亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

圖像分類、目標檢測與跟蹤、姿態估計、人臉識別和情感估計在解決計算機視覺問題中都起著重要的作用。

本書將重點介紹這些和其他深度學習架構和技術,以幫助您創建使用Keras和TensorFlow庫的解決方案。您還將回顧多種神經網絡架構,包括LeNet、AlexNet、VGG、Inception、R-CNN、Fast R-CNN、Faster R-CNN、Mask R-CNN、YOLO和SqueezeNet,并通過最佳實踐、技巧、捷徑和陷阱了解它們如何與Python代碼一起工作。所有代碼片段都將被分解并進行詳細討論,以便您可以在各自的環境中實現相同的原則。

使用深度學習的計算機視覺提供了一個全面而簡潔的指南,將DL和CV結合在一起,實現自動化操作,減少人工干預,提高能力,并降低成本。

你會:

  • 掌握深度學習的代碼和概念,將指導原則應用到您自己的項目中
  • 對各種體系結構進行分類和評估,以更好地理解您在各種用例中的選擇
  • 深入基本深度學習功能,找出它們是如何工作的。

不久前,計算機視覺還只是科幻小說的專屬內容,但現在,即使不是在整個社會,也正迅速成為各行各業的普遍現象。人類視覺是人類感官中最珍貴的一種,在模仿人類視覺這一領域取得的進展令人驚嘆。直到1957年,拉塞爾·基爾希才掃描出了世界上第一張照片——他兒子的黑白照片。到20世紀80年代末,西羅維奇和柯比的工作幫助人臉識別成為一種可行的生物識別技術。盡管存在隱私問題和法律挑戰,但Facebook在2010年將人臉識別技術納入其社交媒體平臺時,使這項技術無處不在。

這本書試圖解釋計算機視覺問題的深度學習和神經網絡的概念。我們正在詳細研究卷積神經網絡,以及它們的各個組成部分和屬性。我們正在探索各種神經網絡架構,如LeNet, AlexNet, VGG, R-CNN, Fast R-CNN, Faster R-CNN, SSD, YOLO, ResNet, Inception, DeepFace,和FaceNet的細節。我們還在開發實用的解決方案,以解決二值圖像分類、多類圖像分類、目標檢測、人臉識別和視頻分析的用例。我們將使用Python和Keras作為解決方案。所有的代碼和數據集被檢入GitHub repo快速訪問。在最后一章中,我們將學習深度學習項目中的所有步驟——從定義業務問題到部署。我們還在處理在制定解決方案時面臨的重大錯誤和問題。在這本書中,我們提供了訓練更好的算法的技巧和技巧,減少訓練時間,監測結果,并改進解決方案。我們也分享代表性的研究論文和數據集,你應該使用它們來獲得進一步的知識。

這本書把這個主題分成三部分。在第1章到第4章,本書描述了神經網絡的本質和揭秘他們如何學習。并指出了不同的架構及其歷史意義。實踐者在擁有所有所需資源的情況下,可以體驗到LeNet優雅的簡單性、AlexNet提高的效率以及流行的VGG Net。在第5至7章,從業人員運用簡單而強大的計算機視覺應用,如訓練算法來檢測物體和識別人臉。在進行視頻分析時,我們遇到了漸變消失和爆炸的困擾問題,以及如何在ResNet架構中使用跳過連接來克服它。最后,在第8章中,我們回顧了完整的模型開發過程,從正確定義的業務問題開始,系統地推進,直到模型在生產環境中部署和維護。

付費5元查看完整內容

相關內容

 機器學習的一個分支,它基于試圖使用包含復雜結構或由多重非線性變換構成的多個處理層對數據進行高層抽象的一系列算法。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

掌握使用PyTorch實現深度學習解決方案的實踐方面,使用實踐方法理解理論和實踐。Facebook的人工智能研究小組開發了一個名為PyTorch的平臺,該平臺擁有良好的理論基礎和實用技能,為你在現實世界中應用深度學習做好了準備。

首先,您將了解PyTorch的深度學習是如何以及為什么成為一種具有開創性的框架,它帶有一組工具和技術來解決現實世界中的問題。接下來,這本書將為你打下線性代數、向量微積分、概率和最優化的數學基礎。在建立了這個基礎之后,您將繼續討論PyTorch的關鍵組件和功能,包括層、損失函數和優化算法。

您還將了解基于圖形處理單元(GPU)的計算,這對訓練深度學習模型是必不可少的。介紹了深度學習的前饋網絡、卷積神經網絡、循環神經網絡、長短時記憶網絡、自動編碼器網絡和生成對抗網絡等關鍵網絡結構。在許多訓練和優化深度學習模型的技巧的支持下,這個版本的Python深度學習解釋了使用PyTorch將這些模型帶到生產中的最佳實踐。

你會: 回顧機器學習的基本原理,如過擬合、欠擬合和正則化。 了解深度學習的基本原理,如前饋網絡,卷積神經網絡,遞歸神經網絡,自動微分和隨機梯度下降。 使用PyTorch深入應用線性代數 探索PyTorch的基本原理及其構建塊 使用調優和優化模型

付費5元查看完整內容

計算機視覺是在圖像處理的基礎上發展起來的新興學科。OpenCV是一個開源的計算機視覺庫, 是英特爾公司資助的兩大圖像處理利器之一。它為圖像處理、模式識別、三維重建、物體跟蹤、機器 學習和線性代數提供了各種各樣的算法。本書由OpenCV發起人所寫,站在一線開發人員的角度用通俗易懂的語言解釋了OpenCV的緣起和 計算機視覺基礎結構,演示了如何用OpenCV和現有的自由代碼為各種各樣的機器進行編程,這些都 有助于讀者迅速入門并漸入佳境,興趣盎然地深入探索計算機視覺領域。本書可作為信息處理、計算機、機器人、人工智能、遙感圖像處理、認知神經科學等有關專業的 高年級學生或研究生的教學用書,也可供相關領域的研究工作者參考。

前言

這本書提供了C++開源計算機視覺庫(OpenCV)3.0版本的工作指南,介紹了計算機視覺相關領域的通用背景,以便讀者更有效地使用OpenCV。

本書的目標 計算機視覺在以下四個趨勢的引導下,已經成為一個快速發展的領域: ? 智能手機的出現讓數以百萬計的用戶都擁有了相機 ? 互聯網和搜索引擎聚集了海量的圖像和視頻數據 ? 計算資源變成一種廉價的商品 ? 視覺算法發展得更加成熟(由于深度神經網絡的出現,OpenCV也正在逐漸支持這方面技術,詳情可以參考opencv_contrib中的dnn)

OpenCV通過幫助成千上萬的視覺工作者去做更多富有創造性的工作,在圖像處理領域扮演著重要的角色。由于OpenCV 3.x的存在,不管你是學生還是研究人員,是專家還是初學者,都可以快速建立應用,并且在OpenCV所提供的基于C++的多平臺視覺基礎架構上實現一個跨越性的發展。

本書的目標如下: ? 通過詳細講述函數的慣用用法以及正確用法,成為一本更好的OpenCV經典參考文檔 ? 幫助讀者對各種計算機視覺算法的工作原理有一個基礎的理解 ? 培養讀者,使其知道什么算法工具可以使用并且應該在什么時候使用 ? 提供給讀者許多有效的代碼,提升其應用計算機視覺和機器學習算法的開發效率 ? 針對問題代碼給讀者提供建議,教讀者如何解決一些簡單或復雜的問題

本書的寫作方式是力求幫助讀者快速在計算機視覺領域做一些有意思的事情,因此直觀地解釋了算法是如何工作的,可以指導讀者設計和調試計算機視覺程序,還能夠使計算機視覺和機器學習算法的形式化描述更容易理解和記憶。

付費5元查看完整內容

近年來,自然語言處理的研究方法取得了一些突破。這些突破來源于兩個新的建模框架以及在計算和詞匯資源的可用性的改進。在這個研討會小冊子中,我們將回顧這些框架,以一種可以被視為現代自然語言處理開端的方法論開始:詞嵌入。我們將進一步討論將嵌入式集成到端到端可訓練方法中,即卷積神經網絡和遞歸神經網絡。這本小冊子的第二章將討論基于注意力的模型的影響,因為它們是最近大多數最先進的架構的基礎。因此,我們也將在本章中花很大一部分時間討論遷移學習方法在現代自然語言處理中的應用。最后一章將會是一個關于自然語言生成的說明性用例,用于評估最先進的模型的訓練前資源和基準任務/數據集。

//compstat-lmu.github.io/seminar_nlp_ss20/

在過去的幾十年里,人工智能技術的重要性和應用不斷得到關注。在當今時代,它已經與構成人類塑造環境的大部分環境密不可分。因此,商業、研究和開發、信息服務、工程、社會服務和醫學等無數部門已經不可逆轉地受到人工智能能力的影響。人工智能有三個主要領域組成了這項技術:語音識別、計算機視覺和自然語言處理(見Yeung (2020))。在這本書中,我們將仔細研究自然語言處理(NLP)的現代方法。

這本小冊子詳細介紹了用于自然語言處理的現代方法,如深度學習和遷移學習。此外,本研究亦會研究可用于訓練自然語言處理任務的資源,并會展示一個將自然語言處理應用于自然語言生成的用例。

為了分析和理解人類語言,自然語言處理程序需要從單詞和句子中提取信息。由于神經網絡和其他機器學習算法需要數字輸入來進行訓練,因此應用了使用密集向量表示單詞的詞嵌入。這些通常是通過有多個隱藏層的神經網絡學習的,深度神經網絡。為了解決容易的任務,可以應用簡單的結構神經網絡。為了克服這些簡單結構的局限性,采用了遞歸和卷積神經網絡。因此,遞歸神經網絡用于學習不需要預先定義最佳固定維數的序列的模型,卷積神經網絡用于句子分類。第二章簡要介紹了NLP中的深度學習。第三章將介紹現代自然語言處理的基礎和應用。在第四章和第五章中,將解釋和討論遞歸神經網絡和卷積神經網絡及其在自然語言處理中的應用。

遷移學習是每個任務或領域的學習模型的替代選擇。在這里,可以使用相關任務或領域的現有標記數據來訓練模型,并將其應用到感興趣的任務或領域。這種方法的優點是不需要在目標域中進行長時間的訓練,并且可以節省訓練模型的時間,同時仍然可以(在很大程度上)獲得更好的性能。遷移學習中使用的一個概念是注意力,它使解碼器能夠注意到整個輸入序列,或自注意,它允許一個Transformer 模型處理所有輸入單詞,并建模一個句子中所有單詞之間的關系,這使得快速建模一個句子中的長期依賴性成為可能。遷移學習的概念將在小冊子的第6章簡要介紹。第七章將通過ELMo、ULMFiT和GPT模型來描述遷移學習和LSTMs。第八章將詳細闡述注意力和自注意力的概念。第九章將遷移學習與自注意力相結合,介紹了BERT模型、GTP2模型和XLNet模型。

為NLP建模,需要資源。為了找到任務的最佳模型,可以使用基準測試。為了在基準實驗中比較不同的模型,需要諸如精確匹配、Fscore、困惑度或雙語評估替補學習或準確性等指標。小冊子的第十章簡要介紹了自然語言處理的資源及其使用方法。第11章將解釋不同的指標,深入了解基準數據集SQuAD、CoQa、GLUE和SuperGLUE、AQuA-Rat、SNLI和LAMBADA,以及可以找到資源的預訓練模型和數據庫,如“帶代碼的論文”和“大壞的NLP數據庫”。

在小冊子的最后一章中,介紹了生成性NLP處理自然語言生成,從而在人類語言中生成可理解的文本。因此,不同的算法將被描述,聊天機器人和圖像字幕將被展示,以說明應用的可能性。

本文對自然語言處理中各種方法的介紹是接下來討論的基礎。小冊子的各個章節將介紹現代的NLP方法,并提供了一個更詳細的討論,以及各種示例的潛力和限制。

付費5元查看完整內容

《數據科學與機器學習概論》的創建目標是為尋求了解數據科學的初學者、數據愛好者和經驗豐富的數據專業人士提供從頭到尾對使用開源編程進行數據科學應用開發的深刻理解。這本書分為四個部分: 第一部分包含對這本書的介紹,第二部分涵蓋了數據科學、軟件開發和基于開源嵌入式硬件的領域; 第三部分包括算法,是數據科學應用的決策引擎; 最后一節匯集了前三節中共享的概念,并提供了幾個數據科學應用程序示例。

^

  1. Introductory Chapter: Clustering with Nature-Inspired Optimization Algorithms 在本章中,讀者將學習如何為聚類問題應用優化算法。

By Pakize Erdogmus and Fatih Kayaalp

  1. Best Practices in Accelerating the Data Science Process in Python

By Deanne Larson

數據科學和大數據項目的數量正在增長,當前的軟件開發方法受到了挑戰,以支持和促進這些項目的成功和頻率。關于如何使用數據科學算法以及大數據的好處已經有了很多研究,但是關于可以利用哪些最佳實踐來加速和有效地交付數據科學和大數據項目的研究卻很少。大數據的數量、種類、速度和準確性等特點使這些項目復雜化。數據科學家可利用的開源技術的激增也會使情況變得復雜。隨著數據科學和大數據項目的增加,組織正在努力成功交付。本文討論了數據科學和大數據項目過程,過程中的差距,最佳實踐,以及這些最佳實踐如何在Python中應用,Python是一種常見的數據科學開源編程語言。

  1. Software Design for Success By Laura M. Castro

正如人們所期望的那樣,技術書籍的大部分時間都集中在技術方面。然而,這造成了一種錯覺,即技術在某種程度上是沒有偏見的,總是中性的,因此適合每個人。后來,當產品已經存在時,現實會證明我們不是這樣的。包含和表示在設計和建模階段是至關重要的。在本章中,我們將從架構的角度分析,哪些非功能性需求是最敏感的,以及如何開始討論它們以最大限度地提高我們的軟件產品成功的可能性。

  1. Embedded Systems Based on Open Source Platforms By Zlatko Bundalo and Dusanka Bundalo

  2. The K-Means Algorithm Evolution By Joaquín Pérez-Ortega, Nelva Nely Almanza-Ortega, Andrea Vega-Villalobos, Rodolfo Pazos-Rangel, Crispín Zavala-Díaz and Alicia Martínez-Rebollar

  3. “Set of Strings” Framework for Big Data Modeling By Igor Sheremet

  4. Investigation of Fuzzy Inductive Modeling Method in Forecasting Problems By Yu. Zaychenko and Helen Zaychenko

  5. Segmenting Images Using Hybridization of K-Means and Fuzzy C-Means Algorithms By Raja Kishor Duggirala

  6. The Software to the Soft Target Assessment By Lucia Mrazkova Duricova, Martin Hromada and Jan Mrazek

  7. The Methodological Standard to the Assessment of the Traffic Simulation in Real Time By Jan Mrazek, Martin Hromada and Lucia Duricova Mrazkova

  8. Augmented Post Systems: Syntax, Semantics, and Applications By Igor Sheremet

  9. Serialization in Object-Oriented Programming Languages By Konrad Grochowski, Micha? Breiter and Robert Nowak

本章描述了將對象狀態轉換為一種格式的過程,這種格式可以在當前使用的面向對象編程語言中傳輸或存儲。這個過程稱為序列化(封送處理);相反的稱為反序列化(反編組)進程。它是一種低級技術,應該考慮一些技術問題,如內存表示的大小、數字表示、對象引用、遞歸對象連接等。在本章中,我們將討論這些問題并給出解決辦法。我們還簡要回顧了當前使用的工具,并指出滿足所有需求是不可能的。最后,我們提供了一個新的支持向前兼容性的c++庫。

付費5元查看完整內容

本書建立在基本的Python教程的基礎上,解釋了許多沒有被常規覆蓋的Python語言特性:從通過利用入口點作為微服務扮演雙重角色的可重用控制臺腳本,到使用asyncio高效地整理大量來源的數據。通過這種方式,它涵蓋了基于類型提示的linting、低開銷測試和其他自動質量檢查,以演示一個健壯的實際開發過程。

Python的一些功能強大的方面通常用一些設計的示例來描述,這些示例僅作為一個獨立示例來解釋該特性。通過遵循從原型到生產質量的真實應用程序示例的設計和構建,您不僅將看到各種功能是如何工作的,而且還將看到它們如何作為更大的系統設計過程的一部分進行集成。此外,您還將受益于一些有用的附加說明和庫建議,它們是Python會議上問答會議的主要內容,也是討論現代Python最佳實踐和技術的主要內容,以便更好地生成易于維護的清晰代碼。

高級Python開發是為已經能用Python編寫簡單程序的開發人員準備的,這些開發人員希望了解什么時候使用新的和高級語言特性是合適的,并且能夠以一種自信的方式這樣做。它對于希望升級到更高級別的開發人員和迄今為止使用過較老版本Python的非常有經驗的開發人員特別有用。

你將學習

  • 理解異步編程
  • 檢查開發插件架構
  • 使用類型注釋
  • 回顧測試技術
  • 探索打包和依賴項管理

這本書是給誰的 -已經有Python經驗的中高級開發人員。

付費5元查看完整內容

利用實用的、循序漸進的方法運用計算機視覺和機器學習概念開發商業和工業應用。

這本書包括四個主要部分,從設置編程環境開始。第1節介紹了圖像和視頻處理的基礎知識,并提供了如何操作和從圖像中提取有用信息的代碼示例。您將主要使用OpenCV和Python來處理本節中的示例。

第2節描述機器學習和神經網絡的概念應用于計算機視覺。你將學習神經網絡的不同算法,比如convolutional neural network (CNN), region-based convolutional neural network (R-CNN), YOLO。在本節中,您還將學習如何訓練、調整和管理計算機視覺的神經網絡。第3節提供了逐步發展商業和工業應用的例子,如視頻監控中的面部識別和制造中的表面缺陷檢測。

最后一部分是關于在云基礎設施(如Amazon AWS、谷歌云平臺和Microsoft Azure)上訓練大量圖像的神經網絡。它引導您完成在基于gpu的云基礎設施上為計算機視覺訓練分布式神經網絡的過程。當您讀完《使用人工神經網絡構建計算機視覺應用程序》并完成代碼示例時,您將開發出一些使用深度學習的計算機視覺的真實使用案例。

你將學到什么

  • 運用圖像處理、操作和特征提取技術
  • 處理計算機視覺的各種深度學習算法
  • 訓練、管理和調優CNNs和對象檢測模型的超參數,如R-CNN、SSD、YOLO
  • 使用Keras和TensorFlow建立神經網絡模型
  • 發現在商業和工業中實施計算機視覺應用的最佳實踐
  • 在基于gpu的云基礎設施上訓練分布式模型

這本書是給誰的

  • 具有Python編程知識的數據科學家、分析師、機器學習和軟件工程專業人員。
付費5元查看完整內容

使用Python進行計算機視覺的深度學習將使您成為計算機視覺和視覺識別任務的深度學習專家。

在書中,我們將重點學習:

  • 神經網絡和機器學習
  • 卷積神經網絡(CNNs)
  • 目標檢測/定位與深度學習
  • 訓練大型(圖像級)網絡
  • 掌握使用Python編程語言和Keras、TensorFlow 2.0和mxnet深度學習庫的實現

在用Python進行了計算機視覺的深度學習之后,您將能夠用深度學習解決實際問題。

下載地址:鏈接: //pan.baidu.com/s/1I8r-Vjvv4n8v-6t_5I679g 提取碼: j69b

付費5元查看完整內容

計算機視覺是許多前沿創新的核心,包括自動駕駛汽車、無人機、增強現實、面部識別等等。由于人工智能和深度學習(DL)的快速發展,每天都有驚人的新的計算機視覺應用程序被開發出來。這本《深度學習視覺系統》教你的概念和工具,建立智能,可擴展的計算機視覺系統,可以識別和反應的對象,在圖像,視頻,和現實生活。有了作者Mohamed Elgendy的專家指導和現實世界項目的說明,您將最終掌握最先進的深度學習技術,這樣您就可以構建、貢獻和領導令人興奮的計算機視覺領域!

對這項技術

通過使用深度神經網絡,人工智能系統根據它們對輸入數據的感知做出決策。基于深度學習的計算機視覺(CV)技術,增強和解釋視覺感知,使圖像識別、生成和分類等任務成為可能。CV的令人興奮的進步已經在包括機器人、自動化、農業、醫療保健和安全在內的廣泛行業中產生了解決方案。在許多情況下,CV被認為比人類視覺更準確,這是一個重要的區別,當你想到CV程序可以檢測皮膚癌或在醫學診斷掃描中發現異常時。無論我們談論的是自動駕駛汽車還是拯救生命的醫療項目,毫無疑問,計算機視覺的深度學習應用正在改變世界。

百度網盤:鏈接: //pan.baidu.com/s/1nhgWcnW4Yf8f40DF3zGdHg 提取碼: 9vzk

關于這本書 深度學習視覺系統教你應用深度學習技術來解決真實世界的計算機視覺問題。DL和CV專家Mohamed Elgendy以其簡單易懂的風格向您介紹了視覺直覺的概念——機器如何學習理解它所看到的東西。然后你將探索不同簡歷應用中的DL算法。你將深入到簡歷解釋系統或管道的不同部分。使用Python、OpenCV、Keras、Tensorflow和Amazon的MxNet,您將發現解決CV問題的高級DL技術。

我們聚焦的應用包括圖像分類、分割、字幕描述、生成以及人臉識別和分析。您還將學習最重要的深度學習體系結構,包括人工神經網絡(ANNs)、卷積網絡(cns)和遞歸網絡(RNNs),您可以將這些知識應用到相關的深度學習學科,如自然語言處理和語音用戶界面。來自Amazon、谷歌和Facebook的真實的、可擴展的項目把這一切都帶回家了。有了這本無價的書,你將獲得必要的技能,以建立驚人的端到端的CV項目,解決現實世界的問題。

里面有什么

  • 計算機視覺概論
  • 深度學習和神經網絡
  • 轉移學習和先進的CNN架構
  • 圖像分類和字幕
  • 使用YOLO、SSD和R-CNN進行目標檢測
  • 風格轉移
  • AI倫理
  • 實際項目

目錄:

Part I. DEEP LEARNING FOUNDATION

  1. Introduction to Computer Vision
  2. Deep learning and neural networks
  3. Convolutional Neural Networks (CNNs)
  4. Improving deep neural networks and hyperparameters tuningart I. Image Classification and Object Detection
  5. Advanced CNN architectures
  6. Transfer learning
  7. Object detection with YOLO, SSD and R-CNNPART III. Generative Models
  8. Generative Adversarial Networks (GANs)
  9. DeepDream and Neural Style Transfer
  10. Visual Embeddings
付費5元查看完整內容

//www.manning.com/books/deep-learning-with-javascript

深度學習已經改變了計算機視覺、圖像處理和自然語言應用領域。多虧了TensorFlow.js,現在JavaScript開發人員可以無需依賴Python或R就能構建深度學習應用程序。使用JavaScript的深度學習向開發人員展示了如何將DL技術引入web。本書由TensorFlow庫的主要作者編寫,為在瀏覽器或Node上使用JavaScript進行深度學習的應用程序提供了有趣的用例和深入的指導。

關于技術

在瀏覽器或基于Node的后端中運行深度學習應用程序,為智能web應用程序開辟了令人興奮的可能性。使用TensorFlow.js庫,您可以用JavaScript構建和訓練深度學習模型。TensorFlow.js具有無與倫比的可擴展性,模塊化和響應能力,其可移植性確實令人眼前一亮。它的模型可以在JavaScript運行的任何地方運行,從而將ML推向應用程序堆棧的更上層。

關于這本書

在Deep Learning with JavaScript這本書中,您將學習使用TensorFlow.js來構建直接在瀏覽器中運行的深度學習模型。這本快節奏的書由Google工程師撰寫,是實用的,引人入勝且易于閱讀。通過以文本分析,語音處理,圖像識別和自學習游戲AI為特色的各種示例,您將掌握深度學習的所有基礎知識并探索高級概念,例如對現有模型進行再訓練以進行遷移學習和圖像生成。

書里面有什么

在瀏覽器中的圖像和語言處理

用客戶端數據調優ML模型

通過生成式深度學習創建文本和圖像

源代碼示例以進行測試和修改

付費5元查看完整內容

簡介: 近年來,生命科學和數據科學已經融合。機器人技術和自動化技術的進步使化學家和生物學家能夠生成大量數據。與20年前的整個職業生涯相比,如今的科學家每天能夠產生更多的數據。快速生成數據的能力也帶來了許多新的科學挑戰。我們不再處于可以通過將數據加載到電子表格中并制作幾個圖表來對其進行處理的時代。為了從這些數據集中提取科學知識,我們必須能夠識別和提取非顯而易見的關系。近年來,作為識別數據模式和關系的強大工具而出現的一種技術是深度學習,它是一類算法,它徹底改變了解決諸如圖像分析,語言翻譯和語音識別等問題的方法。深度學習算法擅長識別和利用大型數據集中的模式。由于這些原因,深度學習在生命科學學科中具有廣泛的應用。本書概述了深度學習如何應用于遺傳學,藥物發現和醫學診斷等多個領域。我們描述的許多示例都附帶有代碼示例,這些示例為方法提供了實用的介紹,并為讀者提供了以后進行研究和探索的起點。

該書中代碼地址://github.com/deepchem/DeepLearningLifeSciences

目錄:

  • 生命科學
  • 深度學習介紹
  • 機器學習與深化
  • 分子與機器學習
  • 生物機器學習
  • 基因組學與深度學習
  • 顯微學與機器學習
  • 醫藥學與深度學習
  • 生成模型
  • 深度模型的解釋
  • 預測模型
  • 展望
付費5元查看完整內容
北京阿比特科技有限公司