亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

論文題目: Blockchain for Future Smart Grid: A Comprehensive Survey

論文摘要: 智能電網的概念已被引入,作為常規電網的新視野,以尋求一種整合綠色和可再生能源技術的有效方法。通過這種方式,連接互聯網的智能電網(也稱為能源互聯網)也正在作為一種創新的方法出現,以確保隨時隨地的能源供應。這些發展的最終目標是建立一個可持續發展的社會。但是,對于傳統的集中式網格系統而言,集成和協調大量不斷增長的連接可能是一個具有挑戰性的問題。因此,智能電網正在從其集中形式轉變為分散式拓撲。另一方面,區塊鏈具有一些出色的功能,使其成為智能電網范例的有前途的應用程序。本文旨在對區塊鏈在智能電網中的應用進行全面的調查。因此,我們確定了可以通過區塊鏈解決的智能電網場景的重大安全挑戰。然后,我們提出了許多基于區塊鏈的最新研究成果,這些研究成果發表在不同的文獻中,涉及智能電網領域的安全問題。我們還總結了最近出現的幾個相關的實用項目,試驗和產品。最后,我們討論了將區塊鏈應用于智能電網安全問題的基本研究挑戰和未來方向。

付費5元查看完整內容

相關內容

Transformer是谷歌發表的論文《Attention Is All You Need》提出一種完全基于Attention的翻譯架構

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

主題: Data Science: A Comprehensive Overview

摘要: 二十一世紀迎來了大數據時代和數據經濟時代,其中攜帶重要知識,見識和潛力的數據DNA已成為所有基于數據的生物的固有組成部分。對數據DNA及其有機體的適當理解依賴于數據科學及其基石分析的新領域。盡管人們爭論大數據是否僅僅是炒作和嗡嗡聲,并且數據科學還處于非常早期的階段,但是重大挑戰和機遇正在涌現,或者受到數據科學的研究,創新,業務,專業和教育的啟發。本文提供了有關數據科學基本方面的全面調查和教程:從數據分析到數據科學的演變,數據科學概念,數據科學時代的全景,數據創新的主要挑戰和方向,數據分析的性質,數據經濟中的新工業化和服務機會,數據教育的專業和能力以及數據科學的未來。除了提供豐富的觀察,教訓以及對數據科學和分析的思考之外,本文是本領域中第一篇全面概述的文章。

付費5元查看完整內容

題目: A Comprehensive Survey of Multilingual Neural Machine Translation

摘要: 本文綜述了近年來備受關注的多語言神經機器翻譯(MNMT)。由于翻譯知識的轉移(遷移學習),MNMT在提高翻譯質量方面發揮了重要作用。MNMT比統計機器翻譯更有前途,也更有趣,因為端到端建模和分布式表示為機器翻譯的研究開辟了新途徑。為了利用多語言并行語料庫來提高翻譯質量,人們提出了許多方法。但是,由于缺乏全面的綜述,很難確定哪些方法是有希望的,因此值得進一步探討。在這篇論文中,我們對現有的關于MNMT的文獻進行了深入的綜述。我們首先根據中心用例對各種方法進行分類,然后根據資源場景、基礎建模原則、核心問題和挑戰對它們進行進一步分類。只要有可能,我們就通過相互比較來解決幾種技術的優缺點。我們還討論了未來的方向,跨國公司的研究可能采取。本文的目標讀者既有初學者,也有專家。我們希望這篇論文能夠作為一個起點,同時也為那些對MNMT感興趣的研究人員和工程師提供新的思路。

付費5元查看完整內容

主題: Comprehensive Review of Deep Reinforcement Learning Methods and Applicationsin Economic

摘要: 深度強化學習(DRL)方法在經濟學中的應用已成倍增加。 DRL通過從強化學習(RL)和深度學習(DL)的廣泛功能來處理復雜的動態業務環境提供了廣闊的機遇。 DRL的特點是可伸縮性,它有可能結合經濟數據的噪聲和非線性模式應用于高維問題。在這項工作中,我們首先考慮對經濟學中各種應用中的DL,RL和深層RL方法進行簡要回顧,以提供對最新技術水平的深入了解。此外,研究了應用于經濟應用的DRL體系結構,以突出其復雜性,魯棒性,準確性,性能,計算任務,風險約束和獲利能力。調查結果表明,與傳統算法相比,DRL可以提供更好的性能和更高的精度,同時在存在風險參數和不確定性不斷增加的情況下面臨實際的經濟問題。

付費5元查看完整內容

題目: A Survey on Edge Intelligence

簡介:

邊緣智能是指一組連接的系統和設備,用于在靠近基于人工智能捕獲數據的位置進行數據收集,緩存,處理和分析。邊緣智能的目的是提高數據處理的質量和速度,并保護數據的隱私和安全性。盡管最近出現,從2011年到現在,這個研究領域在過去五年中顯示出爆炸性增長。在本文中,我們對有關邊緣智能的文獻進行了全面的調查。我們首先根據與擬議和部署的系統有關的理論和實踐結果,確定邊緣智能的四個基本組成部分,即邊緣緩存,邊緣訓練,邊緣推理和邊緣卸載。然后,我們通過檢查四個組成部分每個的研究結果和觀察結果,來對解決方案的狀態進行系統的分類,并提出一種分類法,其中包括實際問題,采用的技術和應用目標。對于每個類別,我們從采用的技術,目標,性能,優點和缺點等方面詳細闡述,比較和分析文獻。本調查文章全面介紹了邊緣智能及其應用領域。此外,我們總結了新興研究領域的發展和當前的最新技術,并討論了重要的開放性問題以及可能的理論和技術解決方案。

付費5元查看完整內容

大數據正在成為智能交通系統(ITS)的一個研究熱點,這可以在世界各地的許多項目中看到。智能交通系統會產生大量的數據,將對智能交通系統的設計和應用產生深遠的影響,從而使智能交通系統更安全、更高效、更有利可圖。在ITS中研究大數據分析是一個蓬勃發展的領域。本文首先回顧了大數據和智能交通系統的發展歷史和特點,接著討論了ITS系統中進行大數據分析的框架,總結了ITS系統中的數據源和采集方法、數據分析方法和平臺以及大數據分析應用領域。同時介紹了大數據分析在智能交通系統中的幾個應用實例,包括道路交通事故分析、道路交通流量預測、公共交通服務規劃、個人出行路線規劃、軌道交通管理與控制、資產維護等。最后,本文討論了在ITS中應用大數據分析的一些開放性挑戰。

付費5元查看完整內容

題目: A Survey on Distributed Machine Learning

簡介: 在過去十年中,對人工智能的需求已顯著增長,并且這種增長得益于機器學習技術的進步以及利用硬件加速的能力,但是,為了提高預測質量并在復雜的應用程序中提供可行的機器學習解決方案,需要大量的訓練數據。盡管小型機器學習模型可以使用一定數量的數據進行訓練,但用于訓練較大模型(例如神經網絡)的輸入與參數數量成指數增長。由于處理訓練數據的需求已經超過了計算機器的計算能力的增長,因此急需在多個機器之間分配機器學習工作量,并將集中式的精力分配到分配的系統上。這些分布式系統提出了新的挑戰,最重要的是訓練過程的科學并行化和相關模型的創建。本文通過概述傳統的(集中的)機器學習方法,探討了分布式機器學習的挑戰和機遇,從而對當前的最新技術進行了廣泛的概述,并對現有的技術進行研究。

付費5元查看完整內容

題目: A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications 摘要: 圖形是一種重要的數據表示形式,它出現在現實世界的各種場景中。有效的圖形分析可以讓用戶更深入地了解數據背后的內容,從而有利于節點分類、節點推薦、鏈路預測等許多有用的應用。然而,大多數圖形分析方法都存在計算量大、空間開銷大的問題。圖嵌入是解決圖分析問題的有效途徑。它將圖形數據轉換為一個低維空間,其中圖形結構信息和圖形屬性被最大程度地保留。在這項調查中,我們對圖嵌入的文獻進行了全面的回顧。本文首先介紹了圖嵌入的形式化定義及相關概念。之后,我們提出了兩個分類的圖形嵌入,對應于什么挑戰存在于不同的圖形嵌入問題設置,以及現有的工作如何解決這些挑戰,在他們的解決方案。最后,我們總結了圖形嵌入在計算效率、問題設置、技術和應用場景等方面的應用,并提出了四個有前途的研究方向。

作者簡介: Hongyun Cai,經驗豐富的研究人員,有在研究行業工作的經驗。精通計算機科學,C++,數據庫,Java和機器學習。昆士蘭大學計算機科學專業研究生,哲學博士。

Vincent W. Zheng,新加坡先進數字科學中心(ADSC)的研究科學家,也是伊利諾伊大學香檳分校協調科學實驗室的研究附屬機構。他目前領導著ADSC的大型社交項目。該項目旨在利用目前在我們的數字社會(即社交媒體)中普遍存在的巨大“人類傳感器”,并實現對此類數據的社會分析,從而建立一個以人為中心的網絡系統。他還對圖形表示學習、深度學習、自然語言處理、移動計算等領域感興趣,并在社交挖掘、文本挖掘、實際位置和活動識別、用戶分析、移動推薦、增強現實等方面有應用。

Kevin Chen-Chuan Chang是伊利諾伊大學香檳分校計算機科學教授,他領導了數據搜索、集成和挖掘的前沿數據實驗室。他在國立臺灣大學獲得理學學士學位,在斯坦福大學獲得電機工程博士學位。他的研究涉及大規模信息訪問,用于搜索、挖掘和跨結構化和非結構化大數據的集成,目前的重點是“以實體為中心”的Web搜索/挖掘和社交媒體分析。他在VLDB 2000年和2013年獲得了兩項最佳論文獎,2002年獲得了NSF職業獎,2003年獲得了NCSA院士獎,2004年和2005年獲得了IBM院士獎,2008年獲得了創業領導力學院院士獎,并在2001年、2004年、2005年、2006年、2010年和2011年獲得了伊利諾伊大學不完整的優秀教師名單。他熱衷于將研究成果帶到現實世界中,并與學生共同創辦了伊利諾伊大學(University of Illinois)的初創公司Cazoodle,致力于在網絡上深化垂直的“數據感知”搜索。

付費5元查看完整內容

題目: Blockchain for 5G and Beyond Networks: A State of the Art Survey

摘要:

第五代(5G)無線網絡即將在全球部署。5G技術的目標是通過連接異構設備和機器,在高服務質量、增加網絡容量和增強系統吞吐量方面進行重大改進,從而支持多種垂直應用。盡管5G將帶來所有這些優勢,但仍然存在需要解決的重大挑戰,包括分散化、透明度、數據互操作性風險、網絡隱私和安全漏洞。區塊鏈是一種新興的顛覆性技術,可以提供創新的解決方案,有效解決5G網絡的挑戰。在5G網絡容量大幅提升和區塊鏈技術近期突破的推動下,區塊鏈5G服務有望快速發展,為未來社會帶來實質性的利益。在這篇論文中,我們提供了一個關于區塊鏈與5G網絡和其他網絡集成的最新研究。在這份詳細的調查中,我們主要關注區塊鏈在支持關鍵5G技術的潛力上的廣泛討論,包括云計算、邊緣計算、軟件定義網絡、網絡功能虛擬化、網絡切片和D2D通信。然后,我們探索和分析了區塊鏈可能為重要的5G服務提供的機會,包括頻譜管理、數據共享、網絡虛擬化、資源管理、干擾管理、聯邦學習、隱私和安全保障。區塊鏈在5G物聯網中應用的最新進展也在智能醫療、智能城市、智能交通、智能電網和無人機等廣泛的用例領域進行了調查。總結了區塊鏈5g合作網絡和服務綜合調查的主要結果,并指出了可能存在的研究挑戰和有待解決的問題。最后,我們通過為未來的發展方向提供新的啟示來完成對這一新興領域的調查研究。

作者簡介:

Dinh C. Nguyen目前是迪肯大學網絡傳感與控制實驗室(NSC)信息安全和隱私(ISP)研究小組的成員,主要研究方向:區塊鏈、物聯網、移動云計算、深度強化學習、5G網絡、無線網絡安全與隱私。

Pubudu N. Pathirana是澳大利亞迪肯大學工程學院教授,研究領域是生物運動學和人體運動捕捉,輔助設備設計,傳感器網絡。

付費5元查看完整內容

論文摘要:遷移學習的目的是通過遷移包含在不同但相關的源域中的知識來提高目標學習者在目標域中的學習性能。這樣可以減少對大量目標域數據的依賴,從而構建目標學習者。由于其廣泛的應用前景,轉移學習已經成為機器學習中一個熱門和有前途的領域。雖然已經有一些關于遷移學習的有價值的和令人印象深刻的綜述,但這些綜述介紹的方法相對孤立,缺乏遷移學習的最新進展。隨著遷移學習領域的迅速擴大,對相關研究進行全面的回顧既有必要也有挑戰。本研究試圖將已有的遷移學習研究進行梳理和梳理,并對遷移學習的機制和策略進行全面的歸納和解讀,幫助讀者更好地了解當前的研究現狀和思路。與以往的研究不同,本文從數據和模型的角度對40多種具有代表性的遷移學習方法進行了綜述。簡要介紹了遷移學習的應用。為了展示不同遷移學習模型的性能,我們使用了20個有代表性的遷移學習模型進行實驗。這些模型是在三個不同的數據集上執行的,即,亞馬遜評論,路透社-21578,Office-31。實驗結果表明,在實際應用中選擇合適的遷移學習模型是非常重要的。

關鍵詞:遷移學習 機器學習 域適應 可解釋性

付費5元查看完整內容

The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.

北京阿比特科技有限公司