數據融合是最大程度發揮大數據價值的關鍵,深度學習是挖掘數據深層特征信息的技術利器,基于深度學習的數據融合能夠充分挖掘大數據潛在價值,從新的深度和廣度拓展對世界的探索和認識。本文綜述了近幾年基于深度學習的數據融合方法的相關文獻,以此了解深度學習在數據融合中應用所具有的優勢。首先,分類闡述常見的數據融合方法,同時指出這些方法的優點和不足;接著,從基于深度學習特征提取的數據融合方法、基于深度學習融合的數據融合方法、基于深度學習全過程的數據融合方法三個方面對基于深度學習的數據融合方法進行分析,并做了對比研究與總結;最后,總結全文,討論了深度學習在數據融合中應用的難點和未來需要進一步研究的問題。
信息論的經典結果表明,信源信道分離編碼是漸進最優的。但現代通信系統對時延、帶寬等愈發敏 感,分離設計對解碼具有無限計算能力這一假設難以成立。帶寬有限時,相對于信源信道聯合編碼,分離編 碼已被證明是次優的。傳統的聯合信源信道編碼需要復雜的編碼方案,相較之下,數據驅動的深度學習技術 則帶來了新的設計思路。適時地對相關研究成果進行總結,有助于進一步明確深度學習方法解決信源信道聯 合編碼問題的方式,為研究新的研究方向提供依據。首先介紹了基于深度學習的信源壓縮方案和端對端收發 信機模型,隨后分析不同信源類型下的兩種聯合編碼設計思路,最后探討了基于深度學習的信源信道聯合編 碼的潛在問題和未來的工作方向。
傳統圖像修復算法在修復區域涉及復雜非重復結構(如面部)時,不能準確捕捉到高級語義。近三年來基于深度學習的方法被應用于圖像修復中,其修復結果的結構相似性較傳統方法提高了10%以上。首先闡述了面部修復技術的研究發展歷程,主要介紹了基于深度學習的面部修復算法,將其分為無監督和有監督兩大類方法,在每一類中重點對近年來涌現的各種面部修復算法進行分析和總結;然后歸納了當前主流的六類圖像數據集,以及算法性能評價指標;最后討論了面部修復技術的未來研究方向。
摘要: 圖像補全是圖像處理的一個研究領域,為有物體遮擋以及圖像關鍵部分缺失狀況下的圖像識別提供了解決方案,應用領域非常廣泛,受到了人們的關注。經深度學習方法補全的圖像具有更高的圖像分辨率和可靠性,逐漸成為圖像補全的主流方法之一。文中針對圖像補全領域的主要問題,介紹了相關深度學習方法的基本原理和經典算法,系統而漸進地剖析了2010年以來有代表性的圖像補全方法,探討了基于深度學習的圖像補全在不同領域的具體應用,并列舉了該研究領域目前面臨的幾個問題。
隨著數據采集技術的進步,帶有地理位置信息的時空數據迅速增長,迫切需要探索有效的時空數據建模方法。時空序列預測是時空數據建模的基礎方法之一,它廣泛應用于很多領域。目前缺乏對它進行綜述的中文文獻,因而對這些方法進行歸納和總結具有重要的研究意義。針對時空序列預測問題進行了研究,首先回顧了其應用背景和發展歷程,介紹了它的相關定義及特點。然后按其類別介紹了傳統的時空序列預測方法、基于傳統機器學習的時空序列預測方法和基于深度學習的時空序列預測方法,并分析了這些方法的應用范圍和優缺點。最后對時空序列預測未來的研究方向進行了梳理和展望,為研究者們進一步深入研究時空序列預測問題奠定了理論基礎。
【摘要】 人機對話技術作為人工智能領域的重要研究內容,它是人與機器的一種新型交互方式,受到學術界和工業界的廣泛關注。近些年來,得益于深度學習技術在自然語言領域的突破性進展,極大地促進了人機對話技術的發展。將深度學習融入人機對話系統技術中,不但使得端到端的方法成為可能,而且提取出的特征向量非常有效幾乎完全取代了人工特征。本文首先回顧了人機對話系統的發展歷程,介紹了人機對話系統的兩種類型,任務型對話系統和非任務型對話系統。其次,本文從理論模型、研究進展、可用性及存在的問題與挑戰等角度深度剖析了任務型對話系統的兩種方法,管道方法和端到端方法。重點分析深度學習技術和強化學習技術的具有代表性的前沿算法,并與傳統方法進行對比。最后,對任務型人機對話系統目前的評估方法和存在的問題進行總結,并展望了任務型對話系統的未來研究方向。
//tow.cnki.net/kcms/detail/detail.aspx?filename=JSJX20191105000&dbcode=CRJT_CJFD&dbname=CAPJLAST&v=
推薦系統旨在為用戶推薦個性化的在線商品或信息, 其廣泛應用于眾多Web場景之中, 來處理海量信息數據所導致的信息過載問題, 以此提升用戶體驗. 鑒于推薦系統強大的實用性, 自20世紀90年代中期以來, 研究者針對其方法與應用兩方面, 進行了大量廣泛的研究. 近年來, 很多工作發現知識圖譜中所蘊含的豐富信息可以有效地解決推薦系統中存在的一系列關鍵問題, 例如數據稀疏、冷啟動、推薦多樣性等. 因此, 本文 針對基于知識圖譜的推薦系統這一領域進行了全面的綜述. 具體地, 首先簡單介紹推薦系統與知識圖譜中的一些基本概念. 隨后, 詳細介紹現有方法如何挖掘知識圖譜不同種類的信息并應用于推薦系統. 此外, 總結了相關的一系列推薦應用場景. 最后, 提出了對基于知識圖譜的推薦系統前景的看法, 并展望了該領域未來的研究方向.
目標檢測的任務是從圖像中精確且高效地識別、定位出大量預定義類別的物體實例。隨著深度學習的廣泛應用,目標檢測的精確度和效率都得到了較大提升,但基于深度學習的目標檢測仍面臨改進與優化主流目標檢測算法的性能、提高小目標物體檢測精度、實現多類別物體檢測、輕量化檢測模型等關鍵技術的挑戰。針對上述挑戰,本文在廣泛文獻調研的基礎上,從雙階段、單階段目標檢測算法的改進與結合的角度分析了改進與優化主流目標檢測算法的方法,從骨干網絡、增加視覺感受野、特征融合、級聯卷積神經網絡和模型的訓練方式的角度分析了提升小目標檢測精度的方法,從訓練方式和網絡結構的角度分析了用于多類別物體檢測的方法,從網絡結構的角度分析了用于輕量化檢測模型的方法。此外,對目標檢測的通用數據集進行了詳細介紹,從4個方面對該領域代表性算法的性能表現進行了對比分析,對目標檢測中待解決的問題與未來研究方向做出預測和展望。目標檢測研究是計算機視覺和模式識別中備受青睞的熱點,仍然有更多高精度和高效的算法相繼提出,未來將朝著更多的研究方向發展。
摘要:近年來,基于深度學習的表面缺陷檢測技術廣泛應用在各種工業場景中.本文對近年來基于深度學習的表面缺陷檢測方法進行了梳理,根據數據標簽的不同將其分為全監督學習模型方法、無監督學習模型方法和其他方法三大類,并對各種典型方法進一步細分歸類和對比分析,總結了每種方法的優缺點和應用場景.本文探討了表面缺陷檢測中三個關鍵問題,介紹了工業表面缺陷常用數據集.最后,對表面缺陷檢測的未來發展趨勢進行了展望.
摘要: 大數據時代,數據呈現維度高、數據量大和增長快等特點。如何有效利用其中蘊含的有價值信息,以實現數據的智能化處理,已成為當前理論和應用的研究熱點。針對現實普遍存在的多義性對象,數據多標簽被提出并被廣泛應用于數據智能化組織。近年來,深度學習在數據特征提取方面呈現出高速、高精度等優異性,使基于深度學習的多標簽生成得到廣泛關注。文中分五大類別總結了最新研究成果,并進一步從數據、關系類型、應用場景、適應性及實驗性能方面對其進行對比和分析,最后探討了多標簽生成面臨的挑戰和未來的研究方向。
摘要:近年來,深度學習模型在圖像、語音、文本識別等領域內取得了顯著成就。然而,深度學習模型嚴重依賴于大量標簽數據,使得其在數據缺乏的特殊領域內應用嚴重受限。面對數據缺乏等現實挑戰,很多學者針對數據依賴小的弱監督機器學習方法開展研究,出現了很多典型研究方向,如小樣本學習、零樣本學習等。針對弱監督機器學習方法,系統闡述了小樣本學習、零樣本學習、零—小樣本學習的問題定義、當前主要方法以及主流實驗設計,最后基于當前研究中出現的問題,對下一階段研究方向進行了總結展望。