亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要 近年來,跨模態研究吸引了越來越多學者的關注,尤其是連接視覺和語言的相關課題。該文針對跨視覺和語言模態研究中的核心任務——圖像描述生成,進行文獻綜述。該文從基于視覺的文本生成框架、基于視覺的文本生成研究中的關鍵問題、圖像描述生成模型的性能評價和圖像描述生成模型的主要發展過程四個方面對相關文獻進行介紹和總結。最后,該文給出了幾個未來的重點研究方向,包括跨視覺和語言模態的特征對齊、自動化評價指標的設計以及多樣化圖像描述生成。

//jcip.cipsc.org.cn/CN/abstract/abstract2995.shtml

付費5元查看完整內容

相關內容

圖像描述生成(Image Caption)是一個融合計算機視覺、自然語言處理和機器學習的綜合問題,它類似于翻譯一副圖片為一段描述文字。該任務對于人類來說非常容易,但是對于機器卻非常具有挑戰性,它不僅需要利用模型去理解圖片的內容并且還需要用自然語言去表達它們之間的關系。除此之外,模型還需要能夠抓住圖像的語義信息,并且生成人類可讀的句子。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

視頻標題生成與描述是使用自然語言對視頻進行總結與重新表達. 由于視頻與語言之間存在異構特性, 其數據處理過程較為復雜. 本文主要對基于“編碼-解碼”架構的模型做了詳細闡述, 以視頻特征編碼與使用方式為依據, 將其分為基于視覺特征均值/最大值的方法、基于視頻序列記憶建模的方法、基于三維卷積特征的方法及混合方法, 并對各類模型進行了歸納與總結. 最后, 對當前存在的問題及可能趨勢進行了總結與展望, 指出需要生成融合情感、邏輯等信息的結構化語段, 并在模型優化、數據集構建、評價指標等方面進行更為深入的研究.

付費5元查看完整內容

摘要: Web 2.0時代,消費者在在線購物、學習和娛樂時越來越多地依賴在線評論信息,而虛假的評論會誤導消費者的決策,影響商家的真實信用,因此有效識別虛假評論具有重要意義。文中首先對虛假評論的范圍進行了界定,并從虛假評論識別、形成動機、對消費者的影響以及治理策略4個方面歸納了虛假評論的研究內容,給出了虛假評論研究框架和一般識別方法的工作流程。然后從評論文本內容和評論者及其群組行為兩個角度,對近十年來國內外的相關研究成果進行了綜述,介紹了虛假評論效果評估的相關數據集和評價指標,統計分析了在公開數據集上實現的虛假評論有效識別方法,并從特征選取、模型方法、訓練數據集、評價指標值等方面進行了對比分析。最后對虛假評論識別領域的有標注語料規模限制等未來研究方向進行了探討。

付費5元查看完整內容

在計算機視覺領域中,語義分割是場景解析和行為識別的關鍵任務,基于深度卷積神經網絡的圖像語義分割方法已經取得突破性進展。語義分割的任務是對圖像中的每一個像素分配所屬的類別標簽,屬于像素級的圖像理解。目標檢測僅定位目標的邊界框,而語義分割需要分割出圖像中的目標。本文首先分析和描述了語義分割領域存在的困難和挑戰,介紹了語義分割算法性能評價的常用數據集和客觀評測指標。然后,歸納和總結了現階段主流的基于深度卷積神經網絡的圖像語義分割方法的國內外研究現狀,依據網絡訓練是否需要像素級的標注圖像,將現有方法分為基于監督學習的語義分割和基于弱監督學習的語義分割兩類,詳細闡述并分析這兩類方法各自的優勢和不足。本文在PASCAL VOC(pattern analysis, statistical modelling and computational learning visual object classes)2012數據集上比較了部分監督學習和弱監督學習的語義分割模型,并給出了監督學習模型和弱監督學習模型中的最優方法,以及對應的MIoU(mean intersection-over-union)。最后,指出了圖像語義分割領域未來可能的熱點方向。

//www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=20200601&flag=1

付費5元查看完整內容

//cea.ceaj.org/CN/abstract/abstract39198.shtml

近年來,深度學習技術被廣泛應用于各個領域,基于深度學習的預處理模型將自然語言處理帶入一個新時代。預訓練模型的目標是如何使預訓練好的模型處于良好的初始狀態,在下游任務中達到更好的性能表現。對預訓練技術及其發展歷史進行介紹,并按照模型特點劃分為基于概率統計的傳統模型和基于深度學習的新式模型進行綜述;簡要分析傳統預訓練模型的特點及局限性,重點介紹基于深度學習的預訓練模型,并針對它們在下游任務的表現進行對比評估;梳理出具有啟發意義的新式預訓練模型,簡述這些模型的改進機制以及在下游任務中取得的性能提升;總結目前預訓練的模型所面臨的問題,并對后續發展趨勢進行展望。

付費5元查看完整內容

我們生活在一個由大量不同模態內容構建而成的多媒體世界中,不同模態信息之間具有高度的相關性和互補性,多模態表征學習的主要目的就是挖掘出不同模態之間的共性和特性,產生出可以表示多模態信息的隱含向量.該文章主要介紹了目前應用較廣的視覺語言表征的相應研究工作,包括傳統的基于相似性模型的研究方法和目前主流的基于語言模型的預訓練的方法.目前比較好的思路和解決方案是將視覺特征語義化然后與文本特征通過一個強大的特征抽取器產生出表征,其中Transformer[1]作為主要的特征抽取器被應用表征學習的各類任務中.文章分別從研究背景、不同研究方法的劃分、測評方法、未來發展趨勢等幾個不同角度進行闡述.

//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6125&flag=1

付費5元查看完整內容

摘要:近年來,跨模態研究吸引了越來越多學者的關注,尤其是連接視覺和語言的相關課題。該文針對跨視覺和語言模態研究中的核心任務——圖像描述生成,進行文獻綜述。該文從基于視覺的文本生成框架、基于視覺的文本生成研究中的關鍵問題、圖像描述生成模型的性能評價和圖像描述生成模型的主要發展過程四個方面對相關文獻進行介紹和總結。最后,該文給出了幾個未來的重點研究方向,包括跨視覺和語言模態的特征對齊、自動化評價指標的設計以及多樣化圖像描述生成。

//jcip.cipsc.org.cn/CN/abstract/abstract2995.shtml

付費5元查看完整內容

行人再識別的主要任務是利用計算機視覺對特定行人進行跨視域匹配和檢索。相比于傳統算法,由數據驅 動的深度學習方法所提取的特征更能表征行人之間的區分性。對行人再識別的背景及研究歷史、主要面臨的挑 戰、主要方法、數據集及評價指標進行了梳理和總結。主要從特征表達、局部特征、生成對抗網絡三個方面對行人 再識別的算法進行分析,列舉了行人再識別9個常用數據集、3個評價標準和14種典型方法在 Market1501數據集 上取得的準確率,最后對行人再識別的未來研究方向進行展望。

付費5元查看完整內容

摘要: 在自然語言處理領域,信息抽取一直以來受到人們的關注.信息抽取主要包括3項子任務:實體抽取、關系抽取和事件抽取,而關系抽取是信息抽取領域的核心任務和重要環節.實體關系抽取的主要目標是從自然語言文本中識別并判定實體對之間存在的特定關系,這為智能檢索、語義分析等提供了基礎支持,有助于提高搜索效率,促進知識庫的自動構建.綜合闡述了實體關系抽取的發展歷史,介紹了常用的中文和英文關系抽取工具和評價體系.主要從4個方面展開介紹了實體關系抽取方法,包括:早期的傳統關系抽取方法、基于傳統機器學習、基于深度學習和基于開放領域的關系抽取方法,總結了在不同歷史階段的主流研究方法以及相應的代表性成果,并對各種實體關系抽取技術進行對比分析.最后,對實體關系抽取的未來重點研究內容和發展趨勢進行了總結和展望.

//crad.ict.ac.cn/CN/10.7544/issn1000-1239.2020.20190358#1

付費5元查看完整內容

摘要: 三維重建在視覺方面具有很高的研究價值, 在機器人視覺導航、智能車環境感知系統以及虛擬現實中被廣泛應用.本文對近年來國內外基于視覺的三維重建方法的研究工作進行了總結和分析, 主要介紹了基于主動視覺下的激光掃描法、結構光法、陰影法以及TOF (Time of flight)技術、雷達技術、Kinect技術和被動視覺下的單目視覺、雙目視覺、多目視覺以及其他被動視覺法的三維重建技術, 并比較和分析這些方法的優點和不足.最后對三維重建的未來發展作了幾點展望。

付費5元查看完整內容

摘要: 圖像內容自動描述是計算機視覺和自然語言處理領域的一個重要任務,在生活娛樂、智慧 交通以及幫助視覺障礙者理解視覺內容等領域有著廣泛而重要的應用價值.相比于圖像分類和目標 檢測等感知任務,圖像內容自動描述是一種更高級別、更復雜的認知任務,對幫助分析和理解圖像有 著重要的意義.旨在對現有的圖像自動描述技術進行全面的綜述.討論圖像內容自動描述中常用的數 據集和評價指標,以及現有圖像自動描述技術的性能、優點和局限性。

關鍵詞: 圖像內容描述;卷積神經網絡;循環神經網絡;注意力機制;深度學習

付費5元查看完整內容
北京阿比特科技有限公司