲的估計有很好的效果。迄今為止,很少有相關研究來總結用于圖像去噪的不同深度學習技術。在本文中,作者對圖像去噪中不同深度技術進行了比較研究。我們首先對(1)用于加白噪聲圖像的深卷積神經網絡(CNN),(2)用于真實噪聲圖像的深CNN,(3)用于盲目去噪的深CNN和(4)用于混合噪聲圖像的深CNN進行分類,這是噪聲,模糊和低分辨率圖像的組合。然后,又分析了不同類型的深度學習方法的動機和原理。接下來,將在定量和定性分析方面比較和驗證公共去噪數據集的最新方法。最后,論文指出了一些潛在的挑戰和未來研究的方向。

簡要內容:

圖像去噪的深度學習方法的基礎框架:

  • 機器學習方法
  • 神經網絡方法
  • 卷積神經網絡方法

圖像去噪中的深度學習技術:

  • 用于加白噪聲圖像的深卷積神經網絡
  • 深度學習技術可實現真正的噪點圖像降噪
  • 盲降噪的深度學習技術
  • 深度學習技術用于混合噪聲圖像去噪
付費5元查看完整內容

論文主題: Deep Learning for Image Super-resolution: A Survey

論文摘要: 圖像超分辨率(SR)是提高圖像分辨率的一類重要的圖像處理技術以及計算機視覺中的視頻。近年來,基于深度學習的圖像超分辨率研究取得了顯著進展技術。在這項調查中,我們旨在介紹利用深度學習的圖像超分辨率技術的最新進展系統的方法。一般來說,我們可以粗略地將現有的SR技術研究分為三大類:監督SR、非監督SR和領域特定SR。此外,我們還討論了一些其他重要問題,如公開可用的基準數據集和性能評估指標。最后,我們通過強調幾個未來來結束這項調查未來社區應進一步解決的方向和公開問題.

付費5元查看完整內容

題目: Deep Learning in Video Multi-Object Tracking: A Survey

簡介: 多對象跟蹤(MOT)的問題在于遵循序列中不同對象(通常是視頻)的軌跡。 近年來,隨著深度學習的興起,提供解決此問題的算法得益于深度模型的表示能力。 本文對采用深度學習模型解決單攝像機視頻中的MOT任務的作品進行了全面的調查。 確定了MOT算法的四個主要步驟,并對這些階段的每個階段如何使用深度學習進行了深入的回顧。 還提供了對三個MOTChallenge數據集上提出的作品的完整實驗比較,確定了表現最好的方法之間的許多相似之處,并提出了一些可能的未來研究方向。

付費5元查看完整內容
北京阿比特科技有限公司