亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本文介紹了一階優化方法及其在機器學習中的應用。這不是一門關于機器學習的課程(特別是它不涉及建模和統計方面的考慮),它側重于使用和分析可以擴展到具有大量參數的大型數據集和模型的廉價方法。這些方法都是圍繞“梯度下降”的概念而變化的,因此梯度的計算起著主要的作用。本課程包括最優化問題的基本理論性質(特別是凸分析和一階微分學)、梯度下降法、隨機梯度法、自動微分、淺層和深層網絡。

付費5元查看完整內容

相關內容

“機器學習是近20多年興起的一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多門學科。機器學習理論主要是設計和分析一些讓 可以自動“ ”的算法。機器學習算法是一類從數據中自動分析獲得規律,并利用規律對未知數據進行預測的算法。因為學習算法中涉及了大量的統計學理論,機器學習與統計推斷學聯系尤為密切,也被稱為統計學習理論。算法設計方面,機器學習理論關注可以實現的,行之有效的學習算法。很多 問題屬于 ,所以部分的機器學習研究是開發容易處理的近似算法。” ——中文維基百科

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

【導讀】《機器學習:貝葉斯和優化的視角》是雅典大學信息學和通信系的教授Sergios Theodoridis的經典著作,對所有主要的機器學習方法和新研究趨勢進行了深入探索,涵蓋概率和確定性方法以及貝葉斯推斷方法。非常值得學習。

Sergios Theodoridis教授是雅典大學信息學和通信系的教授,香港中文大學(深圳)客座教授。他的研究領域是信號處理和機器學習。他的研究興趣是自適應算法,分布式和稀疏性感知學習,機器學習和模式識別,生物醫學應用中的信號處理和學習以及音頻處理和檢索。

他的幾本著作與合著蜚聲海內外,包括《機器學習:貝葉斯和優化的視角》以及暢銷書籍《模式識別》。他是2017年EURASIP Athanasios Papoulis獎和2014年EURASIP Meritorious Service獎的獲得者。

//cgi.di.uoa.gr/~stheodor/

機器學習:貝葉斯和優化方法

本書對所有主要的機器學習方法和新研究趨勢進行了深入探索,涵蓋概率和確定性方法以及貝葉斯推斷方法。其中,經典方法包括平均/小二乘濾波、卡爾曼濾波、隨機逼近和在線學習、貝葉斯分類、決策樹、邏輯回歸和提升方法等,新趨勢包括稀疏、凸分析與優化、在線分布式算法、RKH空間學習、貝葉斯推斷、圖模型與隱馬爾可夫模型、粒子濾波、深度學習、字典學習和潛變量建模等。全書構建了一套明晰的機器學習知識體系,各章內容相對獨立,物理推理、數學建模和算法實現精準且細致,并輔以應用實例和習題。本書適合該領域的科研人員和工程師閱讀,也適合學習模式識別、統計/自適應信號處理和深度學習等課程的學生參考。

付費5元查看完整內容

內容介紹:

計算機科學正在發展,以利用新的硬件,如GPU、TPUs、CPU和大型的集群。許多子領域,如機器學習和優化,已經調整了它們的算法來處理這樣的集群。

主題包括分布式和并行算法:優化、數值線性代數、機器學習、圖形分析、流形算法,以及其他在集群中難以擴展的問題。該類將重點分析程序,并使用Apache Spark和TensorFlow實現一些程序。

本課程將分為兩部分:首先,介紹并行算法的基礎知識和在單多核機器上的運行時分析。其次,我們將介紹在集群機器上運行的分布式算法。

付費5元查看完整內容

本文介紹了一階優化方法及其在機器學習中的應用。這不是一門關于機器學習的課程(特別是它不涉及建模和統計方面的考慮),它側重于使用和分析可以擴展到具有大量參數的大型數據集和模型的廉價方法。這些方法都是圍繞“梯度下降”的概念而變化的,因此梯度的計算起著主要的作用。本課程包括最優化問題的基本理論性質(特別是凸分析和一階微分學)、梯度下降法、隨機梯度法、自動微分、淺層和深層網絡。

付費5元查看完整內容

本備忘單是機器學習手冊的濃縮版,包含了許多關于機器學習的經典方程和圖表,旨在幫助您快速回憶起機器學習中的知識和思想。

這個備忘單有兩個顯著的優點:

  1. 清晰的符號。數學公式使用了許多令人困惑的符號。例如,X可以是一個集合,一個隨機變量,或者一個矩陣。這是非常混亂的,使讀者很難理解數學公式的意義。本備忘單試圖規范符號的使用,所有符號都有明確的預先定義,請參見小節。

  2. 更少的思維跳躍。在許多機器學習的書籍中,作者省略了數學證明過程中的一些中間步驟,這可能會節省一些空間,但是會給讀者理解這個公式帶來困難,讀者會在中間迷失。

付費5元查看完整內容

題目: Optimization for deep learning: theory and algorithms

摘要:

什么時候以及為什么能夠成功地訓練神經網絡?本文概述了神經網絡的優化算法和訓練理論。首先,我們討論了梯度爆炸、消失問題,然后討論了實際的解決方案,包括初始化和歸一化方法。其次,我們回顧了用于訓練神經網絡的一般優化方法,如SGD、自適應梯度方法和分布式方法以及這些算法的理論結果。第三,我們回顧了現有的關于神經網絡訓練的全局問題的研究,包括局部極值的結果、模式連接、無限寬度分析。

作者:

Ruoyu Sun是伊利諾伊大學厄本那香檳分校 (UIUC)電子與計算機工程系的助理教授,研究優化和機器學習,尤其是深度學習。最近,一直在研究深度學習中的最優化,例如神經網絡,GANs和Adam。

摘要

什么時候以及為什么能夠成功地訓練神經網絡?本文概述了神經網絡的優化算法和訓練理論。首先,我們討論了梯度爆炸/消失問題和更一般的不期望譜問題,然后討論了實際的解決方案,包括仔細的初始化和歸一化方法。其次,我們回顧了用于訓練神經網絡的一般優化方法,如SGD、自適應梯度方法和分布式方法,以及這些算法的現有理論結果。第三,我們回顧了現有的關于神經網絡訓練的全局問題的研究,包括局部極值的結果、模式連接、彩票假設和無限寬度分析。

  1. 概述

本文的一個主要主題是了解成功訓練神經網絡的實際組成部分,以及可能導致訓練失敗的因素。假設你在1980年試圖用神經網絡解決一個圖像分類問題。如果你想從頭開始訓練一個神經網絡,很可能你最初的幾次嘗試都沒有得到合理的結果。什么本質的變化使算法能有效進行?在高層次上,你需要三樣東西(除了強大的硬件): 合適的神經網絡、合適的訓練算法和合適的訓練技巧。

合適的神經網絡。這包括神經結構和激活功能。對于神經結構,您可能想要用一個至少有5層和足夠神經元的卷積網絡來替換一個完全連接的網絡。為了獲得更好的性能,您可能希望將深度增加到20甚至100,并添加跳躍skip連接。對于激活函數,一個好的起點是ReLU激活,但是使用tanh或swish激活也是合理的。

訓練算法。一個大的選擇是使用隨機版本的梯度下降(SGD)并堅持它。良好調整的步長足夠好,而動量和自適應步長可以提供額外的好處。

訓練技巧。適當的初始化對于算法的訓練是非常重要的。要訓練一個超過10層的網絡,通常需要兩個額外的技巧:添加規范化層和添加跳過連接。

哪些設計選擇是必要的?目前我們已經了解了一些設計選擇,包括初始化策略、規范化方法、跳過連接、參數化(大寬度)和SGD,如圖1所示。我們將優化優勢大致分為三部分: 控制Lipschitz常數、更快的收斂速度和更好的landscape。還有許多其他的設計選擇是很難理解的,尤其是神經架構。無論如何,似乎不可能理解這個復雜系統的每個部分,目前的理解已經可以提供一些有用的見解。

圖1: 成功訓練具有理論理解的神經網絡的幾個主要設計選擇。它們對算法收斂的三個方面有影響:使收斂成為可能、更快的收斂和更好的全局解。這三個方面有一定的聯系,只是一個粗略的分類。請注意,還有其他一些重要的設計選擇,特別是神經體系結構,它們在理論上還沒有被理解,因此在該圖中被省略了。還有其他好處,比如泛化,也被忽略了。

為了使綜述調查簡單,我們將重點研究前饋神經網絡的監督學習問題。我們將不討論更復雜的公式,如GANs(生成對抗網絡)和深度強化學習,也不討論更復雜的體系結構,如RNN(遞歸神經網絡)、attention和Capsule。在更廣泛的背景下,監督學習理論至少包含表示、優化和泛化(參見1.1節),我們不詳細討論表示和泛化。一個主要的目標是理解神經網絡結構(由許多變量連接的參數化)如何影響優化算法的設計和分析,這可能會超越監督學習。

這篇文章是為那些對神經網絡優化的理論理解感興趣的研究人員寫的。關于優化方法和基礎理論的先驗知識將非常有幫助(參見,[24,200,29]的準備)。現有的關于深度學習優化的調查主要針對一般的機器學習受眾,如Goodfellow等[76]的第8章。這些綜述通常不深入討論優化的理論方面。相反,在這篇文章中,我們更多地強調理論結果,同時努力使它對非理論讀者具有可訪問性。如果可能的話,我們將提供一些簡單的例子來說明這種直覺,我們將不解釋定理的細節。

1.1 大景觀:分解理論

分解是發展理論的一個有用且流行的元方法。首先簡要回顧了優化在機器學習中的作用,然后討論了如何分解深度學習的優化理論。

表示、優化和泛化。監督學習的目標是根據觀察到的樣本找到一個近似底層函數的函數。第一步是找到一個豐富的函數家族(如神經網絡),可以代表理想的函數。第二步是通過最小化某個損失函數來識別函數的參數。第三步是使用第二步中找到的函數對不可見的測試數據進行預測,產生的錯誤稱為測試錯誤。測試誤差可以分解為表示誤差、優化誤差和泛化誤差,分別對應這三個步驟引起的誤差。

在機器學習中,表示、優化和泛化這三個學科經常被分開研究。例如,在研究一類函數的表示能力時,我們往往不關心優化問題能否很好地解決。在研究泛化誤差時,我們通常假設已經找到了全局最優值(概化調查見[95])。類似地,在研究優化屬性時,我們通常不明確地考慮泛化誤差(但有時我們假定表示誤差為零)。

優化問題的分解。深度學習的優化問題比較復雜,需要進一步分解。優化的發展可以分為三個步驟。第一步是使算法開始運行,并收斂到一個合理的解,如一個固定點。第二步是使算法盡快收斂。第三步是確保算法收斂到一個低目標值的解(如全局極小值)。要獲得良好的測試精度,還有一個額外的步驟,但是這超出了優化的范圍。簡而言之,我們將優化問題分為三個部分: 收斂性、收斂速度和全局質量。

大部分工作的回顧分為三個部分: 第四部分,第五部分和第六部分。大致說來,每個部分主要是由優化理論的三個部分之一。然而,這種劃分并不精確,因為這三個部分之間的邊界是模糊的。例如,第4節中討論的一些技術也可以提高收斂速度,第6節中的一些結果解決了收斂問題和全局問題。劃分的另一個原因是它們代表了神經網絡優化的三個相當獨立的子領域,并且在一定程度上是獨立發展的。

1.2 文章結構

這篇文章的結構如下。在第二節中,我們提出了一個典型的監督學習神經網絡優化問題。在第三節中,我們提出了反向傳播(BP),并分析了將經典收斂分析應用于神經網絡梯度下降的困難。在第四節中,我們將討論訓練神經網絡的神經網絡特定技巧,以及一些基本理論。這些是神經網絡相關的方法,打開了神經網絡的黑盒子。特別地,我們討論了一個主要的挑戰,稱為梯度爆炸/消失和一個更普遍的挑戰,控制頻譜,并回顧了主要的解決方案,如仔細的初始化和歸一化方法。在第五節中,我們討論了將神經網絡視為一般非凸優化問題的泛型算法設計。特別地,我們回顧了SGD的各種學習速率調度、自適應梯度方法、大規模分布式訓練、二階方法以及現有的收斂和迭代復雜度結果。在第六節中,我們回顧了神經網絡的全局優化研究,包括全局景觀、模式連接、彩票假設和無限寬度分析(如神經正切核)。

?

更多請下載論文查看

便捷下載,請關注專知公眾號(點擊上方藍色專知關注)

后臺回復“

付費5元查看完整內容

本課程涵蓋了機器學習和統計建模方面的廣泛主題。 雖然將涵蓋數學方法和理論方面,但主要目標是為學生提供解決實際中發現的數據科學問題所需的工具和原理。 本課程還可以作為基礎,以提供更多專業課程和進一步的獨立學習。 本課程是數據科學中心數據科學碩士學位課程核心課程的一部分。 此類旨在作為DS-GA-1001數據科學概論的延續,其中涵蓋了一些重要的基礎數據科學主題,而這些主題可能未在此DS-GA類中明確涵蓋。

課程大綱

  • Week 1:統計學習理論框架
  • Week 2:隨機梯度下降
  • Week 3:正則化,Lasso, 和 Elastic網,次梯度方法
  • Week 4:損失函數,SVM,代表定理
  • Week 5:核方法
  • Week 6:最大似然,條件概率
  • Week 7:期中
  • Week 8:貝葉斯方法
  • Week 9:貝葉斯條件概率,多分類
  • Week 10:分類和回歸樹
  • Week 11:bagging和隨機森林,梯度提升
  • Week 12:K-Means,高斯混合模型
  • Week 13:EM算法
  • Week 14:神經網絡,反向傳播
付費5元查看完整內容

This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.

北京阿比特科技有限公司