流行的張量列(TT)和張量環(TR)分解在科學和工程上取得了很有前途的結果。然而,TT和TR分解只是建立相鄰兩個因子之間的聯系,并且對張量模的排列高度敏感,導致了不充分和不靈活的表示。本文提出了一種廣義張量分解,它將一個N階張量分解為一組n階因子,并建立了任意兩個因子之間的多線性運算/聯系。由于它可以圖形化地解釋為所有因素的全連接網絡,我們將其命名為全連接張量網絡(FCTN)分解。FCTN分解的優點在于充分刻畫任意兩個張量模間的內在相關性和換位的本質不變性。此外,我們將FCTN分解應用于一個有代表性的任務,即張量補全,并提出一個有效的基于近端交替最小化的算法。在理論上,我們證明了該算法的收斂性,即得到的算法序列全局收斂于一個臨界點。實驗結果表明,該方法與現有的基于張量分解的方法相比具有良好的性能。
//qibinzhao.github.io/publications/AAAI2021_Yu_Bang_Zheng/AAAI2021_FCTN_Decomposition_ybz.pdf
社交網絡和分子圖等結構化的圖形數據在現實世界中隨處可見。設計先進的圖結構數據表示學習算法,促進下游任務的完成,具有重要的研究意義。圖神經網絡(GNNs)將深度神經網絡模型推廣到圖結構數據,為從節點級或圖級有效學習圖結構數據表示開辟了一條新途徑。由于其強大的表示學習能力,GNN在從推薦、自然語言處理到醫療保健等各種應用中獲得了實際意義。近年來,它已成為一個熱門的研究課題,越來越受到機器學習和數據挖掘界的關注。本教程涵蓋了相關和有趣的主題,包括使用GNNs在圖結構數據上的表示學習、GNNs的魯棒性、GNNs的可擴展性和基于GNNs的應用程序。
目錄內容: 引言 Introduction 基礎 Foundations 模型 Models 應用 Applications
視頻識別作為視頻理解的基礎技術,是近幾年非常熱門的計算機視覺研究方向。現有的基于3D卷積網絡的方法識別精度優異但計算量偏大,基于2D網絡的方法雖然相對輕量但精度不及3D卷積網絡。本文提出一種輕量的多視角融合模塊(MVF Module)用于高效率且高性能的視頻識別,該模塊是一個即插即用的模塊,能夠直接插入到現有的2D卷積網絡中構成一個簡單有效的模型,稱為MVFNet。此外,MVFNet可以視為一種通用的視頻建模框架,通過設置模塊內的參數,MVFNet可轉化為經典的C2D, SlowOnly和TSM網絡。實驗結果顯示,在五個視頻benchmark(Kinetics-400, Something-Something V1 & V2, UCF101, HMDB51)上,MVFNet僅僅使用2D卷積網絡的計算量就能夠取得與當前最先進的3D卷積網絡媲美甚至更高的性能。
圖卷積網絡(GCN)因為具備出色的捕捉站點或區域之間非歐式空間依賴性的能力,已廣泛應用于交通需求預測。然而在大多數現有研究中,圖卷積是在基于先驗知識生成的鄰接矩陣上實現的,這樣的鄰接矩陣既不能準確反映站點的實際空間關系,也不能自適應地捕捉需求的多層級空間依賴性。為解決上述問題,這篇論文提出了一種新穎的圖卷積網絡進行交通需求預測。首先,文章中提出了一種新的圖卷積架構,該圖卷積架構在不同的層具有不同的鄰接矩陣,并且所有的鄰接矩陣在訓練過程中都是可以自學習的。其次,文中提出了一種分層耦合機制,該機制將上層鄰接矩陣與下層鄰接矩陣關聯起來。它還減少了模型中參數的規模。最后,構建了一個端到端的網絡,通過將隱藏的空間狀態與門控循環單元集成在一起,給出最終的預測結果,該單元可以同時捕獲多級空間相關性和時間動態。論文提出的模型在兩個真實世界的數據集NYC Citi Bike和NYC Taxi上進行了實驗,結果證明了該模型的優越性能。
//www.zhuanzhi.ai/paper/3996bc72f87617093a55530269f6fdd8
圖神經網絡(GNN)已經成為圖表示學習的事實標準,它通過遞歸地聚集圖鄰域的信息來獲得有效的節點表示。盡管 GNN 可以從頭開始訓練,但近來一些研究表明:對 GNN 進行預訓練以學習可用于下游任務的可遷移知識能夠提升 SOTA 性能。但是,傳統的 GNN 預訓練方法遵循以下兩個步驟:
在大量未標注數據上進行預訓練; 在下游標注數據上進行模型微調。 由于這兩個步驟的優化目標不同,因此二者存在很大的差距。
在本文中,我們分析了預訓練和微調之間的差異,并為了緩解這種分歧,我們提出了一種用于GNNs的自監督預訓練策略L2P-GNN。方法的關鍵是L2P-GNN試圖以可轉移的先驗知識的形式學習如何在預訓練過程中進行微調。為了將局部信息和全局信息都編碼到先驗信息中,我們在節點級和圖級設計了一種雙重自適應機制。最后,我們對不同GNN模型的預訓練進行了系統的實證研究,使用了一個蛋白質數據集和一個文獻引用數據集進行了預訓練。實驗結果表明,L2P-GNN能夠學習有效且可轉移的先驗知識,為后續任務提供好的表示信息。我們在//github.com/rootlu/L2P-GNN公開了模型代碼,同時開源了一個大規模圖數據集,可用于GNN預訓練或圖分類等。
總體來說,本文的貢獻如下:
//www.zhuanzhi.ai/paper/3696ec78742419bdaa9c23dce139b3d4
消息傳遞圖神經網絡(GNNs)為關系數據提供了強大的建模框架。曾經,現有GNN的表達能力上界取決于1- Weisfeiller -Lehman (1-WL)圖同構測試,這意味著gnn無法預測節點聚類系數和最短路徑距離,無法區分不同的d-正則圖。在這里,我們提出了一類傳遞消息的GNN,稱為身份感知圖神經網絡(ID- GNNs),具有比1-WL測試更強的表達能力。ID-GNN為現有GNN的局限性提供了一個最小但強大的解決方案。ID-GNN通過在消息傳遞過程中歸納地考慮節點的身份來擴展現有的GNN體系結構。為了嵌入一個給定的節點,IDGNN首先提取以該節點為中心的自我網絡,然后進行輪次異構消息傳遞,中心節點與自我網絡中其他周圍節點應用不同的參數集。我們進一步提出了一個簡化但更快的ID-GNN版本,它將節點標識信息作為增強節點特征注入。總之,ID-GNN的兩個版本代表了消息傳遞GNN的一般擴展,其中實驗表明,在具有挑戰性的節點、邊緣和圖屬性預測任務中,將現有的GNN轉換為ID-GNN平均可以提高40%的準確率;結點和圖分類在基準測試上提高3%精度;在實際鏈路預測任務提高15%的ROC AUC。此外,與其他特定于任務的圖網絡相比,ID- GNN表現出了更好的或相當的性能。
多元序列學習的本質是如何提取數據中的相關性。這些數據集,如重癥監護病房的每小時醫療記錄和多頻語音時間序列,通常不僅在個別成分中表現出強烈的序列依賴性(“邊緣”記憶),而且在橫剖面依賴性中也表現出不可忽略的記憶(“聯合”記憶)。由于聯合分布演化的多元復雜性是數據生成過程的基礎,我們采用數據驅動的方法,構建了一種新的循環網絡結構,稱為記憶門控循環網絡(mGRN),門顯式地調節兩種不同類型的記憶:邊緣記憶和聯合記憶。通過對一系列公共數據集的綜合模擬研究和經驗實驗的結合,我們表明我們提出的mGRN架構始終優于針對多元時間序列的最先進架構。
//www.zhuanzhi.ai/paper/4236df35ff33a6911c4913ac13bb78e0
從異步視頻面試(AVI)中的自動語音識別(ASR)轉錄中,我們解決了基于文本特征自動為候選人的能力評分的任務。問題的關鍵在于如何構建問題與答案之間的依賴關系,并對每個問答(QA)對進行語義級交互。然而,目前AVI的研究大多集中在如何更好地表示問題和答案上,而忽視了它們之間的依賴信息和相互作用,而這是QA評估的關鍵。在這項工作中,我們提出了一種層次推理圖神經網絡(HRGNN)用于問答對的自動評估。具體來說,我們構建了一個句子級關系圖神經網絡來捕獲問題和答案之間的句子依賴信息。基于這些圖,我們采用語義級推理圖注意網絡對當前QA會話的交互狀態進行建模。最后,我們提出了一種門控遞歸單元編碼器來表示用于最終預測的時間問答對。在CHNAT(一個真實數據集)上進行的實證結果驗證了我們提出的模型顯著優于基于文本匹配的基準模型。消融研究和10個隨機種子的實驗結果也表明了我們模型的有效性和穩定性。
//www.zhuanzhi.ai/paper/5c766d478e8b7fae79e95f2a09e5bdd1
由于不同道路間交通流時空分布格局具有復雜的空間相關性和動態趨勢,交通流時空數據預測是一項具有挑戰性的任務。現有框架通常利用給定的空間鄰接圖和復雜的機制為空間和時間相關性建模。然而,具有不完全鄰接連接的給定空間圖結構的有限表示可能會限制模型的有效時空依賴學習。此外,現有的方法在解決復雜的時空數據時也束手無策:它們通常利用獨立的模塊來實現時空關聯,或者只使用獨立的組件捕獲局部或全局的異構依賴關系。為了克服這些局限性,本文提出了一種新的時空融合圖神經網絡(STFGNN)用于交通流預測。首先,提出一種數據驅動的“時序圖”生成方法,以彌補空間圖可能無法反映的幾種現有相關性。SFTGNN通過一種新的時空圖融合操作,對不同的時間段進行并行處理,可以有效地學習隱藏的時空依賴關系。同時,該融合圖模塊與一種新的門控卷積模塊集成到一個統一的層中,SFTGNN可以通過層堆疊學習更多的時空依賴關系來處理長序列。在幾個公共交通數據集上的實驗結果表明,我們的方法達到了最先進的性能比其他基準一致。
圖神經網絡(gnn)的優勢在于對結構化數據的拓撲信息進行顯式建模。然而,現有的gnn在獲取層次圖表示方面的能力有限,而層次圖表示在圖形分類中起著重要的作用。本文創新性地提出了層次圖膠囊網絡(HGCN),該網絡可以聯合學習節點嵌入和提取圖的層次結構。具體地說,解糾纏圖膠囊是通過識別每個節點下的異構因素建立的,這樣它們的實例化參數代表同一實體的不同屬性。為了學習層次表示,HGCN通過顯式地考慮部件之間的結構信息,刻畫了低層膠囊(部分)和高層膠囊(整體)之間的部分-整體關系。實驗研究證明了HGCN算法的有效性和各組成部分的貢獻。
//www.zhuanzhi.ai/paper/c9930a15b45547cafbee90db8c5612aa
論文標題:A Block Decomposition Algorithm for Sparse Optimization 論文鏈接://arxiv.org/pdf/1905.11031.pdf 相關資料(代碼/PPT/相關論文):
稀疏優化由于其內在的組合結構,一般比較難求解。組合搜索方法可以獲得其全局最優解,但往往局限于小規模的優化問題;坐標下降方法速度快,但往往陷入于一個較差的局部次優解中。
我們提出一種結合組合搜索和坐標下降的塊 K 分解算法。具體地說,我們考慮隨機策略或/和貪婪策略,選擇 K 個坐標作為工作集,然后基于原始目標函數對工作集坐標進行全局組合搜索。我們對塊 K 分解算法進行了最優性分析,我們證明了我們的方法比現有的方法找到更強的穩定點。
此外,我們還對算法進行了收斂性分析,并構建其收斂速度。大量的實驗表明,我們的方法目前取得的性能臻于藝境。我們的塊 K 分解算法的工作發表在國際人工智能會議 SIGKDD 2020 和 CVPR 2019 上。