所有電力驅動的自主平臺都擁有一個系統,將電力分配給平臺的所有重要部件。在美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL),幾個項目正在使用無人駕駛航空系統(UAS)作為平臺。一些正在使用的無人機系統被歸類為第一組,這意味著它們的重量低于20磅。ARL進行研究的第一組無人機系統是非常快速和靈活的四旋翼飛機。這種四旋翼飛機通常有四個旋翼和輕型有效載荷,可以非常迅速地加速,毫不費力地達到每小時100公里以上的速度。為了做到這一點,這些四旋翼飛機可以在30直流電壓下突擊消耗高達400安的電流。為了滿足這些要求,相對于無人機系統的尺寸,電機/螺旋槳組合需要大量的功率。
到目前為止,ARL的無人機系統一直在使用商業現成的配電板(PDB)來滿足配電需求。定制的PDB將滿足美國防部在國內采購更多UAS組件的愿望,因為它將是美國設計和制造的,這對這種類型的UAS組件來說是獨一無二的。
本報告考慮了PDB設計的所有方面,包括形狀、尺寸、組件、成本、電壓調節器、外圍設備等等。本報告以一個特定的ARL項目所需的定制設計的PDB為背景探討了這些問題,但可以作為正在從事半自主和完全自主車輛項目的ARL工程師的起點。
目前,中小型機器人平臺在典型的總線電壓下運行,通常超過 30 VDC,這與基于 12/28-V 標稱總線特性的現有商用和軍用地面車輛平臺的大型基礎不兼容。這種選擇主要是由于兩個平臺之間缺乏共同的要求,鑒于它們在應用上的認知差異,允許機器人平臺朝著自己的個性化技術最佳實踐選擇不同的要求。這使得這兩個系統缺乏以有意義的方式共享能量的能力,即使在機器人實際停靠在車輛平臺上的情況下。雖然直流-直流電源轉換是一個允許兩個不同的平臺相互連接的選擇,但直流-直流轉換的尺寸、重量和功率限制,使得更大的軍用地面車輛平臺上的靜默觀察和啟動功能所需的高速持續電流無法實現。另外,目前用于中小型機器人平臺的后勤系統中的電池是BB-2590電池,這是一種為通信應用設計的鋰離子電池。這種電池的可用功率非常有限,需要由4到12個BB-2590組成的電池組來滿足平臺的電力和能源需求。在電池組中使用BB-2590還導致安裝在車輛中的鋰離子電池在年齡、循環壽命、剩余容量和電阻方面的巨大差異,從而降低了循環壽命并降低了性能。這些電池組不能被控制和限制在單個機器人車輛的整個生命周期內,因為它們是在車輛外部批量充電的,不能通過序列號追蹤到它們來自的特定平臺。此外,鑒于BB-2590不是專門為機器人應用設計的,它不一定是特定平臺的最佳選擇。6T鋰離子電池為由BB2590組成的電池組提供了許多優勢(在隨后的章節中解釋),因此將其添加到中小型機器人中提供了許多重大優勢。鑒于這些優勢,GVSC投資開發了用于中小型機器人的轉換套件,從而可以使用6T鋰離子電池,并且增加了許多新的應用、新的用例,以及最初沒有改變設計的進步,如支持靜音手表和自主的無充電器啟動和維護應用。圍繞這些好處的考慮,可以確定現有機器人平臺和方法/程序中存在的一些缺點,以實現跳躍式機器人所實現的功能,包括:
目前,啟動車輛需要士兵在車外執行這一功能。這在軍事環境中存在潛在的安全隱患,而且目前還沒有一種自主的方式來提供這種功能。
在海軍艦艇上經常需要定期啟動/跳躍式啟動軍用車輛,以便進行車輛卸載和定期維護。這是勞動密集型的,可以由自主或半自主的機器人來完成。
目前,由于兩個平臺的特征電壓不同,機器人平臺不能從大多數軍用車輛的北約插座連接處充電。
目前,由于外形尺寸不同,儲能裝置不能在機器人和地面車輛之間互換。
盡管與地面車輛一起攜帶的機器人平臺有可用的機載能源,但該能源目前不能用于延長車輛的靜默值。
軍用車輛上的對接機器人平臺在運輸過程中往往需要完全關閉以節省電力,需要在現場啟動。
機器人技術示范系統(RTDS),以下僅指跳躍式機器人,是一種能夠自主或半自主地通過NATO插座連接來跳躍式啟動車輛的機器人。該起跳裝置包括一個移動機器人平臺。該移動機器人平臺包括一個與要啟動的車輛的電壓相匹配的儲能裝置,并有足夠的功率來執行這一功能。該儲能裝置還用于向機器人平臺(直接或通過DC/DC轉換)和可選的發電設備(例如:燃料電池啟動能源、發電機點火等)提供電力。儲能裝置也能夠從車輛總線或可選的發電裝置上充電,并且能夠為靜默觀察操作提供能量和電力(可以與車輛在對接艙中內部攜帶,也可以通過臨時外部連接)。跳躍式機器人包括使用該機器人轉移輔助靜默觀察能量以及自主啟動軍用車輛的方法,例如在海軍艦艇上,作為日常維護的一部分。目前,車輛的起動是通過一個便攜式的起動裝置完成的,該裝置被卷到車輛上,由人手動連接。雖然自主、半自主或遠程機器人平臺目前正被用來提供一些軍事功能,但目前還沒有以這種方式完成跳躍式啟動。
本專著的目的是從防空歷史和空中力量穿透這些防御的工作中提煉出教訓。它從第一次世界大戰、第二次世界大戰、越南、"沙漠風暴 "以及俄羅斯和中國的現代發展中確定了六條經驗。這六條經驗為空軍和地面部隊在未來進行壓制敵方防空(SEAD)和滲透行動的努力提供參考。本專著探討了聯合部隊應如何對待SEAD任務的問題,以及來自陸地領域的部隊是否應在穿透地基防空系統方面發揮更重要的作用。
T.R. Fehrenbach提醒我們注意戰爭的一個持久特征。無論我們的技術變得多么復雜和先進,武裝沖突仍然需要士兵參與。空中力量理論家認為,在未來的戰爭中,人類可能不再需要近距離的暴力對抗,僅靠空中手段就能達到目的。雖然純粹的空戰仍然是一個遙遠的想象,但地面部隊將繼續奮勇向前,與泥濘中的人們一起奪取目標。本專論并不是說空中力量是不必要的;相反,它是至關重要的。空軍的覆蓋面和影響力已經與地面機動密不可分,在最近的戰爭中,空軍已經成為軍隊進攻的必要先導。然而,空中優勢作為地面進展的先決條件的模式可能不再成立了。移動式和便攜式防空系統的擴散,加上危害地面部隊的遠程打擊能力,無論其位置如何,都可能迫使地面作戰先于其空中補充。
本專著討論了聯合部隊在未來應如何進行壓制敵方防空(SEAD)。它考慮了攻擊性空軍和地面防御者之間的斗爭。具體來說,它討論了防空系統的進步已經發展到了美國空軍無法繼續承擔壓制和穿透它們的主要份額的程度。在未來,美國陸軍可能不得不對綜合防空系統(IADS)進行第一輪打擊,為美國空軍開始空中優勢的戰斗打開大門。
海上防空對于地面部隊的機動自由至關重要。在減少對手的防空資產之前,敵人的空軍可以隨意攻擊機動編隊。自從20世紀初早期的飛行者從飛機上投下第一件武器以來,空中力量對現代機動作戰一直是至關重要的。空中和地面防御系統已經發展到這樣的程度,即一支軍隊如果不首先擊敗其競爭對手的空軍就進行攻擊是不可想象的。迅速而徹底地擊敗伊拉克的防空系統并隨后摧毀其空軍,對于聯軍在 "沙漠風暴 "行動中的快速機動和壓倒性勝利至關重要。 以美國空軍為先導,然后是地面機動的SEAD模式是如此強大,以至于美國和北約的競爭對手注意到并進行了調整。今天的綜合防空系統(IADS)是高度網絡化的,相互支持的,并且是分層深入的。 這些防御網絡,再加上遠程彈藥的出現,造成了一個多層面的問題。國際防空系統迷惑了敵方空軍為其地面部隊建立機動空間的能力,同時遠程火力也使這些攻擊部隊受到威脅。先進的IADS與遠程彈藥的雙重困境,要求我們考慮我們目前的SEAD方法是否足夠。
所提出的假設是,聯合部隊應該作為一個密切協調的地面和空中團隊進行未來的SEAD。美國陸軍應該為反應靈敏、強大和機動的防空和導彈防御系統、遠程精確火力、地面發射的反輻射制導導彈(ARGM)和游動彈藥提供資源。
所采用的方法是對SEAD的歷史、理論和學說的研究。它考慮了SEAD從第一次世界大戰到現在的歷史。反擊空中和導彈威脅(聯合出版物3-01)將SEAD歸類為主要的進攻性反空(OCA)任務。其目的是 "通過破壞性或擾亂性的手段使敵方的地表防空系統失效、摧毀或暫時退化。" 美國部隊發展SEAD是為了應對日益復雜和有效的地基防空系統,它與防空的進步有效地共同發展。本專著中的防空歷史有五個主要部分。第一部分討論了第一次世界大戰中的空中力量發展,以及早期空軍能力的提高如何為地面機動提供了機會。一戰中對空襲的反應導致了二戰期間為防止滲透而對空中武裝進行牽制的武器的產生。二戰的戰斗人員完善了一戰中創造的技術,為進攻的空軍和地面的防御者開發了更致命的瞄準系統和改進的彈藥。在越南戰爭期間,越南人民軍(PAVN)采用了密集的防空武器組合,這需要美國裝備和訓練專門的飛機來壓制北越的防御;這是SEAD能力的第一個例子。接下來,該專著回顧了美國在 "沙漠風暴 "行動中對空地戰的運用,以顯示SEAD的有效性,以及它如何為其他世界大國進一步調整以對抗FM100-5中的理論提供了基礎。 第五章考慮了俄羅斯新一代戰爭(RNGW)、中國遠程導彈以及防空武器的擴散以防止滲透。作者將SEAD理論和學說的演變與歷史實例結合起來,說明空軍與IADS之間的競爭是如何發展到今天的高精尖系統的。最后,該專著提出了一個地面部分未來在對抗現代IADS的戰斗中的貢獻模式。
聯合部隊如何進行未來的海空防務行動,對于各軍種在面對未來的國際防空系統時如何整合和合作至關重要。現代國際防空系統對未來的空中行動,以及暗示的地面行動構成了一個重大障礙。國家和非國家行為者對地對空武器的使用加劇了國際防空系統的瓦解問題。它極大地提高了進行海空導彈和滲透敵占區所需的戰斗力水平。阿富汗圣戰者組織在蘇聯-阿富汗戰爭中使用 "毒刺 "導彈,以及最近在烏克蘭上空擊落馬來西亞航空公司MH17航班,都是這些系統的擴散已經超出既定軍隊嚴格使用的例子。在未來的戰爭中,雙方都可能面臨一個連續的國際防空系統和非正規部隊采用的未聯網的防空。聯合部隊必須開發多種方案來擊敗這些系統,并擴大他們的方法,以最大限度地提高靈活性,使空中和地面部隊能夠對由國際防空系統和獨立的地對空武器防御的對手構成眾多威脅。
美國陸軍最近制定了一項關于未來陸軍如何作戰的戰略以及實現這些軍事能力的相關現代化和研究重點。以高超音速飛行為基礎的遠程精確射擊對于確保美國能夠對任何競爭對手實施其意志至關重要。要實現一個有效的未來美國軍隊,必須克服許多障礙。其中一些差距是對高超音速飛行器空氣熱力學的理解,從而促使對基礎研究的需求。本報告的目標是定義一個經典的、與陸軍相關的配置,適合于基礎研究,以允許與適當的主題專家的關鍵數量的集中合作。從這種開放的幾何構型研究中獲得的數據和知識可能會受到更多的限制性分配。
美國陸軍最近制定了一項關于未來陸軍如何作戰的戰略以及實現這些軍事能力的相關現代化和研究重點。以高超音速飛行為基礎的遠程精確射擊對于確保美國能夠對任何競爭對手實施其意志至關重要。
要實現一個有效的未來美國軍隊,必須克服許多障礙。其中一些差距是對高超音速飛行器空氣熱力學的理解,從而促使對基礎性研究的需求。缺乏對高超音速飛行器周圍發生的復雜物理和化學的預測性知識,抑制了及時的、優化的多部件設計。對邊界層過渡和沖擊-邊界層相互作用等具體現象了解不多。不能正確地對現象進行建模,會產生一些不確定的特征,如表面壓力分布和熱通量,這對飛行器技術,包括穩定性、控制和熱負荷管理,都有負面影響。
幸運的是,有一個先例,即通過定義政府基準飛行器來促進全社會的科學討論,這些飛行器包含功能相關的工件,但對具體的發展計劃不敏感(見陸軍-海軍基本芬納導彈、空軍改良基本芬納導彈、陸軍-海軍旋轉火箭、國家航空航天飛機和NASA研究)。本報告的目標是定義一個典型的、與軍隊相關的配置,適合于基礎研究,以便與足夠數量的適當的主題專家進行重點合作。從這個開放的幾何構型的研究中獲得的數據和知識可能會受到更多的限制性分配。
在有環境因素的城市區域內安全有效地使用四旋翼飛行器,對美國軍事和民用部門具有巨大的重要性。本技術報告探討了一個高度適應性的模擬設置,其中有一個包含學習元素的非線性控制器。其他模型因素--如無人機的幾何形狀、權重和風的力量--在所提出的框架內很容易被修改。用虛幻引擎進行的模擬,可以結合現實世界的城市數據、現實的風和現有的開源軟件。
無人系統和無人駕駛航空系統(UAS)的使用在全世界的軍隊中激增,在通信、監視、偵察和戰斗中都有應用(Nacouzi等人,2018)。在敵對地區,無人機系統將受到多種威脅,包括網絡和物理威脅,以及環境危害。生存和任務的成功往往取決于以最小的通信或依賴全球導航衛星系統(GNSS)的能力,如GPS(Guvenc等人,2018;Sathyamoorthy等人,2020;Fan等人,2022)。例如,無人機系統的通信可用于檢測和獲得無人機系統的位置,而基于衛星的導航很容易被欺騙或干擾,因為信號非常弱。其他傳感器也經常被用來增強GNSS的位置分析,并可以用來取代它,如光學系統--包括照相機、雷達、光探測和測距(LiDAR)系統和慣性測量單元(IMU)(Angelino等人,2012)。這些都提出了自己的挑戰。慣性測量單元是標準設備,但只能檢測線性和角加速度,同時通過檢測地球的局部磁場來確定方向(共9個自由度)。因此,位置誤差,即測量的加速度的第二個時間積分,會隨著時間的推移而累積。在使用IMU進行UAS導航時,其他令人擔憂的來源包括環境影響(即風或降水)。 UAS結構的物理變化,如增加一個傳感器或武器包,包括武器發射后的變化,使工作進一步復雜化。這種質量和質量分布的變化改變了UAS的質量中心和慣性張量。光學傳感器、雷達和LiDAR系統增加了重量,并經常發射射頻或光,使它們更容易被探測到和/或需要處理資源。增加的重量和/或處理可能對電池壽命產生不利影響,從而影響運行時間和整體可靠性。
為了解決這些問題,我們正在研究在大風環境中使用控制算法,以了解IMU信號如何在控制中被用來考慮(和/或改變)UAS的位置計算。再加上不確定性措施,這些最終可用于檢測UAS飛行性能的變化,或對GNSS信號的欺騙。
城市環境是安全和可靠的無人機系統運行的第二個關注領域(Watkins 2020)。它們被認為是國防部行動的一個挑戰領域,也是政府和商業服務的一個巨大的技術增長領域。在這份報告中,我們展示了一個模擬空間,我們正在建立專門用于模擬城市環境中的無人機系統,以解決自主和半自主控制的問題,重點是環境的相互作用,包括風和靜態碰撞威脅。物理學和控制的關鍵部分直接用C++實現。除此之外,在可能的情況下,我們正在利用當前的免費和開源資源(即軟件、軟件框架和數據),但要注意的是,我們包括使用一些在產品商業化成功后需要付費的工具。我們采取了一種模塊化的方法,隨著其他軟件框架和系統的成熟,將能夠靈活地過渡到其他軟件框架和系統。我們目前的系統已經基于用于小型無人機系統的PX4控制器庫和實時發布-訂閱(RTPS)數據傳輸協議。RTPS應能使我們的發展在其他工具成熟時過渡到其他工具,并使用通用的應用編程接口(即API)過渡到其他工具和數據,如計算的風數據。對于圖形和用戶界面,我們使用虛幻引擎(UE)(Matej 2016),這是一個游戲引擎,提供最先進的圖形功能和我們的模型中使用的一些物理學--最重要的是無人機系統和其環境之間的碰撞檢測。
第2-4節詳細介紹了整個模擬的主要計算部分:納入現實世界的城市數據,生成現實的風模型,無人機的幾何和物理建模,以及線性和非線性控制。我們對整體模擬的這些主要部分中的每一個都依賴開源軟件,如UE、OpenStreetMap(OSM)(Anderson等人,2019年)、Mapbox和AirSim(Shah等人,2017年),并根據需要詳細說明(見圖1;例如,真實城市的模型導入游戲引擎中)。第5節和第6節提供了樣本結果和結語。
圖1 將城市數據納入UE進行大規模模擬的兩個例子。伊利諾伊州的芝加哥(上);弗吉尼亞州的水晶城(下)。這兩張圖片都是使用開源工具創建的,將開源的Mapbox城市數據導入UE中。
本報告描述了2020財年在美國陸軍作戰能力發展司令部陸軍研究實驗室的主任戰略倡議(DSI)項目《人工智能(AI)用于多域作戰(MDO)的指揮和控制(C2)》下進行的工作。多域作戰的速度和復雜性要求在高度活躍的環境中對近似對手進行高速決策和執行,這往往可能超出人類的認知能力。最近,新興的人工智能技術,如深度強化學習(DRL),在復雜的、相對非結構化的、部分信息的戰略游戲(如Dota 2和StarCraft II)中的表現超過了人類世界冠軍。這表明這種人工智能有可能對MDO的C2做出貢獻。然而,關于這種新的人工智能技術的行為和限制的許多問題仍未得到解答。作為DSI的一部分,我們正在研究DRL是否可以支持未來多域部隊的敏捷和適應性C2,這將使指揮官和工作人員能夠迅速有效地利用轉瞬即逝的優勢窗口。在第一年,我們開發了兩個新的C2測試平臺,并在這些測試平臺上進行了基于DRL的學習。本報告包括項目的概述,并展示了初步的研究成果,其中一個“人造指揮官”在模擬的旅級戰斗中執行了一個綜合規劃-執行過程。
同行對手多域作戰(MDO)的速度和復雜性可能會超過人類指揮員在傳統的、主要是人工指揮和控制(C2)過程中的認知能力。同時,人工智能(AI)技術的新成果,如深度強化學習(DRL),開始顯示出有可能支持多域作戰的指揮與控制。過去兩年的發現表明,基于DRL的算法可以在復雜的、相對非結構化的、部分信息的戰略游戲(如Dota 2和StarCraft II)中勝過人類世界冠軍。通過這些突破,強化學習(RL)已經證明了人工智能在復雜游戲中開發和實施多層策略后控制多個智能體的潛力。未來MDO作戰指揮的特點是在非結構化的任務領域內具有高度的復雜性,這與復雜的游戲模擬環境有一些相似之處。因此,將基于人工智能的方法擴展到軍事領域,可能為提高戰斗指揮能力提供了重要的可能性。
本報告中描述項目的長期意圖并不新鮮。在過去的幾十年里,有許多想法和相應的研究,旨在開發自動化或半自動化的工具,以支持規劃和執行軍事行動的決策。以下是過去在這一領域的一些工作,本報告的一些作者親自參與了這些工作。
美國國防部高級研究計劃局(DARPA)的聯合部隊空中部分指揮官(JFACC)項目在20世紀90年代末進行,為聯合空戰的敏捷管理開發了一些概念和原型。當時考慮的大多數方法涉及各種航空資產的路線和活動的持續實時優化和再優化(隨著情況的不斷變化)。同樣在20世紀90年代中后期,陸軍資助了行動方案開發和評估工具(CADET)項目,該項目探討了經典的分層規劃的潛在效用,該計劃適用于對抗性環境,可以將高水平的戰斗草圖轉化為詳細的同步矩陣--這是理論上的軍事決策過程(MDMP)的關鍵產品。在21世紀初,DARPA啟動了實時對抗性情報和決策(RAID)項目,該項目探索了一些預測敵方作戰規劃的技術,以及動態地提出友好的戰術行動。在所探索的技術方法中,博弈求解算法是最成功的。
2000年代末,DARPA的沖突建模、規劃和結果實驗(COMPOEX)計劃探討了多個領域的作用及其非常復雜的相互作用--除了傳統的動能戰斗,還有政治、經濟和社會影響。該計劃研究了相互關聯的模擬子模型的使用,主要是系統動力學模型,以協助高級軍事和文職領導人在復雜的作戰環境中規劃和執行大規模戰役。非傳統作戰領域如網絡領域的重要性已經得到認可,2010年,北約的一個研究小組研究了評估網絡攻擊任務影響的模擬方法,并強調了網絡、人類和傳統物理領域之間相互作用的強大非線性效應。
在前面提到的研究工作中所采取的所有方法,以及許多其他類似的方法,都有主要的和一些共同的弱點。它們往往需要對問題領域進行嚴格、精確的表述。一旦這樣的表述被構建出來,它們往往能產生有效的結果。然而,一旦有新的元素需要被納入到表述中(例如,一種新的軍事資產類型或一種新的戰術),就需要進行困難的、昂貴的、手工的和長期的努力來“重新連接”問題的表述和微調解決方案的機制。而現實世界呈現出無窮無盡的新元素,必須加以考慮。
在20世紀80年代的基于規則的系統中,隨著越來越多的規則(它們之間的相互作用往往是不可預測的)必須被添加以代表現實世界中錯綜復雜的領域,一個系統將變得不可維護。在基于優化的方法中,同樣地,重要變量和各種約束條件之間無窮無盡的關系必須不斷地手動添加(維護的噩夢),以代表現實世界中復雜的領域。在基于游戲的方法中,由于越來越多的領域的現實情況不得不被手動設計并添加到游戲的表述中,管理每個棋子的合法移動和移動效果的規則將逐漸變得無可救藥地復雜。
簡而言之,這種方法在建立和維護表征方面是高成本的。理想情況下,我們希望看到一個系統能夠直接從真實或模擬世界的經驗中 "學習"(即自我規劃)其問題的制定和解決算法,而不需要任何(或很少)人工規劃。機器學習,特別是RL,正是提供了這樣的希望。這是我們項目背后的一個主要動機。
美國陸軍目前還沒有一個基于人工智能的、部分自主的任務指揮工具,在戰術或作戰層面上以高作戰節奏(OPTEMPO)運作。通常情況下,生死攸關的決定是由少數人在時間限制下利用不完善的信息作出的。目前可供規劃者使用的工具(如高級野戰炮兵戰術數據系統[AFATDS]、藍色部隊追蹤器等)通常僅限于分析戰場地形的基本決策輔助工具和記錄決策的自動化工具。指揮官在向下級提供快速OPTEMPO指導時,會遇到信息過載。戰斗損傷評估(BDA)很慢,而且不能與單位運動/傳感器與射手的聯系同步,也不允許利用優勢窗口。行動方案(CoA)分析主要集中在對友軍計劃的評估上,很少強調對手的目標和能力的復雜性。
隨著空間、網絡電磁活動(CEMA)和機器人資產的加入,MDO成倍地增加了C2的復雜性,這可能會使OPTEMPO比過去更高。此外,人類指揮官使用目前可用的決策輔助工具來提供高度詳細的指令將是難以解決的。有可靠的報告稱,美國的同行和近鄰競爭對手,特別是中國,正在大力追求人工智能在軍事上的應用,包括指揮決策和軍事推演(即兵棋推演)。因此,在追求人工智能C2系統的過程中,存在著很大的失敗風險,只有不斷地朝著這個目標前進,不斷地努力實現一個能夠在MDO中執行C2的人工智能系統,才能克服這個風險。
到2035年,我們設想需要開發敏捷和適應性強的人工智能C2系統,用于復雜、高OPTEMPO、超活躍的MDO中的作戰規劃和決策支持。這些系統將不斷整合未來戰爭的幾個領域。設想中的系統將能夠分析敵人的活動;不斷地規劃、準備、執行和評估戰役,通過不斷地感知、識別和快速利用新出現的優勢窗口,使軍隊的能力得到快速反應。這些優勢窗口將在不同梯隊的MDO框架內的行動中出現,但識別和利用它們需要較少地依賴刻意的規劃周期,而更多地依賴持續、綜合的規劃能力。啟用人工智能的C2系統有可能在不同的梯隊、領域和多個同時運作的資產之間快速同步采取多種行動,以利用優勢窗口。部隊將主要由機器人資產(地面、空中)組成,人工智能C2系統將收集和處理來自智能傳感器和平臺的數據,評估作戰環境中的新趨勢,并建議采取減少認知負擔的行動,使人類指揮官能夠快速有效地采取行動。啟用人工智能的流程還將提供定量分析、預測分析和其他可供人類有效使用的突出數據。這最終將使美國陸軍有能力在武裝沖突期間,根據對敵人弱點的理解和詳細的友軍估計,重新分配、重組和使用能力,并將產生具體、詳細的指令來控制自主資產。
DEVCOM陸軍研究實驗室在機器人學、自主性、人工智能和機器學習方面有積極的研究計劃。本報告的作者領導了政府、學術界和工業界合作伙伴之間的大型合作機器人研究工作的研究和整合活動,在場景理解、人類與人工智能的合作、RL、多智能體強化學習和多智能體協作系統方面進行了開拓性的研究。此外,ARL還擁有廣泛的基礎設施來進行上述領域的研究。這包括用于機器人研究的地面和空中平臺;用于場景驅動研究的機器人研究合作園區(R2C2),能夠承載實時的、可擴展的、多領域的實驗;旨在支持人工智能和機器學習應用的新興要求的集裝箱式超級計算機;這只是其中的幾個例子。我們相信,這些專業知識和資源可以被用來建立一個成功的計劃,將人工智能納入C2應用。
ARL主任戰略倡議(DSI)計劃是一個跨學科基礎和應用研究的機制,成功的提案可以跨越科學和技術學科的界限。該計劃確定了代表戰略研究機會的主題領域,對陸軍任務具有非常高的潛在回報,以擴大現有的計劃或建立新的核心能力,并在這些領域建立內部的專業知識。
作為20財政年度授予的 "用于MDO C2的人工智能 "DSI項目的一部分,我們探索基于DRL的算法在多大程度上可用于估計紅方部隊的狀態,評估紅方和藍方的戰斗損失(損耗),預測紅方的戰略和即將展開的行動,并根據所有這些信息制定藍方計劃。這種方法有可能為藍方部隊產生新的計劃,利用潛在的機會窗口,其速度比專家規劃者快得多。最近,DRL在非結構化戰略游戲中的成功提供了重要的暗示性證據,表明人工智能方法可能能夠基本上 "從零開始 "發現適當的戰術概念,并以高于人類的速度選擇、應用和執行戰略。
在這個DSI中,我們探索使用DRL在戰斗行動前制定詳細的計劃,并在執行正在進行的行動中生成實時計劃和建議。我們計劃在兩個關鍵領域推動技術水平的發展:1)構思、設計和實施基于DRL的智能體,以生成與專家計劃員生成的計劃一樣好或更好的計劃;2)將人類納入指揮和學習回路,并評估這些人工智能-人類(人在回路中)的解決方案。在為這種人工智能支持的C2開發途徑的同時,需要回答幾個研究問題。在這個DSI中,我們試圖回答三個具體問題:
DRL C2智能體的訓練和數據要求是什么,以便準確和足夠快地學習?
我們如何才能使DRL智能體具有通用性,以便根據人類專家的判斷,特別是在以前未曾見過的細節被引入到一個情況中時,它們能夠合理地執行?
在人工智能支持的C2系統中,人類的干預有什么影響?
該項目第一年的重點是開發研究的基本構件,包括:1)通過調整和使用基于《星際爭霸II》和OpSim的環境來開發模擬能力和高級界面;2)開發執行C2功能的初始端到端人工智能;3)通過與高性能計算(HPC)環境整合來開發計算能力;4)初步確定數據量和訓練要求。本報告提供了這些任務中每個任務的細節。
作為該項目的一部分,我們開發了C2模擬和實驗能力,包括與基于DRL的人工智能算法和國防部高性能計算系統上的可擴展RL的接口的模擬戰斗空間(圖1)。我們使用兩種模擬環境來生成C2場景:星際爭霸II學習環境(SC2LE)29和OpSim。虎爪,一個由卓越機動中心(Fort Benning,Georgia)開發的場景,在模擬環境中生成了真實的戰斗環境。最后,我們使用RLlib31,一個為RL提供可擴展軟件基元的庫,在HPC系統上擴展學習。
圖1 C2基礎設施概述
虎爪行動(Tiger Claw)是一個預定義的戰斗場景,由紅軍和藍軍組成,由喬治亞州本寧堡的上尉職業課程的軍事主題專家(SME)開發。這個假想場景顯示特遣部隊(1-12 CAV)在區域內進攻,以奪取OBJ Lion,以便將師的決定性行動(DO)向東傳遞。特遣部隊的目標是穿越Thar Thar Wadi,摧毀紅色部隊,并奪取OBJ Lion(圖2)。特遣部隊包括使用M1A2艾布拉姆斯的戰斗裝甲,使用布拉德利的步兵戰車,野戰炮和迫擊炮,使用布拉德利的裝甲偵察騎兵,戰斗航空兵,防空兵和無人駕駛飛機。紅軍由裝備BMP-2M的機械化步兵、裝備T-90坦克的戰斗裝甲、野戰榴彈炮、裝備BMP-2M的裝甲偵察騎兵、戰斗航空兵、反裝甲兵和戰斗步兵組成。虎爪方案還包括由中小型軍事專家制定的藍軍和紅軍的可能計劃。這些計劃是根據作戰命令(OPORD)和相應的威脅戰術,使用理論上的力量部署產生的。虎爪方案已被納入OpSim和《星際爭霸II》,并作為一個基準基線,用于比較不同的神經網絡架構和獎勵驅動屬性。
圖2 TF 1-12 CAV在《虎爪》中的作戰區域(AO)。
星際爭霸II》是一個復雜的實時戰略游戲,玩家要在高水平的經濟決策和低水平的個人控制可能的數百個單位之間取得平衡,以壓倒和擊敗對手的部隊。星際爭霸II》對人工智能有許多困難的挑戰,使它成為MDO中C2的一個合適的模擬環境。例如,游戲有復雜的狀態和行動空間,可以持續數萬個時間步驟,實時選擇數千個行動,并由于游戲的部分可觀察性或 "戰爭迷霧 "而捕捉到不確定性。此外,該游戲具有可用于MDO模擬的異質資產、固有的C2架構、嵌入式軍事(動能)目標,以及與更強大的模擬(例如,One Semi-Automated Force [OneSAF])相比,實施/修改的學習曲線較淺。DeepMind的SC2LE框架將暴雪娛樂公司的《星際爭霸II》機器學習應用編程接口暴露為RL環境。這個工具提供了對《星際爭霸II》和相關地圖編輯器的訪問,以及RL智能體與《星際爭霸II》互動的接口,獲得觀察和發送行動。
作為DSI的一部分,一個SC2LE地圖是根據Tiger Claw OPORD和支持文件開發的(圖3)。通過重新繪制圖標以納入2525B軍事符號和與虎爪計劃相關的單位參數(武器、范圍、比例),游戲被軍事化。內部評分系統被重新使用,以計算RL的獎勵函數,其中包括任務目標的收斂(穿越瓦迪),藍色損耗的最小化,以及紅色損耗的最大化。
圖3 《星際爭霸II》中的虎爪地圖
虎爪劇情是在《星際爭霸II》中使用其編輯器重新創建的。這個編輯器包含在暴雪娛樂公司免費下載的《星際爭霸II》中,它有許多創建自定義內容的功能。掌握這些功能的一個很好的資源是專門用于編輯器的在線社區論壇。在下面的章節中,將詳細討論使用編輯器開發地圖、單位和獎勵的問題。
我們使用《星際爭霸II》編輯器為《虎爪》場景創建了一個新的近戰地圖。地圖的大小是編輯器中最大的(256乘256),使用《星際爭霸II》的坐標系統。荒地瓷磚組被用作地圖的默認表面,因為它在視覺上類似于《虎爪》中AO的沙漠地區(圖4)。
圖4 《星際爭霸II》編輯器中的初始虎爪地圖
在最初的設置之后,我們使用地形工具修改地圖,使其大致接近AO的情況。關鍵的地形特征是無法通行的瓦迪,其交叉點有限。
距離縮放是創建場景的一個重要因素。在最初的地圖中,我們使用已知的地標之間的距離,將《星際爭霸II》的距離,使用其內部坐標系統,轉換為公里數。這種轉換對于在單位修改期間調整武器射程非常重要(圖5)。
圖5 修改后的《星際爭霸II》編輯地圖
最初的實驗使用《星際爭霸II》來可視化模擬復制品。這些回放的游戲感成為一個明顯的干擾因素。為了補救這個問題,我們希望采用其他的可視化方法,特別是ARL開發的混合現實環境Aurora。新的可視化方法使用AO的地理地圖。因此,有必要修改《星際爭霸II》的地圖,以便與AO的經緯度相一致。在修改后的地圖中,距離比例是通過將《星際爭霸II》的坐標轉換為經緯度來確定的。
為了模擬 "虎爪 "場景,我們選擇了與軍事單位能力相近的《星際爭霸II》單位。我們復制了《星際爭霸II》中的單位,并在編輯器中修改了它們的屬性以支持該場景。
首先,我們修改了這些單位的外觀,并用適當的MIL-STD-2525符號代替(表1)。在《星際爭霸II》中,每個單位都與多個角色相關聯,這些角色控制著該單位在游戲中的外觀。我們能夠將演員與他們的默認效果圖解開,有效地使這些單位不可見。接下來,我們將所需的軍事符號的圖像導入編輯器。最后,我們使用了SCMapster.com上發布的 "rr Sprite Engine"(LGPL 2.1許可)庫,將這些單位與它們的軍事符號聯系起來。
表1 虎爪部隊與《星際爭霸II》部隊的映射關系
為該場景修改的其他屬性包括武器射程、武器傷害、單位速度和單位壽命(它能承受多少傷害)。武器射程是從公開資料中發現的,并根據地圖的尺寸進行縮放。單位速度在《虎爪行動指令》中確定,并固定在該值上。傷害和生命的屬性是估算出來的,其指導原則是保持平衡的沖突。每個《星際爭霸II》單位通常只有一種武器,這使得模擬一個連級單位可用的各種武器具有挑戰性。額外的努力來提高單位修改的準確性,需要戰爭游戲的主題專家。
修改后的部隊被放置在地圖上,以接近虎爪的場景(圖6)。在實驗過程中,藍色部隊將由一個使用PySC2(DeepMind的SC2LE的Python組件)開發的智能學習智能體控制。此外,藍軍部隊被修改為沒有天生的攻擊性。換句話說,他們不會參與進攻或防守,除非有智能體的特別命令。為了控制紅色部隊,我們使用了兩種不同的策略。第一種策略是為紅色部隊的行動加入一個腳本化的CoA,在每次模擬中都會執行。該部隊默認的攻擊性屬性控制它如何與藍方交戰。第二種策略是讓《星際爭霸II》的機器人AI控制紅方部隊執行全面攻擊,或在編輯器中稱為自殺。內置的《星際爭霸II》機器人有幾個難度級別(1-10),這決定了機器人的熟練程度,其中1級是一個相當初級的機器人,可以很容易地被擊敗,10級是一個非常復雜的機器人,使用玩家無法獲得的信息(即一個作弊的機器人)。最后,環境因素,如戰爭迷霧,在不同的實驗中被切換,以調查其影響。
圖6 使用MILSTD2525符號的星際爭霸II
獎勵功能是RL的一個重要組成部分,它通過對每種情況給予積極或消極的獎勵來控制智能體人對環境變化的反應。我們在SC2LE中加入了虎爪場景的獎勵功能,我們的實現超越了SC2LE內部的評分系統。原來的計分系統根據玩家的單位和結構的資源價值進行獎勵。我們的新計分系統只關注游戲的軍事方面,即獲得和占領新的領土,以及摧毀敵人。
我們的獎勵功能為藍軍越過瓦迪(河流)提供+10分,為撤退提供-10分。此外,我們還對摧毀紅軍部隊給予+10分,如果藍軍部隊被摧毀則給予-10分。
為了實現獎勵功能,首先需要使用SC2LE編輯器來定義地圖的各個區域和目標。區域是由用戶定義的區域,它被觸發器所利用(圖7)。
圖7 《星際爭霸II》中的區域和目標
觸發器是創建一套指令的模板,允許用戶將與特定事件相關的效果編入模擬中(圖8)。一般來說,一個觸發器由以下部分組成。
事件。啟動觸發器(例如,一個單位進入一個區域)。
變量。存儲信息。(例如,BlueForceScore,藍軍的得分)。
條件。對行動的限制,需要在行動發生時為真。(例如,單位是藍色部隊的成員)。
行動。事件的結果或成果(例如,單位獲得積分)。
圖8 《星際爭霸II》中虎爪場景的觸發實例
作為未來工作的一部分,我們計劃根據指揮官在虎爪警告令(WARNORD)中的意圖所定義的具體團隊目標來納入額外的獎勵。獎勵功能將試圖訓練智能體維持單位作為團隊,作為團隊一起參與預定目標,并創造對軍事主題專家來說合理的最佳行為。
OpSim是由科爾工程服務公司(CESI)開發的決策支持工具,提供計劃支持、任務執行監控、任務演練、嵌入式訓練以及任務執行監控和重新計劃。OpSim與SitaWare指揮、控制、通信、計算機和情報(C4I)集成,后者是由項目執行辦公室指揮控制通信-戰術(PEOC3T)投入使用的指揮所計算環境(CPCE)的重要組成部分,使各級指揮部門能夠共享態勢感知并協調作戰行動,從而使其成為直接與作戰任務指揮相連的嵌入式模擬。它從根本上被構造成一個基于可擴展的面向服務架構(SOA)的模擬,能夠比目前最先進的模擬環境如OneSAF和MAGTF戰術戰爭模擬器(MTWS)運行得更快。傳統的建設性模擬最多運行1-20次墻鐘時間,而OpSim可以運行30次虎爪的復制--如果實時連續運行,需要240小時。OpSim中模擬計劃的輸出包括根據彈藥支出、傷亡、設備損失、燃料使用等標準對藍軍計劃進行綜合排名。然而,OpSim工具并不是為人工智能應用而設計的,必須通過整合接口來運行基于DRL的算法。開發了一個OpenAI Gym接口,以暴露模擬狀態,并向外部智能體提供模擬控制,能夠為模擬中的選定實體提供改變的行動,以及在回應接口之前的模擬時間。
強化學習可以被形式化為一個馬爾科夫決策過程,由一組行動、一個過渡概率函數、一個獎勵信號和一個環境狀態組成。32 在RL中,目標是找到一個最佳行動,使預期的、累積的折現獎勵之和最大化。將深度神經網絡與RL結合起來,DRL將深度神經網絡架構與RL框架結合起來,以接近環境中各狀態的最佳行動。DRL的設計包括以下部分:狀態空間(環境狀態表示)、行動空間(行動集)、獎勵信號和一個深度神經網絡。
對于環境狀態的訪問,RL框架使用類似OpenAI Gym的接口與OpSim和StarCraft II模擬器,為RL提供環境的抽象(圖9)。OpenAI Gym是一個開源的軟件包,為RL的開發和測試提供了一個具有通用接口的環境集合。OpenAI Gym專注于RL環境的抽象化,從而保持智能體開發的靈活性。兩種模擬環境中使用的具體行動、狀態空間和獎勵信號將在后續章節中詳細討論。
圖9 使用OpenAI Gym與OpSim和StarCraft II模擬器的RL框架
DRL需要智能體與環境互動的許多情節來收集經驗,一個標準的方法是通過平行數據收集來擴展。在這個項目中,HPC被用來擴展DRL算法,以支持智能體群體從成千上萬的平行實例中學習,以解決C2的行動空間復雜性。ARL的FOB系統最初用于分布式訓練,然后被移植到國防部超級計算資源中心(DSRC)的最新SCOUT系統。FOB系統是一個由64個節點組成的實驗性異構集群,每個節點有一個英特爾8核至強CPU和64GB的內存。SCOUT是位于ARL DSRC的一個非保密的HPC-in-a-container系統,有22個訓練節點和128個推理節點。SCOUT的每個計算節點都配備了IBM Power9 40核處理器,推理節點有256GB內存,訓練節點有700GB內存。
同時,RLlib,一個由加州大學伯克利分校RISELab開發的可擴展RL框架的開源庫,被用于執行分布式學習。RLlib提供了一個與框架無關的機制,以便在OpSim和StarCraft II上有效地擴展DRL神經網絡架構的訓練。該框架部署在HPC系統上,以展示RLlib算法在系統的多個節點上的擴展性,并提供可定制的神經網絡模型和模擬環境的靈活性。
利用第2節所述的基礎設施,我們為《星際爭霸II》和OpSim環境開發了一個端到端的DRL框架,并進行了初步實驗。在這一節中,我們將描述網絡架構、實現和一些初步的實驗結果。
我們使用第2.2節中描述的戰術版《星際爭霸II》訓練了一個多輸入和多輸出的深度強化神經網絡。我們使用了異步優勢演員批判(A3C)算法,這是一種由多層卷積網組成的狀態輸入處理方法,長短期記憶(LSTM)遞歸層給網絡增加了記憶。
在《星際爭霸II》中,狀態空間由7個大小為64x64的迷你地圖特征層和13個大小為64x64的屏幕特征層地圖組成,總共有20個64x64的二維圖像(圖9的左側面板)。此外,它還包括13個非空間特征,包含玩家資源和建造隊列等信息。這些游戲特征是用輸入處理管道來處理的,如圖10所示。星際爭霸II》中的動作是函數形式的復合動作,需要參數和關于該動作要在屏幕上發生的位置的說明。例如,像 "攻擊 "這樣的動作被表示為一個函數,需要屏幕上的X-Y攻擊位置。行動空間由行動標識符(即運行哪個行動)和兩個空間行動(x和y)組成,這兩個空間行動被表示為兩個長度為64個實值項的向量,在0和1之間。 表2劃分了觀察空間、行動空間和《星際爭霸II》模擬的獎勵。
圖10提供了星際爭霸II任務中相互嵌入模型和A3C智能體的狀態輸入處理管道的概述。星際爭霸II提供了三個主要的狀態信息流:小地圖層、屏幕層和非空間特征(如資源、可用行動和建造隊列)。小地圖和屏幕特征由相同的兩層卷積神經網絡(CNN)處理(頂部兩行),以便分別提取地圖的全局和局部狀態的視覺特征表示。非空間特征通過一個具有非線性激活的全連接層進行處理。然后,這三個輸出被連接起來,形成智能體的完整狀態空間表示,以及基于狀態的相互嵌入模型的部分。
圖10 《星際爭霸II》的狀態輸入處理
表2 《星際爭霸II》模擬的觀察空間、行動空間和獎勵
A3C是優勢行動者-批評算法的分布式版本,其中創建了行動者的多個平行副本,以同時執行行動和收集經驗。讓多個行為體收集經驗可以提高探索效率,從而改善學習。我們使用的A3C智能體的結構類似于Mnih等人的Atari-net智能體,它是一個從Atari改編的A3C智能體,在SC2LE狀態和行動空間上運行。我們對這個智能體做了一點修改,增加了一個LSTM層,因為Mnih等人的研究表明,增加模型的內存可以提高性能。我們的A3C智能體的結構如圖11所示。
圖11 A3C智能體的結構。這里顯示的是一個完整的RL智能體及其與《星際爭霸II》的連接示意圖。作為典型的政策性智能體,這里的A3C智能體(綠色)從任務環境中獲取狀態和獎勵信息,并使用這些信息來計算下一個時間步驟的行動,以及計算梯度來增加獎勵最大化。
我們用20個并行的演員學習者來訓練A3C模型,使用了8000個模擬的《星際爭霸II》機器人的戰斗,操作由DeepMind開發的手工制作的規則。如果BLUEFOR穿過瓦迪或OPFOR排被摧毀,則提供+10的正強化,如果BLUEFOR被摧毀則提供-10的負強化。
我們在《星際爭霸II》的 "虎爪 "場景中對訓練好的A3C模型進行了100次的測試。這些模型與具有隨機行動的隨機基線以及人類玩家與《星際爭霸II》機器人進行的10場模擬戰斗進行了比較。圖12中提供了收集到的指標的匯總圖,包括總的情節獎勵和藍軍的傷亡人數。我們看到,與人類玩家相比,人工智能指揮官不僅取得了相當的表現,而且在任務中表現得稍好,同時還減少了藍軍的傷亡。
圖12 與人類和隨機智能體基線相比,訓練有素的人工智能指揮官(A3C智能體)的總獎勵和BLUEFOR傷亡情況。人工智能指揮官能夠實現與人類基線相當(略好)的獎勵,同時減少藍軍的傷亡。
為OpSim模擬環境開發了兩種類型的指揮官。第一種是基于專家設計的規則引擎,由喬治亞州本寧堡的軍事主題專家使用理論規則開發。第二種是DRL訓練的神經網絡,采用A2C算法訓練的多輸入多輸出的LSTM神經網絡。A2C與A3C類似,但沒有異步部分。OpSim的RL界面支持多智能體訓練,每個部隊可以是基于規則的,也可以是人工智能指揮官。
政策網絡首先在FOB的15個節點上進行訓練,75個平行工作者收集了482k次模擬戰斗,耗時36小時。此外,在SCOUT系統上應用和訓練了局部切面位置和無目標獎勵更新。有了更新的觀察和獎勵,39個平行工作者收集了175k次戰斗經驗,花了37小時。
觀察空間由17個特征向量組成,其中觀察空間是基于每個實體的設備傳感器的部分觀察。與S2CLE不同,OpSim目前不使用圖像輸入或屏幕圖像的空間特征。行動空間主要包括簡單的運動和交戰攻擊(表3)。
表3 OpSim模擬的觀察空間、行動空間和獎賞
訓練好的模型用100個推出的模擬結果進行評估,在檢查站使用凍結政策,BLUFOR的平均獎勵最高。在SCOUT上,4510號檢查站的BLUFOR政策平均獎勵達到了200,OPFOR政策平均獎勵達到了-322的滾動平均值。對100次滾動的分析表明,經過DRL訓練的BLUFOR智能體將損失從4左右降至0.5,而增加了OPFOR的損失(圖13)。這一結果是通過采用僅使用戰斗裝甲連和戰斗步兵連進行交戰的策略達到的。它學會了利用BLUFOR最致命的部隊與Abrams和Bradleys的策略,同時保護脆弱的資產不與OPFOR交戰(圖14)。
圖13 主題專家和人工智能指揮員之間的實體損失比較
圖14 一次推廣的開始和結束的快照
作為DSI的一部分,為C2的DRL開發了兩個新型測試平臺。基于StarCraft II和OpSim。使用這些最先進的測試平臺開發了端到端的DRL方法。該基礎設施被移植到國防部的HPC系統中,以擴大訓練的規模,進行平行數據收集。
初步實驗結果顯示,初步觀察到DRL在沒有預編碼知識的情況下實現了有效和合理的C2,基于DRL的 "人工指揮官 "可以在模擬的旅級戰斗中執行綜合規劃-執行過程。一些結果,特別是在《星際爭霸II》的環境中,表明人工智能采取的策略與有能力的人類玩家的策略相當。它還表明,計算資源并不是人工智能在C2中的障礙;我們看到使用HPC系統學習的速度足夠快,在37小時內就能收斂。總之,DSI的第一年提供了充分的證據,表明基于學習的人工智能有可能被用作未來軍事行動C2的關鍵技術。
浮動航天器模擬器(FSS)是模仿衛星在空間運動的機器人載體。使用FSS可以在地球上對制導、導航和控制算法進行實驗驗證,然后再將其應用于空間,因為空間的錯誤是災難性的。此外,FSS是空間系統工程課程中大學生的一個重要研究和教育工具。然而,目前使用的所有FSS都是定制開發和昂貴的項目。本論文涵蓋了用于教學和研究目的的新型浮動航天器模擬器的開發、組裝和測試過程,該模擬器被命名為MyDAS,代表微型動態自主航天器模擬器。通過介紹MyDAS,一個小型的、簡單的和低成本的FSS,使FSS在大學和中學階段的研究和教育中得到更廣泛的利用。討論了MyDAS的不同推進配置及其相應的運動方程。對于一個特定的配置,選擇并測試了現成的氣動和電子組件。一個模塊化和標準化的3D打印框架將所有部件固定在一起,形成一個最終的剛性載體。最后,MyDAS在各種實驗中被測試,完成了全部的硬件功能。
本論文進行小型化和簡化的浮動航天器模擬器(FSS)工作。本章簡要介紹了這項工作的動機和目標,以及本論文的結構。
未來空間任務中的航天器需要靈活、自主的制導、導航和控制(GNC)算法,如對接、接近或清除碎片的操縱[1], [2], [3]。用硬件在回路中驗證GNC算法的一種方法是使用FSS,而無需將測試對象送入太空。盡管不向太空發射任何東西而大大降低了成本,但目前的FSS仍然需要大量的經濟和費時的工作來建造和操作,這只有專門的機構或公司才可能做到。除此之外,目前的FSS都是獨特的設計,沒有標準化。引入一種新的、負擔得起的、小而簡單的FSS可以使本科生甚至高中生以及業余用戶能夠使用FSS工作。提供這種機會可以增加為未來空間任務創造更好的GNC算法的成功機會。
先前工作提出了一個更便宜、更小、更簡單的FSS的概念[4],稱為MyDAS,代表微型動態自主航天器模擬器。提出了初步的計算機輔助設計(CAD)模型、材料清單、氣動圖、接線圖、兩種浮動配置和三種推進配置。本論文的目的是建立一個MyDAS的物理工作實例。為此,所有定制設計的部件應與購買的現成部件一起制造和組裝。所有的功能部件應先單獨測試,然后再組合。最終的裝置必須能夠使用壓縮空氣供應漂浮和推動自己。如果可能的話,在不使用推進系統的空氣的情況下,漂浮時間應超過5分鐘。此外,推進系統必須由機載計算機和機載電池控制。該裝置的硬件和軟件應是開源的,以使其可重復使用。作為其中的一部分,將提出一個成本估算。在未來的工作中,希望MyDAS能被積極用于驗證和改進GNC算法。
如上所述,本論文是基于以前的工作,其中介紹了關于FSS的理論基礎和技術現狀[4]。理論基礎和技術現狀同樣適用于本論文,這就是為什么它們在本文件中沒有明確重復。在第2章運動方程中,以前工作中的簡化運動方程被指定用于其中一個推進配置。第3章氣動系統討論了MyDAS的氣動系統。第4章電子學中解釋了MyDAS的電路以及所有的電子元件。第5章框架設計的主要內容是構建和制造一個定制的、3D打印的框架,該框架將所有的部件固定在一起。第6章設置和測試描述了在組裝MyDAS的過程中對單個和組合部件的若干測試。在第7章實驗中,全功能的FSS被用在一個花崗巖試驗臺上,以證明其功能,以及描述某些推進方面的特征。最后一章的結論是對工作的總結以及對未來工作的建議。復制MyDAS的基本信息,如技術圖紙、材料清單和Python列表,可以在附錄中找到。此外,該代碼與CAD文件和更多不能打印在紙上的數據一起在網上提供。
這份頂點報告分析了增材制造(AM)技術在美國國防部(DOD)當前和未來的使用情況。該分析為開發增材制造工藝和分析工具(AMPAT)提供了必要的技術背景。AMPAT將幫助利益相關者確定哪些增材制造設備能最好地服務于作戰人員和他們在遠征環境中的任務。此外,該工具可以被利益相關者用來確定AM能力在整個艦隊中最有利的分布,并就這些能力應該如何被整合到更大的海軍任務和更大的國防部企業中做出決定。采用系統工程(SE)方法來收集關于當前和未來的AM方法的信息,以了解和定義AM系統的操作要求。此外,還利用SE過程來分析建立工具的替代軟件選項,實施敏捷軟件開發過程來開發工具,并驗證和確認該工具符合項目要求。研究發現,AMPAT根據用戶定義的輸入參數和加權值,成功地輸出了一個AM系統建議的排名列表。關于選擇AM設備和為艦隊制定分散計劃的建議包括使用AMPAT的可交付成果,利用用戶定義的輸入值進行定制的、迭代的分析,以適應特定的遠征環境。
美國海軍和海軍陸戰隊一直在各種作戰環境和任務場景中增加使用增材制造(AM)能力,以快速交付作戰設備,降低成本,更換和維修部件。美國海軍研究生院(NPS)海軍遠征增材制造(NEAM)團隊的成立是為了解決海軍遠征作戰司令部(NECC)提出的幾個研究問題。該團隊開發了一個名為增材制造過程和分析工具(AMPAT)的工具,該工具將:1)確定具體的增材制造設備,以便在遠征環境中為部隊提供最佳服務,包括分布式海上行動(DMO)、有爭議環境中的沿岸行動(LOCE)和遠征先進基地行動(EABO);2)輸出建議,可用于幫助通知整個艦隊的增材制造設備分散計劃;以及3)幫助NECC更好地將其能力融入更大的海軍任務。
NEAM團隊使用修改過的瀑布過程模型系統工程方法來開發一個工具來回答這些問題。NEAM團隊進行了詳細的文獻審查,以收集有關各種AM技術、AM零件的設計考慮因素、材料處理以及AM在國防部的使用的信息。此外,該團隊還會見了許多從事AM技術工作的組織的主題專家(SMEs),包括海軍設施(NAVFAC)工程和遠征作戰中心、海軍海上系統司令部技術辦公室、海軍陸戰隊系統司令部、海軍水面作戰中心Indian Head分部、海軍水面作戰中心Pt. Hueneme分部、海軍陸戰隊第一后勤集團、海軍供應系統司令部(NAVSUP)、太平洋海軍信息戰中心和海軍研究辦公室。
AMPAT是一個基于Excel的工具,用Visual Basic for Applications(VBA)編程語言編寫。AMPAT包括一個數據庫,供用戶輸入各種AM系統的信息和數據,以及一個工具儀表板,使用戶能夠在進行分析所需的輸入和分析的輸出之間輕松瀏覽。儀表板允許用戶行使工具功能,包括調整分析標準和用戶選擇,向AM數據庫添加打印機,檢查AM數據庫的錯誤,運行分析,以及清除結果。用戶可以定制AMPAT分析,對一組具有不同規格和特性的AM打印機進行排名,以確定在特定環境下滿足作戰人員需求的最佳AM系統設計。關于如何使用AMPAT的每個功能,可以在《用戶指南》中找到全面的、分步驟的說明。
本報告為用戶提供了一個執行AMPAT以獲得分析結果的方法。首先,用戶通過確定感興趣的具體屬性(如故障率、運行可用性、環境條件)來設置分析參數。接下來,用戶為每個選定的屬性設置加權值,以排列每個屬性相對于另一個屬性的重要性。用戶必須設置權重值,以便AMPAT進行必要的數學分析,提供具體的AM系統建議。數學分析將根據用戶對每個屬性的權重輸入,計算出每個AM系統的加權分數,并將其標準化。AMPAT將生成一個過濾的數據庫表,其中包括滿足用戶在運行分析之前確定的輸入參數的AM系統。此外,根據分配給每個參數的權重值,將提供這些AM系統的排名列表。最后,AMPAT將繪制分析結果;用戶可以選擇特定的參數,以包括在繪圖中,并決定是按系統繪圖還是按屬性繪圖。
NEAM團隊建議NECC使用AMPAT進行迭代分析,并繼續向數據庫添加新的AM系統和系統屬性。隨著新的信息被輸入該工具,用戶將收到更詳細的結果,這可能會影響最終的AM排名。AMPAT提供的排名將為決策者提供建議,說明哪種AM設備在執行DMO、LOCE和EABO環境中最能為部隊服務。此外,NEAM團隊建議NECC將AMPAT升級到具有適當安全分類的環境中,以定制該工具的分析,為艦隊的特定地點提供AM系統的建議。如果有適當的輸入,該分析的結果可用于確定在整個艦隊中預置AM技術的最佳策略。
為了統一國防部和國防部,AM領域的專家必須共同制定一份戰略文件,確定批準AM系統用于國防部的必要標準。AMPAT應被串聯使用,以協助社區評估不同的AM技術,以確定是否適合于國防部的任務和作戰方案。隨著用戶繼續用更多的AM系統填充AMPAT,并反復進行不同參數的分析,該工具的結果和輸出可用于證明國防部的批準決定。
NEAM團隊還建議,AMPAT應擴大到包括一個零件和零件規格的圖書館或資料庫。這將擴大AMPAT的效用,使其能夠為AM系統提供建議,這些系統應被用來打印特定的零件,以支持船舶、潛艇、飛機和其他車輛或設備。最終,這將減少成本并縮短艦隊的時間表,以快速生產量身定做的部件,提高作戰人員的準備程度。
AMPAT提供了一個決策分析過程,以確定最理想的AM設備來支持特定任務,并提高整個國防部對AM能力的認識。AM技術在確保迅速和有條不紊地維持作戰設備和加強艦隊準備方面發揮了關鍵作用。AMPAT的使用將有助于使國防部和國防部統一努力推進AM技術,以支持更大的海軍任務的需要。
本章定義了本研究項目的問題陳述、目標、范圍和操作方案。此外,本章還解釋了用于開發工具的方法,以及該工具將如何被主要利益相關者--海軍遠征作戰司令部(NECC)和其他利益相關者使用,以滿足研究目標。
幾年來,美國海軍和海軍陸戰隊一直在作戰環境中采用增材制造(AM)能力來快速交付作戰裝備。必須進行研究,以確定如何整合未來的AM能力,同時最大限度地提高投資回報,并盡量減少重復工作。首要的目標是將這項研究應用于部署在各種環境中的能力,如:分布式海上行動(DMO)、有爭議環境中的沿岸行動(LOCE)和遠征先進基地行動(EABO)。就本報告而言,重點是開發一個工具和數據庫,以協助決策者確定在這些環境中使用適當的增材制造。
增材制造已經被證明是非常有益的,它提供了降低成本和快速的部件更換和維修;本報告的以下部分將更詳細地討論AM的具體優勢和劣勢。由于AM是一個快速發展的技術領域,很難持續比較和權衡技術能力和屬性以滿足不斷變化的需求。需要一個工具,讓領導層充分了解當前和新的AM技術提供了哪些能力,這樣他們就可以做出明智的決定,使國防部(DOD)的投資回報最大化,以支持作戰人員和他們的任務。決策者需要考慮的一些特性包括:移動性、易用性、培訓、打印材料和打印機床尺寸。
本項目的目的是提供一個總體決策分析方法和工具,其中包括一個易于修改的NECC當前3D打印機和部件的數據庫,以有效地將當前和未來的AM能力整合到更廣泛的海軍遠征任務中。海軍遠征增材制造(NEAM)團隊廣泛研究了當前的AM能力及其在遠征部隊中的應用,以幫助開發分析方法、工具和數據庫,NECC可以采用并用于確定如何在整個美國海軍艦隊中最佳地分散AM能力并實現利益最大化。雖然在海軍遠征軍內,以及在海軍和國防部內廣泛存在著對AM集成的廣泛需求和巨大潛力,但NEAM項目側重于將AM作為部署系統、平臺和車輛的支持能力。最終,該計劃將作為NECC的參考和指南,以便在海軍和海軍陸戰隊的AM設備部署戰略和采購方面做出明智的決定。
本項目的重點是NECC在部署AM設備供遠征軍使用時,如何使投資回報最大化,并盡量減少重復工作。這項研究有助于實現在DMO、LOCE、EABO和其他情況下部署AM能力的總體目標,同時確保與現有工作的互操作性,盡量減少重復的工作,并使投資回報最大化。為了不重復工作,該團隊利用以前為類似工作完成的工作,并與海軍內部正在進行的AM工作協調。這項研究的目的是為NECC提供一個決策分析過程,以指導決策者選擇最有效的AM技術來滿足遠征環境中的具體使用情況。
上述三種遠征環境(即DMO、LOCE和EABO)對AM技術都有自己獨特的需求。DMO環境將海軍的注意力集中在同行和近鄰的競爭者身上,這需要艦隊級別的參與主要作戰行動。為了做到這一點,它在各司令部之間建立了更加一體化的關系,并促進了對風險的計算接受。同樣,EABO手冊指出,"EABO是一個未來的海軍作戰概念,滿足美國聯合遠征作戰的下一個范式的彈性和前沿存在要求"(海軍陸戰隊協會2018,5)。這一戰略提供了進行遠征作戰的機會,在不摧毀所有敵軍的情況下擊敗對手的戰略。此外,EABO手冊 "鼓勵海軍陸戰隊和海軍發展優化的內部力量能力,以服務于整個DMO結構"(海軍陸戰隊協會2018,22)。LOCE概念描述了沿海環境中的海軍行動,考慮到新出現的威脅,為海軍和海軍陸戰隊提供了一個創新的、聯合的框架(有爭議環境中的沿海行動,2020)。AM在確保作戰人員在這些環境中得到適當裝備方面發揮著關鍵作用。
考慮到這些環境,NEAM項目重點關注以下問題,以利用AM技術解決作戰人員能力方面的關鍵差距。
1.什么樣的AM設備能夠最好地服務于執行DMO/LOCE/EABO的部隊,包括考慮與其他美國海軍陸戰隊和海軍部隊的互操作性?
2.在整個艦隊中,什么是最有利的AM能力的分散,以使利益最大化,包括潛在的設備預置?
3.NECC如何將其能力更好地整合到更大的海軍任務中?
這個項目并不打算分析AM實施的每一部分;因此,未來的工作將建立在這個項目的基礎上。未來的工作也被認為是減少范圍蠕變風險的一個緩解因素。NEAM團隊對未來工作的建議可以在第七章A節中找到。
為了實現協助NECC最大限度地提高投資回報和減少重復的項目目標,這項研究的重點是開發一個數據庫和工具,以協助決策和增加對特定任務和目標的可用AM能力的接觸。該工具和數據庫是使用微軟Office產品開發的,因為它在整個聯邦政府的計算機系統中通常是可用的。這將有助于確保它能在整個海軍中被廣泛傳播并被大量受眾使用。
該工具是使用系統工程過程中選擇的軟件開發的。它側重于由利益相關者和NECC定義的AM系統的各種能力。用戶可以使用內置的圖形用戶界面(GUI)加載AM系統的各種特性并分配權重。該工具根據所期望的遠征環境的特征分配權重,輸出AM系統建議。
為了確保交付物滿足利益相關者的需求,NEAM團隊采用了一種系統工程方法,包括利益相關者的持續反饋,這在第四章有詳細描述。這使得利益相關者能夠在項目進展過程中對研究的具體方向提供意見,并使NEAM團隊能夠在獲得信息和分析結果時提供。
本報告第一章解釋了問題陳述、研究的目標和范圍,以及用于開發本項目中可交付成果的方法。
第二章包括對NEAM團隊為收集不同類型的AM技術、如何設計AM零件、材料處理方面的考慮以及AM在國防部的具體使用情況而進行的文獻審查的廣泛和詳細描述。此外,第二章描述了NEAM團隊用來完成項目的系統工程方法,以及考慮過的其他方法。
第三章著重于利益相關者的識別和分析,并描述了主要利益相關者的需求,用于將其轉化為具體要求的過程,以及當前AM能力中存在的差距。
第四章概述了增材制造工藝和分析工具(AMPAT)的代碼開發過程和所遵循的軟件流程,以及該工具的能力和限制。
第五章提供了AMPAT的幾個使用案例,并描述了該工具所要使用的操作環境。
第六章全面解釋了AMPAT如何用于檢索特定任務的分析結果,并解釋了用于確保該工具滿足項目要求和利益相關者需求的驗證和確認(V&V)方法。
第七章記錄了開發團隊得出的結論,總結了研究和分析對利益相關者和國防部的益處,并對未來工作提出了建議。
小型無人駕駛飛機系統(sUAS)的指數式增長為美國防部帶來了新的風險。技術趨勢正極大地改變著小型無人機系統的合法應用,同時也使它們成為國家行為者、非國家行為者和犯罪分子手中日益強大的武器。如果被疏忽或魯莽的操作者控制,小型無人機系統也可能對美國防部在空中、陸地和海洋領域的行動構成危害。越來越多的 sUAS 將與美國防部飛機共享天空,此外美國對手可能在美國防部設施上空運行,在此環境下美國防部必須保護和保衛人員、設施和資產。
為了應對這一挑戰,美國防部最初強調部署和使用政府和商業建造的物資,以解決無人機系統帶來的直接風險;然而,這導致了許多非整合的、多余的解決方案。雖然最初的方法解決了近期的需求,但它也帶來了挑戰,使美國防部跟上不斷變化問題的能力變得復雜。為了應對這些挑戰,美國防部需要一個全局性的戰略來應對無人機系統的危害和威脅。
2019年11月,美國防部長指定陸軍部長(SECARMY)為國防部反小型無人機系統(C-sUAS,無人機1、2、3組)的執行機構(EA)。作為執行機構,SECARMY建立了C-sUAS聯合辦公室(JCO),該辦公室將領導、同步和指導C-sUAS活動,以促進整個部門的統一努力。
美國防部的C-sUAS戰略提供了一個框架,以解決國土、東道國和應急地點的sUAS從危險到威脅的全過程。國防部的利益相關者將合作實現三個戰略目標:(1)通過創新和合作加強聯合部隊,以保護國土、東道國和應急地點的國防部人員、資產和設施;(2)開發物資和非物資解決方案,以促進國防部任務的安全和可靠執行,并剝奪對手阻礙實現目標的能力;以及(3)建立和擴大美國與盟友和合作伙伴的關系,保護其在國內外的利益。
美國防部將通過重點關注三個方面的工作來實現這些目標:準備好部隊;保衛部隊;和建立團隊。為了準備好部隊,國防部將最大限度地提高現有的C-sUAS能力,并使用基于風險的方法來指導高效和快速地開發一套物質和非物質解決方案,以滿足新的需求。為了保衛部隊,國防部將協調以DOTMLPF-P考慮為基礎的聯合能力的交付,并同步發展作戰概念和理論。最后,作為全球首選的軍事伙伴,國防部將通過利用其現有的關系來建設團隊,建立新的伙伴關系,并擴大信息共享,以應對新的挑戰。
通過實施這一戰略,美國防部將成功地應對在美國本土、東道國和應急地點出現的無人機系統威脅所帶來的挑戰。在這些不同操作環境中的指揮官將擁有他們需要的解決方案,以保護國防部人員、設施、資產和任務免受當前和未來的無人機系統威脅。
報告概述了反無人機技術及方法,介紹了美國國防部面臨的無人機威脅及反無人機投資計劃,以及美海軍、陸軍、空軍、海軍陸戰隊及國防部其它機構的反無人機武器研究進展情況,并指出了國會在監管方面可能面臨的問題。
無人機系統技術迅速擴散,易被國家、非國家行為者和個人使用,這些系統可為美國對手提供一種低成本的手段,執行針對或攻擊美軍的情報、監視和偵察任務。大多數小型無人機尺寸小、使用特殊結構材料且飛行高度較低,無法被傳統的防空系統探測到。在2023財年,美國國防部計劃至少花費6.68億美元用于反無人機(C-UAS)技術研發,至少花費7800萬美元用于反無人機武器采購。隨著國防部繼續開發、采購和部署這些系統,美國會對其使用的監督可能會增加,也必須就未來的授權、撥款和其他立法行動做出決定。
反無人機技術可以采用多種方法探測敵對或未經授權的無人機目標。一是使用光電、紅外或聲學傳感器分別通過目標的視覺、熱量或聲音特征探測目標;二是使用雷達系統探測,但由于小型無人機信號特征不明顯,該方法探測效果不佳;三是識別用于控制無人機的無線信號,通常使用射頻傳感器探測。這些方法通常被組合使用,以提供更有效的分層探測能力。
各類系統探測到無人機后,電子戰“干擾”裝置即可干擾無人機與其操作人員的通信鏈路。干擾裝置通常可分為便攜式、固定式或可移動式,根據其類型的不同,重量可從幾公斤至數百公斤。除電子戰干擾裝置外,也可以使用槍支、網絡、定向能、傳統防空系統,甚至訓練有素的動物(如鷹)擊敗或摧毀無人機系統。目前,美國防部正在研發多種反無人機技術,以確保其具備強大的反無人機防御能力。
美空軍正在進行高功率微波和高能激光武器反無人機測試工作。2019年10月,空軍接收了一套車載高能激光反無人機武器系統 (HELWS)樣機。HELWS旨在在幾秒鐘內識別并壓制敵對或未經授權的無人機,幾乎可無限次射擊。此外,空軍還在尋求機載反無人機武器,目前工作狀態尚不明確。
圖1 便攜式反UAS技術
2014年,美海軍在“龐塞”號(LPD-15)上部署了第一款可作戰的激光武器系統(LaWS),LaWS是30千瓦激光武器樣機,能夠執行反無人機任務。自那時起,美海軍就一直在開發和安裝更多的低、慢、小(LSS)無人機激光武器原型,以提高對抗水面艦艇和無人機的能力。
海軍正在研發部署的干擾無人機傳感器的光學致盲器“奧丁”(ODIN)及60千瓦“太陽神”(HELIOS)激光器,均旨在保護美海軍裝備和系統免受無人機襲擊。此外,在2019年3月28日的一份備忘錄中,海軍部宣布將與國防數字服務局合作,快速開發新的網絡賦能反無人機武器,以應對不斷演變的無人機威脅。
海軍陸戰隊通過其地基防空(GBAD)計劃辦公室資助了多個反無人機系統。2019年,海軍陸戰隊完成了海上防空綜合系統(MADIS)的海外測試,該系統采用電子干擾與炮彈相結合技術,可安裝在MRZR全地形車輛、聯合輕型戰術車輛和其他平臺上。2019年7月,拳師號USS BOXER LHD-4兩棲攻擊艦上的海軍陸戰隊員使用海上防空綜合系統壓制了一艘被認為在該艦“威脅范圍”內的伊朗無人機。作為地基防空計劃的一部分,海軍陸戰隊也在采購緊湊型激光武器系統(CLaWS),該是美國防部批準的首個陸基激光武器,具有2千瓦、5千瓦和10千瓦三種型號,目前陸軍也在使用。盡管海軍陸戰隊已試驗了單兵攜帶反無人機技術,但海軍陸戰隊司令大衛·伯杰(DavidBerger)在2019年向國會作證時認為,由于重量和功率的要求,單兵攜帶反無人機技術沒有取得成功。
圖2 海上防空綜合系統
2016年7月,陸軍發布了反無人機戰略,以指導其反無人機能力的發展。2017年4月,陸軍技術出版物3-01.81《反無人駕駛飛機系統技術》概述了作戰期間防御低、慢、小無人機威脅的規劃考慮,以及如何規劃并將反無人機士兵任務納入陸軍訓練活動。
反無人機是美陸軍作戰能力發展司令部的六層防空和導彈防御概念的一部分,六層概念包括:彈道導、低空無人機交戰(BLADE)、多任務高能激光(MMHEL)、下一代火控雷達、機動防空技術(MADT)、高能激光戰術車輛驗證機(HEL-TVD)、低成本增程防空(LOWER AD)。目前,上述系統仍在開發中,美陸軍已部署了一些便攜式、車載和機載反無人機系統。此外,美陸軍與國防數字服務局還在合作開發計算機支持的反無人機產品。
美國防部正在研究和開發多種反無人機技術。聯合參謀部和其他國防部機構參與了反無人機研究工作,如“黑鏢”(Black Dart)演習,該演習旨在“評估和驗證現有和新興的防空和導彈防御能力及反無人機任務集特有的概念”和“倡導士兵所需的反無人機能力”。國防高級研究計劃局積極開展“反蜂群人工智能”等研究,為反無人機技術研發提供資金。2019年12月,國防部精簡了各種反小型無人機項目,指定陸軍為執行機構,負責監督美國防部所有反小型無人機的開發工作。
2019年12月,美國防部成立由陸軍領導的聯合反小型無人機系統辦公室(JCO),負責監督美軍所有反無人機研發工作。通過與作戰司令部和負責采辦和保障的國防部副部長辦公室協商,該辦公室已評估了超過40種反小型無人機系統,并確定未來美軍反無人機項目的研發方向和標準,該辦公室還選擇了10種小型無人機防御系統和一個標準化的指揮控制系統,以進行后續研發工作。聯合反小型無人機系統辦公室還制定了一份聯合能力發展文件,概述了未來系統的作戰需求,并于2021年1月發布了《國防部反小型無人機系統戰略》。該辦公室還將制定另外一份國防部關于反小型無人機指揮和反小型無人機能力評估的文件。
根據計劃,美國防部將于2024財年在俄克拉荷馬州的福特希爾建立一個聯合反小型無人機學院,以在各軍種同步開展反無人機戰術訓練。
此外,美國會《2021財年國防授權法案》第1074節要求國防部向國會提交一系列報告,包括聯合反小型無人機系統辦公室開展的反小型無人機活動報告和獨立評估情況,以及無人機帶來威脅的報告等。
伴隨美國防部開發、使用及部署反無人機系統武器,美國會需對其進行更多監管,并可能面臨如下潛在問題: