生成建模已經成為人工智能的一個熱門應用。然而,當生成模型被錯誤指定,或當生成模型估計器被修改以遵守差分隱私等隱私概念時,模型性能可能會受到負面影響。在本論文中,我們通過展示四項不同的研究,探討了模型錯誤指定和差分隱私下的生成建模。
我們首先介紹了生成建模的相關工作。隨后,我們深入探討了在模型錯誤指定和差分隱私挑戰下研究生成建模的必要性。
作為初步貢獻,我們考慮了用于密度估計的生成建模。處理模型錯誤指定的一種方法是放寬模型假設。我們展示了這一方法在非參數模型中也具有幫助作用。具體而言,我們研究了一種最近提出的非參數準貝葉斯密度估計器,并發現其強模型假設是有限數據集下表現不佳的原因。我們提出了一種自回歸擴展,放寬模型假設,以允許先驗特征依賴關系。
接下來,我們考慮了用于缺失值填補的生成建模。在將當前深度生成填補方法分類為Rubin [1976]引入的不可忽略缺失模型類之后,我們擴展了變分自編碼器的公式,使其根據深度生成建模文獻中尚未研究過的不可忽略缺失模型類進行分解。這些模型顯式地對缺失機制進行建模,以防止在缺失值非隨機情況下的模型錯誤指定。
然后,本論文集中于提高差分隱私下的合成數據生成。為此,我們提出了對差分隱私合成數據樣本進行差分隱私重要性采樣的方法。我們觀察到,生成模型越好,重要性采樣的幫助越大。接著,我們通過考慮差分隱私擴散模型,進一步提高數據生成質量。我們識別了顯著提高DP圖像生成器性能的訓練策略。 我們在論文的最后進行了討論,包括對所展示工作的貢獻和局限性,并提出了未來工作的潛在方向。
是一所英國研究型大學,也是羅素大學集團、英國“G5超級精英大學”,歐洲頂尖大學科英布拉集團、歐洲研究型大學聯盟的核心成員。牛津大學培養了眾多社會名人,包括了27位英國首相、60位諾貝爾獎得主以及數十位世界各國的皇室成員和政治領袖。2016年9月,泰晤士高等教育發布了2016-2017年度世界大學排名,其中牛津大學排名第一。
大型生成模型帶來了驚人的成果,并徹底改變了人工智能。在本論文中,我將討論我在推進這些模型基礎上的研究,重點解決從現有數據中學習的瓶頸以及超越現有知識發現的挑戰。首先,我將描述我們為消除Transformer架構的上下文大小限制所做的努力。我們的建模和訓練方法,包括BlockwiseTransformer和RingAttention,允許在保持可擴展性的同時實現近乎無限的上下文大小。接下來,我將討論大上下文在世界模型學習和決策中的應用。這包括Large World Model,這是世界上首個人工智能,能夠在百萬個標記的上下文中同時對文本、圖像和小時級視頻進行建模。然后,我將介紹我的研究,旨在讓AI能夠發現數據并自主學習。我將討論我們在無需人為指定領域知識的情況下學習游戲技能的工作,為超越模仿現有數據的學習鋪平道路。最后,我將展望我們應構建的下一代大型生成模型,重點關注高效擴展、推理以及在一般領域中的發現能力的進展。
物理啟發的生成模型(如擴散模型)構成了一類強大的生成模型家族。該模型家族的優勢在于相對穩定的訓練過程和強大的容量。然而,仍有許多可能的改進空間。在本論文中,我們首先將深入探討擴散模型在訓練和采樣方面的改進技術。擴散模型的訓練目標在數據分布為多模態時呈現出較高的方差。為了解決這一問題,我們提出了一種訓練目標,它推廣了傳統的去噪得分匹配方法,顯著減少了訓練目標的方差。除此之外,我們還引入了一種將可學習的離散潛變量整合到連續擴散模型中的訓練框架。這些潛變量簡化了擴散模型復雜的噪聲到數據映射的學習過程。
另一方面,擴散模型的采樣過程通常涉及求解微分方程。為加速采樣過程,我們提出了一種新穎的采樣算法,結合了之前常見的ODE和SDE采樣器的優點,大幅提升了預訓練擴散模型的性能。此外,我們的研究探索了在有限樣本中引入互斥力以促進生成過程中的多樣性。 在物理啟發的生成模型領域,許多物理過程都可以用于開發生成模型。我們將介紹一類基于靜電理論的新生成模型家族,稱為泊松流生成模型(PFGM)。PFGM在采樣穩健性上表現出色,并與領先的擴散模型相媲美。其擴展版本PFGM++將擴散模型和PFGM置于同一框架下,并引入了新的、更優的模型。我們還將提出一種系統化的方法,將物理過程轉化為生成模型。
生成模型在近年來顯著改變了人們工作的、創作的和學習的方式。其突出應用包括ChatGPT [1]、文本到圖像模型 [2]-[4]、文本到3D模型 [5]、[6] 和文本到視頻模型 [7]、[8]。這些能力可以極大地激發創造力,并提高眾多領域的工作效率,包括教育、游戲產業、社交媒體和專業編輯軟件。生成模型的訓練基于這樣一個假設,即訓練數據是從未知的數據分布中采樣的 [9]。現代生成模型通常使用深度神經網絡來基于有限的訓練數據逼近復雜的數據分布,并通過從這些建模的分布中采樣來生成新的數據點。
在生成建模中使用的各種數據類型中,高維數據由于維度詛咒而面臨著顯著的挑戰。隨著維度的增加,數據空間的體積呈指數級擴展。這一現象使得在高維空間中用有限的訓練數據有效捕獲和建模數據分布變得困難。此外,感興趣的數據分布通常高度復雜且呈多模態,進一步增加了生成建模的難度。近年來,擴散模型 [10]–[12] 以及更廣泛的物理啟發生成模型 [13],在處理高維數據的生成任務中,展現了強大的框架并取得了令人印象深刻的結果。在擴散模型之前,主要的方法包括:(i)利用對抗訓練目標的生成對抗網絡(GANs [14]);(ii)使用最大似然目標訓練的模型,如PixelCNN [15] 和正規化流模型 [16]、[17];(iii)變分自編碼器(VAEs)[18]、[19] 以及(iv)基于能量的模型 [20]、[21]。然而,每種方法都有其自身的缺點:(i)可能導致訓練不穩定和生成樣本的多樣性低;(ii)需要特定的架構設計,可能限制模型的容量;(iii)需要多個神經網絡的仔細協調;(iv)訓練和采樣速度較慢。利用自然的物理過程作為編碼器將數據轉化為噪聲,擴散模型通過逆轉這些物理過程來執行生成任務。這種方法使它們繞過了早期生成模型的許多限制。
1.1 通過逆轉物理過程進行生成建模
基于熱力學的原理 [10],擴散模型涉及兩個對立的過程:一個前向過程將數據分布逐漸轉化為一個更簡單的先驗分布,另一個反向過程通過逐步去噪從該噪聲先驗分布中生成樣本。擴散模型中的前向過程是一個簡單的布朗運動,通過逐步增加高斯噪聲來降解數據。為了逆轉這一過程,只需學習一個時間依賴的向量場,即得分函數,并迭代求解一個微分方程 [22]。與GANs和VAEs不同,擴散模型的訓練不需要多個神經網絡之間的同步,從而使訓練過程更加穩定。此外,它們在架構設計上不受限,采用類似于神經網絡串聯的迭代過程,從而增強了整體容量。這種穩定性和增強的容量使擴散模型能夠有效擴展到大規模數據集。
盡管擴散模型具有諸多優勢,但它們仍面臨一些挑戰,包括在處理多模態數據時高方差的訓練過程,以及緩慢的迭代采樣過程。此外,獨立同分布(i.i.d.)的采樣過程往往會導致重復的樣本。這些問題強調了在復雜數據集上穩定和改進擴散模型訓練方法的必要性,并且需要新技術來加速采樣過程并提高小批量樣本的多樣性。此外,擴散模型只是眾多物理啟發生成模型之一。除布朗運動外,仍有許多物理過程尚未開發,可以用來構建生成模型。這引出了一個重要問題:我們能否發現其他物理啟發的生成模型,它們展示出更好的性能?在接下來的部分中,我們將簡要總結擴散模型的改進訓練和采樣技術,并討論我們開發其他物理啟發生成模型的研究,這些將在后續章節中詳細闡述。
1.1.1 擴散模型的改進訓練技術
擴散模型的訓練利用了一種擾動-去噪方法來估計向量場。其過程是先通過高斯噪聲擾動干凈的數據,然后網絡從這些擾動樣本中重構原始數據 [12]。然而,對于復雜的多模態數據,許多干凈的數據點可能被擾動為相似的噪聲樣本,導致訓練目標不明確并引發不穩定性。
在文獻 [23] 中,我們通過多個干凈數據點的加權求和來估計真實目標,精確地指示從擾動樣本到真實向量場的方向。該新穎的訓練目標推廣了傳統的單點估計方法,顯著減少了訓練目標中的方差。因此,在各種擴散模型變體中,樣本質量得到了提高,訓練過程更加穩定,訓練速度也得到了加快。
擴散模型面臨的另一個挑戰是,需要學習一個從單峰高斯分布到多峰數據分布的非線性且高度復雜的映射。這種復雜性增加了訓練的難度,并導致生成常微分方程(ODE)[24] 軌跡呈現強烈的曲率。為解決這一問題,我們在擴散模型中引入了離散潛變量。這些離散潛變量有助于捕獲數據分布中的不同模式,而擴散模型的任務則轉變為基于給定的離散潛變量捕獲每個模式內的連續變化。離散與連續變化的分離建模顯著簡化了模型復雜的噪聲到數據映射的學習過程。這一方法有效降低了擴散模型生成ODE的曲率,尤其是在較大的擴散時間下,整體訓練損失得到了減少。
1.1.2 擴散模型的改進采樣技術
在擴散模型的采樣過程中,求解微分方程通常涉及速度和質量之間的權衡。確定性采樣器(基于ODE的)[25]–[27] 速度快,但性能達到平臺期,而隨機采樣器(基于SDE的)[27]、[28] 樣本質量更好,但速度較慢。我們的分析將這種差異歸因于采樣誤差:ODE采樣器的離散化誤差較小,而SDE中的隨機性會收縮采樣過程中的累積誤差 [29]。
基于這些見解,在文獻 [29] 中,我們提出了一種名為Restart的新采樣算法,該算法結合了ODE和SDE的優點。該方法在附加的前向步驟中加入大量噪聲,并嚴格遵循逆ODE過程。前向噪聲的引入增強了隨機性的收縮效應,而逆ODE過程的遵循則加快了采樣速度。這種將隨機性和確定性采樣過程分離的方法極為有效,Restart在標準基準(CIFAR-10和ImageNet-64)上超過了SDE和ODE采樣器的速度和質量,并在大規模文本到圖像的Stable Diffusion模型中展示了文本-圖像對齊、視覺質量和多樣性的卓越平衡。
傳統上,擴散模型從模型分布中生成獨立同分布的樣本。然而,在實際操作中,模型通常需要多次采樣以獲得一組多樣化的小批量樣本,這會帶來與采樣時間無關的成本。我們提出超越獨立樣本假設,以提高樣本的多樣性和效率。我們的方法引入了一種擴展的基于擴散的生成采樣方法,稱為粒子引導。在這種方法中,聯合粒子的時間演化勢通過在樣本(粒子)之間加入互斥力來強制多樣性。根據實驗結果,我們的框架在文本到圖像生成和分子構象生成等應用中提高了樣本的多樣性并減輕了記憶效應。
1.1.3 基于其他物理過程的生成模型
以擴散模型為顯著例子,物理啟發的生成模型包含一個前向過程,該過程將復雜的數據分布簡化為逐步的先驗分布,隨后通過一個反向過程(即采樣過程)逐步將這些先驗分布還原為原始數據分布。因此,為了定義新的物理啟發生成模型,必須確定一個合適的前向過程。該過程應自然地隨著時間簡化數據分布,并且是可逆的,同時其相關的向量場應該易于被神經網絡學習。 借助靜電學原理,我們為物理啟發的生成模型開辟了一條新路徑,并介紹了泊松流生成模型(Poisson Flow Generative Models, PFGM)[30] 及其擴展版本PFGM++ [31]。PFGM將數據解釋為增廣空間中的電荷。如圖1.1所示,當我們從數據支撐遠離足夠遠時,電荷分布坍縮為一個點電荷,電場在各個方向上呈現輻射狀。因此,可以證明這些電荷發出的電場線定義了數據分布和大半球上均勻分布之間的雙射。實驗結果表明,這一新模型家族在樣本質量、采樣速度和穩健性方面超越了擴散模型。此外,我們還探索了物理過程和生成模型之間的對偶性,旨在概念化和設計更多新的物理啟發生成模型 [13]。
本論文分為三個主題部分。下面簡要概述每個部分的內容。 第一部分 重點開發新技術,旨在穩定擴散模型的訓練,并在處理復雜的多模態數據集時,優化生成軌跡。
第三章 我們通過引入參考批次來解決擴散模型目標中的高方差問題,并使用參考批次計算加權條件得分,作為更穩定的訓練目標。我們展示了這一過程在具有挑戰性的中間階段中,通過減少訓練目標協方差(的跡)確實起到了幫助作用。本章基于文獻 [23]。
第四章 我們通過一個編碼器推斷可學習的離散潛變量,并對擴散模型和編碼器進行端到端訓練。離散潛變量通過降低擴散模型生成ODE的曲率,顯著簡化了其復雜的噪聲到數據映射的學習過程,并通過ODE采樣器提高了在各種數據集上的樣本質量。本章基于文獻 [32]。
第二部分 討論了加速擴散模型采樣過程的技術,以及通過施加樣本之間的互斥力來促進多樣性。所有討論的技術都不需要重新訓練,且可以直接應用于任何預訓練的擴散模型。
第五章 我們提出了一種名為Restart的新采樣算法,結合了先前ODE和SDE采樣器的優勢。Restart算法在附加的前向步驟中加入大量噪聲,并嚴格遵循逆ODE過程。實驗結果表明,Restart采樣器在速度和精度上均超過了先前的SDE和ODE采樣器。本章基于文獻 [29]。
第六章 我們提出了粒子引導,一種擴展的基于擴散的生成采樣方法,其中通過一個聯合粒子的時間演化勢來強制樣本多樣性。在條件圖像生成中,我們測試了該框架,并證明其在不影響質量的情況下增加了多樣性;在分子構象生成中,我們改進了相較于先前方法的中位誤差。本章基于文獻 [33]。
第三部分 探討了一類新型的生成模型,這些模型基于靜電理論,并與擴散模型在擴展視角下進行了統一。本部分還展望了通過物理過程構建生成模型的方法論。
第七章 我們介紹了一種新型生成模型——泊松流生成模型(PFGM),基于靜電理論。我們將數據點解釋為增廣空間中 z=0 超平面上的電荷,生成一個高維電場(泊松方程解的梯度)。我們證明了,如果這些電荷沿電場線向上流動,它們在 z=0 平面的初始分布會轉化為半徑為 r 的半球上的分布,并且在 r → ∞ 時變得均勻。我們展示了PFGM在圖像生成速度上提供了比先前最先進擴散模型更好的性能。本章基于文獻 [30]。
第八章 我們擴展了PFGM中使用的靜電理論,將擴散模型與PFGM統一起來。更有趣的是,在兩者之間的插值揭示了一個性能最優的新平衡點,達到了圖像生成的新標桿性能。我們為為什么PFGM和擴散模型都是次優解提供了理論解釋。本章基于文獻 [31]。
第九章 我們提出了一個統一的框架和算法,將物理過程轉化為平滑的密度流生成模型。此外,我們基于底層物理偏微分方程(PDE)的色散關系,提出了一種分類標準。這種理論方法可應用于各種物理PDE,從而發現新的生成模型家族。本章基于文獻 [13]。
第十章 我們總結了論文內容并討論了當前的局限性。
在過去的十年里,經典機器學習與現代機器學習之間的差距不斷擴大。現代學習的預測性能不可比擬地更好,但更容易對經典學習進行分析,并保證其安全性、效率、公平性等特性。在本論文中,我探討了通過審慎和戰略性地結合經典技術,是否有可能將這些期望的特性恢復到現代機器學習中。我將經典與現代學習的結合歸納為兩種高級策略:(1)封裝,即通過經典分析技術從現代的、不透明的模型中提取可靠的性能保證,或(2)替換,即從經典的基礎構建現代模型的某些組件,以提高整體的效率、可處理性和/或表達能力。這些努力在機器學習的多個領域帶來了新的進展。本論文的最重要貢獻涉及元分析,這是一種結構化的問答形式,作為循證醫學的基礎。經典元分析技術基于隨機對照試驗,其因果效度受到信任;相比之下,現代回歸模型是在大型觀察性數據庫上訓練的,其因果效度不被信任。我展示了如何在不犧牲效度的情況下將不可信的數據納入元分析中。這涉及對完全共形預測的基本改進,這些改進具有普遍的意義。在一個更聚焦的醫療保健應用中,我推廣了經典的、手工設計的心率變異性統計,使其能夠通過監督學習進行微調,成為深度神經網絡的一部分,從而生成更準確的、生理學知情的模型。我還提出了一些可以在未來機器學習模型和算法中使用的基礎計算原語。第一個是一種算法,可以在O(log T)的并行時間內(近似)運行T步非線性RNN。該算法的關鍵創新在于通過一種證明一致的局部、可并行修正方案,用深度上的非線性替代時間上的非線性。通過這種方式,經典線性動態系統(也稱為狀態空間模型)可以堆疊起來形成快速的非線性序列模型。另一個新的計算原語是在所有正交多項式序列集合上進行基于梯度的優化。這種優化形式與信號處理和優化中的許多不同問題都有聯系。最后,我提出了基于學習理論和優化中廣泛使用的幾何邊界概念的公平性標準,以規避計算的不可處理性。
隨著機器學習算法在高風險應用中不斷開發和部署,確保其可靠性已變得至關重要。本論文介紹了在機器學習中提高可靠性的算法進展,重點強調兩個關鍵維度:魯棒性和可解釋性。 本論文的第一部分側重于魯棒性,即保證算法在各種數據不確定性下仍能提供穩定和可預測的性能。我們研究了在不同數據不確定性來源下的學習魯棒性,包括基本的統計誤差以及數據噪聲和損壞。我們的研究揭示了這些不同來源如何相互作用并對數據驅動決策產生影響。我們引入了針對特定不確定性來源量身定制的新穎的分布魯棒優化方法。我們的研究結果表明,對一種來源的保護可能會增加對另一種來源的脆弱性。為了解決這個問題,我們開發了分布模糊集,能夠同時提供對所有來源的整體魯棒性。在每種情況下,我們證明了我們的新方法實現了“高效”的魯棒性,在平均性能與樣本外保證之間實現了最佳平衡。我們的新算法被應用于各種場景,包括訓練魯棒神經網絡,在這些場景中顯著優于現有基準。 本論文的第二部分探討了可解釋性,這是高風險環境下決策支持工具的一個關鍵屬性,要求算法能夠為其決策提供可理解的解釋。我們的工作在這一部分的動機來自于數據驅動的個性化患者治療——一種越來越受歡迎的機器學習應用。在這個強化學習問題中,可解釋性至關重要:醫生不能依賴于一個黑箱算法來開具治療方案。我們在理論上引入了學習連續狀態空間動態系統最簡潔離散表示的問題。在患者治療的背景下,這相當于基于患者治療過程中不斷變化的特征來確定治療組。令人驚訝的是,我們在理論上證明,僅從觀察到的歷史樣本路徑數據中就有可能學習到動態系統的最簡潔表示。隨后,我們開發了一種算法,MRL,能夠學習這種簡潔的表示,從而增強可解釋性和可操作性。
開發值得決策者信任的機器學習模型對于在實踐中使用這些模型至關重要。算法透明性工具,如可解釋性和不確定性估計,能夠向決策者展示模型的可信度。在本論文中,我們首先探討了從業者在工業界如何使用可解釋性。通過一項訪談研究,我們發現,盡管工程師們越來越多地使用可解釋性方法來測試開發過程中的模型行為,但這些方法在外部利益相關者中采用的情況卻有限。為此,我們為特定決策環境開發了新穎的算法透明性方法,并通過人類主體實驗與真實決策者一起測試這些方法。
我們首先提出DIVINE,一種基于示例的解釋方法,它不僅找到對模型參數有影響的訓練點,而且這些點在輸入空間中具有多樣性。我們展示了我們的解釋如何提高決策者模擬模型決策邊界的能力。接下來,我們討論反事實潛在不確定性解釋(CLUE),這是一種特征重要性解釋方法,識別出如果擾動輸入特征,將會減少模型在給定輸入上的不確定性。我們展示了決策者如何使用我們的解釋來識別模型在未見輸入上的不確定性。 盡管每種方法本身都是成功的,我們更感興趣的是,了解在決策者利用某種形式的決策支持后,結果在何種環境下會有所改善,無論是算法透明性還是模型預測。我們提出了學習決策支持策略的問題,該策略針對給定的輸入,選擇為沒有先驗信息的決策者提供何種形式的支持。利用隨機上下文多臂強盜問題的技術,我們引入THREAD,一種在線算法,用于個性化每個決策者的決策支持策略。我們與真實用戶一起部署THREAD,展示了在線學習個性化策略的過程,并說明了在實踐中學習決策支持策略的細微差別。 我們以個性化決策支持的前景作為本論文的結論,這種支持形式可以包括基于決策者需求的算法透明性。
隨著在安全關鍵領域應用強化學習(RL)的需求日益增加,迫切需要安全、魯棒且多功能的RL算法。本論文直接回應了這一需求,引入了一套先進的策略優化算法,旨在克服安全RL面臨的關鍵挑戰,從而為更可靠和實用的部署鋪平道路。
論文的第一部分集中于提高樣本效率和訓練穩定性——這是可部署安全RL的關鍵方面。我們提出了約束變分策略優化(CVPO)方法,該方法將安全RL問題重新定義為兩階段優化過程。這種方法不僅確保了高效且穩定的學習,還提供了強大的性能保證,使其成為實際安全RL應用中安全性和樣本效率方面的優越選擇。 論文的第二部分深入探討了可部署RL的關鍵組成部分——魯棒性,特別是針對觀測擾動的魯棒性。我們發現,學到的安全策略對隱秘但不安全的行為誘導很脆弱。我們的發現強調了在不利條件下提高安全性的魯棒對抗訓練的必要性。基于此,我們首先引入了一種在策略上的對抗訓練流程,然后提出了SAFER,一種從CVPO衍生的離策略方法,有效地在對抗環境中增強了策略的魯棒性和安全性。
最后,論文通過從靜態離線數據集學習,解決了可部署RL的適應性和可擴展性問題。它引入了約束決策變換器(CDT),一種新穎的方法,利用序列建模技術在部署過程中動態調整安全性和任務性能之間的權衡。與CDT同時,論文提出了TAIL,一個可擴展的連續學習訓練范式,有效地將預訓練模型適應新任務,同時減輕災難性遺忘和過擬合。
總之,本論文致力于推動安全、魯棒和可擴展策略優化的界限,朝著在安全關鍵領域可部署RL邁進。所提出的方法提供了魯棒、高效和可適應的解決方案,這對RL系統的現實世界部署至關重要。 隨著強化學習(RL)繼續成熟并擴展其視野,從模擬環境過渡到真實世界的應用,使RL在實際的安全關鍵領域可部署的重點日益加強。可部署的RL指的是RL系統在復雜、動態且往往是高風險環境中安全、可靠且高效地互動和學習的能力。這包括自動駕駛車輛在城市交通中導航、金融系統執行交易或醫療機器人協助手術。為了使RL可部署,它必須遵守嚴格的安全、魯棒性、適應性和可擴展性要求——確保RL代理在多變和不可預測的現實世界條件下表現得當。
可部署RL的基石是安全性。安全強化學習(safe RL)專門通過學習不僅尋求最大化獎勵但也遵循預定義安全約束的策略來解決這一問題。這些約束對于防止危險行為和確保RL代理在可接受的風險參數內運作至關重要。安全性不僅僅是一個特性——它是一種基本必需品,支持在不確定性盛行且風險高的現實世界設置中部署RL的整個前提。
然而,僅有安全性并不能保證可部署性。為了讓RL從理論過渡到實踐,它還必須具備魯棒性和可擴展性。RL中的魯棒性指的是策略對環境變化和不確定性的抵抗力,包括在訓練期間未遇到的新場景或敵對嘗試破壞代理的行為。另一方面,適應性涉及RL算法高效地從大數據集和多樣化場景中學習和適應的能力。適應范式還應該是可擴展的,以持續發展并隨時間改進其策略。這關乎RL系統在廣泛的任務和條件中保持其性能和安全性的能力,不斷提高其能力和可靠性。
在這篇論文中,我們專注于推動安全RL的前沿,強調使其可部署。我們通過深入探討三個相互關聯的方面——安全性、魯棒性、適應性和可擴展性來解決這一挑戰,以安全性為核心,將其他方面進行語境化。我們的目標是開發方法論和算法,使我們更接近將RL視為一套理論工具和技術的愿景,而是一套實用、可靠且高效的解決方案,準備好用于真實世界的實施。這種追求是由RL在關鍵應用中的日益增長的需求和巨大潛力所激發的,推動了對不僅表現出色而且可信和可適應的系統的需求。通過專注于安全RL作為通往可部署RL的途徑,我們旨在為將智能、基于學習的系統整合到我們日常生活中的更廣泛目標做出貢獻,增強能力,并確保安全和福祉。
本論文的核心目標是通過提高深度學習模型的標簽和訓練效率來增強深度學習的實用性。為此,我們研究了基于信息論原理的數據子集選擇技術,特別是主動學習和主動采樣。主動學習提高了標簽效率,而主動采樣提高了訓練效率。監督式深度學習模型通常需要大量的帶標簽數據進行訓練。標簽獲取可能既昂貴又耗時,且訓練大型模型資源密集型,這限制了其在學術研究和“大科技”公司之外的應用。深度學習中現有的數據子集選擇方法通常依賴于啟發式方法或缺乏一個原理化的信息論基礎。相比之下,本論文檢查了數據子集選擇的幾種目標及其在深度學習中的應用,力求采用一種由信息論啟發的更原理化的方法。
我們首先在單次前向傳播的深度神經網絡中區分了認知不確定性和隨機不確定性,這提供了有用的直覺和洞見,關于不同形式的不確定性及其對數據子集選擇的相關性。然后,我們提出并研究了在(貝葉斯)深度學習中進行主動學習和數據子集選擇的各種方法。最后,我們將各種現有和提出的方法與在權重或預測空間中信息量的近似聯系起來。
支撐這項工作的是一個原理化且實用的信息論量符號,包括隨機變量和觀察到的結果。這篇論文展示了從統一視角出發工作的好處,并強調了我們的貢獻對深度學習實際應用潛在影響的可能性。
隨著大型語言模型在近年來能力的大幅提升,提高我們對其輸出的控制能力變得越發重要。在本論文中,我討論了我開發的幾種控制方案,范圍從純推理時控制到基于微調的對齊方法。我首先將討論適用于非結構化自然語言生成的高度通用方法,包括一種稱為FUDGE的推理時控制方案以及一種基于強化學習的微調方法,稱為RLCD。接下來,我將討論更專門的方法,這些方法可以用于更結構化領域的控制,如分子設計、程序合成和語義解析。最后,我將展示如何將這些想法與通過提示進行的結構化規劃結合使用,以將我們的控制擴展到更長的輸出——在自動故事生成應用中范圍達到數千詞。
近期大型語言模型(LLMs)的發展顯著推進了在廣泛自然語言任務上的最新技術水平。然而,雖然這類模型能夠生成流暢的文本,但在推理時要充分控制它們的行為可能很困難。例如,開箱即用的預訓練語言模型頻繁地生成帶有偏見或有害的文本,這可能是因為在它們的預訓練數據中大量存在這類文本。
因此,控制生成——在推理時控制模型的行為,以產生符合期望的軟性或硬性約束的輸出——是確保在現實世界設置中道德使用這些強大技術的必要條件。實際上,去除問題偏見只是控制生成廣泛應用領域中的一個例子。控制生成的應用范圍從維持期望的風格或正式程度,到保持對參考文檔或現實世界事實的忠實,甚至非語言任務(使用模型處理非語言領域),如設計具有理想藥物屬性的分子。
因此,近年來已經投入了大量努力來開發控制語言模型輸出的方法。這些努力包括僅在推理時操作的各種方法,以及依賴于修改底層模型分布的方法,無論是通過微調還是通過強化學習。
盡管如此,控制LLMs的任務非常復雜,隨著時間的推移只會變得更加困難:語言模型在能力上持續改進的同時變得越來越不可解釋,我們對最強大的模型的訪問權限更加有限,這些模型越來越多地隱藏在私有APIs后面,而我們要求的控制目標變得越來越困難。為了詳細說明后一點:僅僅兩三年前,我們可能滿足于簡單地控制輸出段落的一般主題,這些段落僅幾十個令牌長,但今天一個主要挑戰是在可能跨越數千甚至數萬個令牌的輸出段落上控制事實準確性,既要考慮提供的上下文也要考慮現實世界的知識。 在本論文中,我將討論我開發的幾種方法,這些方法在許多不同的設置中解決了控制生成的問題。 自然語言的控制首先,在第二章,我將討論用于非結構化自然語言的一般控制方法,包括純推理時控制以及基于強化學習的微調。
對于純推理時控制,我提出了一種用于控制文本生成的靈活且模塊化的方法——生成未來判別器(FUDGE)。給定一個現有的基礎語言模型(LM)用于從感興趣的分布中生成文本,FUDGE允許在僅需要訪問基礎LM的輸出邏輯的情況下,基于期望的屬性a(例如,正式程度)進行條件化。FUDGE學習一個在部分序列上操作的屬性預測器,并使用此預測器的輸出來調整基礎LM的原始概率。我們展示了FUDGE模型對應于基礎LM給定屬性a的條件分布的貝葉斯分解。此外,FUDGE可以輕松地組合多個期望屬性的預測器。我們在三個任務上評估了FUDGE——詩句完成、語言生成中的主題控制以及機器翻譯中的正式性變化——并在所有三個任務中觀察到提升。 與純推理時控制相比,微調(包括基于RL的方法)需要并利用對基礎語言模型更大的訪問權限。雖然在前期需要額外的培訓或微調模型的成本,但它們可以通過從微調模型中進行普通采樣來減少推理時的成本(與可能需要更昂貴的解碼程序來啟用控制的推理時控制方法相比)。
基于RL的微調方法最近變得越來越受歡迎。在本論文中,我將提出一種RL方法,名為對比蒸餾的強化學習(RLCD),它不使用人類反饋就可以使語言模型遵循用自然語言表達的原則(例如,更無害)。RLCD從兩個對比的模型輸出中創建偏好對,一個使用正面提示來鼓勵遵循給定原則,另一個使用負面提示來鼓勵違反它們。使用兩個不同的提示會導致模型輸出在平均上更加分化,從而在沒有人類注釋的情況下產生更清晰的偏好標簽。然后我們使用偏好對來訓練一個偏好模型,進而用強化學習改善一個基礎未對齊的語言模型。經驗上,RLCD在三個不同的對齊任務——無害性、有幫助性和故事大綱生成——上優于RLAIF和上下文蒸餾基線,并在用于模擬偏好數據的7B和30B模型規模上均有表現。 針對結構化領域的控制接下來,在第三章,我將討論我為將控制擴展到結構化領域而進行的幾項工作。這一部分的大部分內容將聚焦于我開發的一種方法——隨機迭代目標增強,我們將其應用于分子設計和程序合成等多個領域。 例如,在分子設計任務的背景下:分子設計中的生成模型傾向于是參數豐富、對數據需求高的神經模型,因為它們必須生成復雜的結構化對象作為輸出。由于缺乏足夠的訓練數據,估計這樣的模型可能具有挑戰性。通過隨機迭代目標增強,我們提出了一種用于迭代創建額外分子目標的自訓練方法。我們首先將生成模型與一個簡單的屬性預測器一起進行預訓練。然后將屬性預測器用作似然模型,用于從生成模型中篩選候選結構。額外的目標通過隨機EM迭代的過程中迭代產生,并用于最大化候選結構被接受的對數似然。由于生成模型在預訓練后已經相當合理,因此一個簡單的拒絕(重加權)采樣器就足以抽取后驗樣本。我們展示了在無條件和條件分子設計上相比于強基線的顯著提升。特別是,我們的方法在條件分子設計中的絕對增益超過了先前最先進技術10%。最后,我們展示了我們的方法在其他領域(如程序合成)也是有用的。
在本節的最后,我還將簡要討論我在這一領域與他人合作的一些其他項目,涉及其他結構化領域(如語義解析和填字游戲)的控制生成方法。
長篇故事生成最后,在第四章,我將應用諸如FUDGE之類的可控生成思想于生成更長長度的高質量語言模型輸出——在故事生成領域達到數千詞——的任務。
首先,在我關于遞歸重新提示和修訂(Re3)的工作中,我們考慮了自動生成超過兩千詞的更長故事的問題。與之前關于更短故事的工作相比,長距離情節連貫性和相關性在這里是更為核心的挑戰。我們提出了遞歸重新提示和修訂框架來解決這些挑戰,通過(a)提示一個通用語言模型構建一個結構化的總體計劃,以及(b)通過重復地將來自計劃和當前故事狀態的上下文信息注入語言模型提示來生成故事段落。然后我們通過(c)對不同續篇進行重新排序以保持情節連貫性和前提相關性,最后(d)編輯最佳續篇以保證事實一致性進行修訂。與直接從相同基礎模型生成的類似長度故事相比,人類評估員判斷Re3的故事在擁有連貫的總體情節方面(絕對增加14%)和與給定初始前提相關方面(增加20%)顯著更多。
然后,我們通過提出詳細大綱控制(DOC)框架來進一步改進我們在Re3中的先前工作,該框架用于在自動生成數千詞長的故事時改善長距離情節連貫性。DOC由兩個互補的組件組成:一個詳細的大綱制作者和一個詳細的控制器。詳細的大綱制作者創建一個更詳細、分層結構化的大綱,將創造性負擔從主要起草過程轉移到規劃階段。詳細的控制器確保在生成過程中仍然尊重更詳細的大綱,通過控制故事段落與大綱細節保持一致。在自動生成故事的人類評估中,DOC在情節連貫性(22.5%的絕對增益)、大綱相關性(28.2%)和有趣性(20.7%)上顯著優于Re3。人類還判斷DOC在交互式生成設置中的可控性要高得多。
最后,我將討論幾項最近和正在進行的工作,這些工作進一步探索了長篇故事生成的不同方面,如個性化、節奏和事實一致性,以及使用更新的LLMs來提高計算效率的一些改進。
盡管在深度學習方面已經取得了巨大的實踐進展,但我們對是什么使深度學習工作得很好以及為什么這樣做缺乏清晰的理論理解。在本文中,我們采用“自然科學”的方法來構建深度學習的理論。我們首先確定在跨越各種不同背景的實際深度網絡中出現的各種經驗屬性。然后,我們討論了這些實證發現可以如何用來通知理論。具體而言,我們證明:(1)與監督學習相比,經過自監督學習訓練的先進深度網絡盡管過度參數化,但在特定條件下仍能實現有限的泛化差距。(2)具有相似性能和架構的模型通常會收斂到相似的內部表示,即使它們的訓練方法有很大的不同(例如:監督學習和自監督學習)(3)插值分類器服從一種分布泛化形式——它們從訓練分布中收斂到一種條件采樣器類型。(4)深度網絡的數據擴展特性對訓練數據集的結構和噪聲水平的變化具有魯棒性。
//dash.harvard.edu/handle/1/37372168
我們的發現強調,盡管缺乏最壞情況的保證,深度網絡隱含地以可預測的、結構化的方式運行,從而為未來的理論分析奠定了基礎。
近年來,我們已經看到了預訓練神經網絡來學習可遷移到視覺和NLP中看不見的下游任務的表征的巨大好處。然而,這種學習范式在諸如設計優化或控制等決策方面的研究還不多。在這篇論文中,我們概述了兩個問題設置,可以受益于在決策制定的背景下的預訓練。首先,我們描述了一個用于自動化設計優化的設置,特別是電路設計優化,在該設置中,特定領域的先驗數據可以有效地提高基于模型的優化方法的樣本效率。本文對如何提高基于模型的進化算法和貝葉斯優化方法的樣本效率提出了新的思路,并進行了實證和理論分析。在第二個問題設置中,我們將討論如何從大型任務無關數據集中利用無監督的預訓練來提取行為表征,并進行少量的模仿學習。我們發現,當新任務的例子演示稀缺時,預訓練agent提取技能是使他們準備進行少樣本模仿的一個實用方向。
//www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-35.html