亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

正確處理丟失的數據是推薦中的一個基本挑戰。目前的工作大多是對未觀測數據進行負采樣,為推薦模型的訓練提供負信號。然而,現有的負采樣策略,無論是靜態的還是自適應的,都不足以產生高質量的負采樣——既能提供模型訓練的信息,又能反映用戶的真實需求。在這項工作中,我們假設項目知識圖譜(KG),它提供了豐富的項目和KG實體之間的關系,可以用來推斷信息和事實的陰性樣本。為此,我們提出了一種新的負采樣模型——知識圖譜策略網絡(KGPolicy),它作為一種強化學習代理來探索高質量的負樣本。具體來說,通過我們設計的探索操作,它從目標的正交互中導航,自適應地接收到知識感知的負信號,最終產生一個潛在的負項來訓練推薦器。我們在一個配備了KGPolicy的矩陣分解(MF)模型上進行了測試,它在最先進的采樣方法(如DNS和IRGAN)和kg增強的推薦模型(如KGAT)上都取得了顯著的改進。進一步從不同的角度進行分析,為知識感知抽樣提供了思路。我們通過這個https URL發布代碼和數據集。

付費5元查看完整內容

相關內容

【導讀】作為CCF推薦的A類國際學術會議,International ACM SIGIR Conference on Research and Development in Information Retrieval(國際計算機學會信息檢索大會,簡稱 SIGIR)在信息檢索領域享有很高的學術聲譽,每年都會吸引全球眾多專業人士參與。今年的 SIGIR 2020計劃將于 2020年7月25日~30日在中國西安舉行。本次大會共有555篇長文投稿,僅有147篇長文被錄用,錄用率約26%。專知小編提前為大家整理了六篇SIGIR 2020 基于圖神經網絡的推薦(GNN+RS)相關論文,這六篇論文分別出自中科大何向南老師和和昆士蘭大學陰紅志老師團隊,供大家參考——捆綁推薦、Disentangled GCF、服裝推薦、多行為推薦、全局屬性GNN

CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN

1. Bundle Recommendation with Graph Convolutional Networks

作者:Jianxin Chang, Chen Gao, Xiangnan He, Yong Li, Depeng Jin

摘要:捆綁推薦(Bundle recommendation )旨在推薦一組商品供用戶整體消費。現有的解決方案通過共享模型參數或多任務學習的方式將用戶項目交互建模集成到捆綁推薦中,然而,這些方法不能顯式建模項目與捆綁包(bundles)之間的隸屬關系,不能探索用戶選擇捆綁包時的決策。在這項工作中,我們提出了一個用于捆綁推薦的圖神經網絡模型BGCN(Bundle Graph Convolutional Network)。BGCN將用戶-項目交互、用戶-捆綁包交互和捆綁包-項目從屬關系統一到一個異構圖中。以項目節點為橋梁,在用戶節點和捆綁包節點之間進行圖卷積傳播,使學習到的表示能夠捕捉到項目級的語義。通過基于hard-negative采樣器的訓練,可以進一步區分用戶對相似捆綁包的細粒度偏好。在兩個真實數據集上的實驗結果表明,BGCN的性能有很高的提升,其性能比最新的基線高出10.77%到23.18%。

網址: //arxiv.org/abs/2005.03475

2. Disentangled Graph Collaborative Filtering

作者:Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, Tat-Seng Chua

摘要:從交互數據中學習用戶和項目的信息表示對于協同過濾(CF)至關重要。當前的嵌入函數利用用戶-項目關系來豐富表示,從單個用戶-項目實例演變為整體交互圖。然而,這些方法在很大程度上以統一的方式對關系進行建模,而忽略了用戶采用這些項目的意圖的多樣性,這可能是為了打發時間,為了興趣,或者為其他人(如家庭)購物。這種統一的對用戶興趣建模的方法很容易導致次優表示,不能對不同的關系建模并在表示中分清用戶意圖。在這項工作中,我們特別關注用戶意圖細粒度上的用戶-項目關系。因此,我們設計了一種新的模型- Disentangled圖協同過濾(Disentangled Graph Collaborative Filtering ,DGCF),來理清這些因素并產生disentangled的表示。具體地說,通過在每個用戶-項目交互意圖上的分布建模,我們迭代地細化意圖感知的交互圖和表示。同時,我們鼓勵不同的意圖獨立。這將生成disentangled的表示,有效地提取與每個意圖相關的信息。我們在三個基準數據集上進行了廣泛的實驗,DGCF與NGCF、DisenGCN和MacridV AE這幾個最先進的模型相比取得了顯著的改進。進一步的分析揭示了DGCF在分解用戶意圖和表示的可解釋性方面的優勢。

網址:

代碼鏈接:

.

3. GCN-Based User Representation Learning for Unifying Robust Recommendation and Fraudster Detection

作者:Shijie Zhang, Hongzhi Yin, Tong Chen, Quoc Viet Nguyen Hung, Zi Huang, Lizhen Cui

摘要:近年來,推薦系統已經成為所有電子商務平臺中不可缺少的功能。推薦系統的審查評級數據通常來自開放平臺,這可能會吸引一群惡意用戶故意插入虛假反饋,試圖使推薦系統偏向于他們。此類攻擊的存在可能會違反高質量數據始終可用的建模假設,而這些數據確實會影響用戶的興趣和偏好。因此,構建一個即使在攻擊下也能產生穩定推薦的健壯推薦系統具有重要的現實意義。本文提出了一種基于GCN的用戶表示學習框架GraphRf,該框架能夠統一地進行穩健的推薦和欺詐者檢測。在其端到端學習過程中,用戶在欺詐者檢測模塊中被識別為欺詐者的概率自動確定該用戶的評級數據在推薦模塊中的貢獻;而在推薦模塊中輸出的預測誤差作為欺詐者檢測模塊中的重要特征。因此,這兩個組成部分可以相互促進。經過大量的實驗,實驗結果表明我們的GraphRf在魯棒評級預測和欺詐者檢測這兩個任務中具有優勢。此外,所提出的GraphRf被驗證為對現有推薦系統上的各種攻擊具有更強的魯棒性。

網址:

4. Hierarchical Fashion Graph Network for Personalized Outfit Recommendation

作者:Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, Tat-Seng Chua

摘要:服裝推薦越來越受到網購服務商和時尚界的關注。與向用戶推薦單個單品(例如,朋友或圖片)的其他場景(例如,社交網絡或內容共享)不同,服裝推薦預測用戶對一組匹配良好的時尚單品的偏好。因此,進行高質量的個性化服裝推薦應滿足兩個要求:1)時尚單品的良好兼容性;2)與用戶偏好的一致性。然而,目前的研究主要集中在其中一個需求上,只考慮了用戶-全套服裝(outfit)或全套服裝-項目的關系,從而容易導致次優表示,限制了性能。在這項工作中,我們統一了兩個任務,服裝兼容性建模和個性化服裝推薦。為此,我們開發了一個新的框架,層次時尚圖網絡(HFGN),用于同時建模用戶、商品和成套服裝之間的關系。特別地,我們構建了一個基于用戶-全套服裝交互和全套服裝-項目映射的層次結構。然后,我們從最近的圖神經網絡中得到啟發,在這種層次圖上使用嵌入傳播,從而將項目信息聚合到一個服裝表示中,然后通過他/她的歷史服裝來提煉用戶的表示。此外,我們還對這兩個任務進行了聯合訓練,以優化這些表示。為了證明HFGN的有效性,我們在一個基準數據集上進行了廣泛的實驗,HFGN在NGNN和FHN等最先進的兼容性匹配模型基礎上取得了顯著的改進。

網址:

代碼鏈接:

5. Multi-behavior Recommendation with Graph Convolutional Networks

作者:Bowen Jin, Chen Gao, Xiangnan He, Depeng Jin, Yong Li

摘要:傳統的推薦模型通常只使用一種類型的用戶-項目交互,面臨著嚴重的數據稀疏或冷啟動問題。利用多種類型的用戶-項目交互(例如:點擊和收藏)的多行為推薦可以作為一種有效的解決方案。早期的多行為推薦研究未能捕捉到行為對目標行為的不同程度的影響。它們也忽略了多行為數據中隱含的行為語義。這兩個限制都使得數據不能被充分利用來提高對目標行為的推薦性能。在這項工作中,我們創新性地構造了一個統一的圖來表示多行為數據,并提出了一種新的模型--多行為圖卷積網絡(Multi-Behavior Graph Convolutional Network,MBGCN)。MBGCN通過用戶-項目傳播層學習行為強度,通過項目-項目傳播層捕獲行為語義,較好地解決了現有工作的局限性。在兩個真實數據集上的實驗結果驗證了該模型在挖掘多行為數據方面的有效性。我們的模型在兩個數據集上的性能分別比最優基線高25.02%和6.51%。對冷啟動用戶的進一步研究證實了該模型的實用性。

網址:

6. GAG: Global Atributed Graph Neural Network for Streaming Session-based Recommendation

作者:Ruihong Qiu, Hongzhi Yin, Zi Huang, Tong Chen

摘要:基于流會話的推薦(Streaming session-based recommendation,SSR)是一項具有挑戰性的任務,它要求推薦器系統在流媒體場景(streaming scenario)中進行基于會話的推薦(SR)。在電子商務和社交媒體的現實應用中,在一定時間內產生的一系列用戶-項目交互被分組為一個會話,這些會話以流的形式連續到達。最近的SR研究大多集中在靜態集合上,即首先獲取訓練數據,然后使用該集合來訓練基于會話的推薦器模型。他們需要對整個數據集進行幾個epoch的訓練,這在流式設置下是不可行的。此外,由于對用戶信息的忽視或簡單使用,它們很難很好地捕捉到用戶的長期興趣。雖然最近已經提出了一些流推薦策略,但它們是針對個人交互流而不是會話流而設計的。本文提出了一種求解SSR問題的帶有Wasserstein 庫的全局屬性圖(GAG)神經網絡模型。一方面,當新的會話到達時,基于當前會話及其關聯用戶構造具有全局屬性的會話圖。因此,GAG可以同時考慮全局屬性和當前會話,以了解會話和用戶的更全面的表示,從而在推薦中產生更好的性能。另一方面,為了適應流會話場景,提出了Wasserstein庫來幫助保存歷史數據的代表性草圖。在兩個真實數據集上進行了擴展實驗,驗證了GAG模型與最新方法相比的優越性。

網址:

付費5元查看完整內容

主題: Joint Item Recommendation and Attribute Inference: An Adaptive Graph Convolutional Network Approach

摘要: 在許多推薦系統中,用戶和項目與屬性相關聯,并且用戶顯示對項目的偏好。屬性信息描述了用戶(項目)的特征,并具有廣泛的應用程序,例如用戶配置文件,項目注釋和功能增強的推薦。由于注釋用戶(項目)屬性是一項勞動密集型任務,因此屬性值通常不完整,缺少許多屬性值。因此,項目推薦和屬性推理已成為這些平臺中的兩個主要任務。研究人員長期以來一直認為用戶(項目)屬性與偏好行為高度相關。一些研究人員提議將一種數據用于剩余任務,并表明可以提高性能。盡管如此,這些模型要么忽略了用戶(項目)屬性的不完整,要么將兩個任務的相關性與簡單模型相結合,導致這兩個任務的性能欠佳。為此,在本文中,我們將這兩個任務歸因于用戶項二部圖,并提出了一種用于聯合項推薦和屬性推斷的自適應圖卷積網絡(AGCN)方法。 AGCN的關鍵思想是迭代執行兩個部分:1)使用先前學習的近似屬性值來學習圖形嵌入參數,以簡化兩個任務; 2)將近似的更新屬性值發送回屬性圖以更好地進行圖嵌入學習。因此,AGCN可以通過合并給定屬性和估計屬性值來自適應地調整圖嵌入學習參數,以提供弱監督信息來細化圖兩個任務。在三個真實數據集上的大量實驗結果清楚地表明了該模型的有效性。

付費5元查看完整內容

圖表示學習近年來得到了廣泛的研究。盡管它在為各種網絡生成連續嵌入方面具有潛力,但針對大量節點推斷高質量表示的有效性和效率仍然具有挑戰性。采樣是實現性能目標的關鍵。現有技術通常集中于正節點對的抽樣,而對負節點對的抽樣策略卻沒有進行充分的探索。為了彌補這一差距,我們從目標和風險兩個角度系統地分析了負抽樣的作用,從理論上論證了負抽樣與正抽樣在確定優化目標和由此產生的方差方面同樣重要。據我們所知,我們是第一個推導出負抽樣分布應該與正抽樣分布呈正相關但亞線性相關的理論并進行量化的工作。在該理論的指導下,我們提出了MCNS,用自對比近似逼近正分布,用Metropolis-Hastings加速負抽樣。我們在5個數據集上評估了我們的方法,這些數據集涵蓋了廣泛的下游圖數據學習任務,包括鏈接預測、節點分類和個性化推薦,總共有19個實驗設置。這些較為全面的實驗結果證明了其魯棒性和優越性。

付費5元查看完整內容

【導讀】國際萬維網大會(The Web Conference,簡稱WWW會議)是由國際萬維網會議委員會發起主辦的國際頂級學術會議,創辦于1994年,每年舉辦一屆,是CCF-A類會議。WWW 2020將于2020年4月20日至4月24日在中國臺灣臺北舉行。本屆會議共收到了1129篇長文投稿,錄用217篇長文,錄用率為19.2%。近期,推薦相關也比較熱門,專知小編提前整理了WWW 2020 推薦系統比較有意思的的論文,供參考——序列推薦、可解釋Serendipity 推薦、推薦效率、 bandit推薦、Off-policy學習。 WWW2020RS_Part1

  1. A Contextualized Temporal Attention Mechanism for Sequential Recommendation

作者:Jibang Wu, Renqin Cai, Hongning Wang

摘要:根據用戶的歷史連續行為預測用戶的偏好對于現代推薦系統來說是具有挑戰性的,也是至關重要的。現有的序列推薦算法在建模歷史事件對當前預測的影響時,大多側重于序列行為之間的過渡結構,而很大程度上忽略了時間和上下文信息。在這篇文章中,我們認為過去的事件對用戶當前行為的影響應該隨著時間的推移和不同的背景而變化。因此,我們提出了一種情境時間注意力機制(Contextualized Temporal Attention),該機制可以學習權衡歷史行為在行為以及行為發生的時間和方式上的影響。更具體地說,為了動態地校準來自自注意力機制的相對輸入的依賴關系,我們提出了多個參數化的核函數以學習各種時間動態,然后使用上下文信息來確定每個輸入要跟隨哪一個kernel( reweighing kernels )。在對兩個大型公開推薦數據集進行的實證評估中,我們的模型始終優于一系列最先進的序列推薦方法。

網址:

//arxiv.org/pdf/2002.00741.pdf

  1. Directional and Explainable Serendipity Recommendation

作者:Xueqi Li, Wenjun Jiang, Weiguang Chen, Jie Wu, Guojun Wang, Kenli Li

摘要:近幾年來,Serendipity推薦越來越受到人們的關注,它致力于提供既能迎合用戶需求,又能開闊他們眼界的建議。然而,現有的方法通常使用標量而不是向量來度量用戶與項目的相關性,忽略了用戶的偏好方向,這增加了不相關推薦的風險。此外,合理的解釋增加了用戶的信任度和接受度,但目前沒有為Serendipity推薦提供解釋的工作。為了解決這些局限性,我們提出了一種有向的、可解釋的Serendipity推薦方法,稱為DESR。具體而言,首先采用基于高斯混合模型(GMM)的無監督方法提取用戶的長期偏好,然后利用膠囊(capsule )網絡捕捉用戶的短期需求。然后,我們提出了將長期偏好與短期需求相結合的意外(serendipity)向量,并利用它生成有向的Serendipity推薦。最后,利用反向路徑選擇方案進行了解釋。在真實數據集上的大量實驗表明,與現有的基于意外(serendipity)發現的方法相比,DESR能夠有效地提高意外性和可解釋性,促進多樣性。

網址

  1. LightRec: a Memory and Search-Efficient Recommender System

作者:Defu Lian, Haoyu Wang, Zheng Liu, Jianxun Lian, Enhong Chen, Xing Xie

摘要:近年來,深度推薦系統已經取得了顯著的進步。盡管具有出色的排名精度,但實際上運行效率和內存消耗在現實中卻是嚴重的瓶頸。為了克服這兩個瓶頸,我們提出了LightRec,這是一個輕量級的推薦系統,具有快速的在線推斷功能和經濟的內存消耗。LightRec的主干是總共B個codebooks,每個codebook均由W個潛在向量組成,稱為codewords。在這種結構的頂部,LightRec將有一個商品表示為B codewords的加法組合,這些B codewords是從每個codebook中選擇的最佳的。為了有效地從數據中學習codebooks,我們設計了一個端到端的學習工作流程,其中所提出的技術克服了固有差異性和多樣性方面的挑戰。另外,為了進一步提高表示質量,采用了幾種distillation策略,可以更好地保留用戶-商品的相關性得分和相對排名順序。我們對LightRec在四個真實數據集上進行了廣泛評估,得出了兩個經驗發現:1)與最先進的輕量級baseline相比,LightRec在召回性能方面取得了超過11%的相對改進;2)與傳統推薦算法相比,在top-k推薦算法中,LightRec的精度下降幅度可以忽略不計,但速度提高了27倍以上。

網址:

  1. Hierarchical Adaptive Contextual Bandits for Resource Constraint based Recommendation

作者:Mengyue Yang, Qingyang Li, Zhiwei Qin, Jieping Ye

摘要:上下文多臂 bandit(MAB)在各種問題上實現了優異性能。然而,當涉及到推薦系統和在線廣告等現實場景時,必須考慮探索的資源消耗。在實踐中,通常存在與在環境中執行建議(ARM)相關聯的非零成本,因此,應該在固定的探索成本約束下學習策略。由于直接學習全局最優策略是一個NP難題,并且極大地使bandit算法的探索和開發之間的權衡復雜化,因此直接學習全局最優策略是一個很大的挑戰。現有的方法著重于通過采用貪婪策略來解決問題,該策略估計預期的收益和成本,并基于每個臂的預期收益/成本比使用貪婪的選擇,利用歷史觀察直到勘探資源耗盡為止。然而,現有的方法當沒有更多的資源時,學習過程就會終止,因此很難擴展到無限的時間范圍。本文提出了一種分層自適應上下文bandit方法(HATCH)來進行有預算約束的上下文bandit的策略學習。HATCH采用一種自適應的方法,根據剩余資源/時間和對不同用戶上下文之間報酬分配的估計來分配勘探資源。此外,我們利用充分的上下文特征信息來找到最好的個性化推薦。最后,為了證明提出的理論,我們進行了regret bound分析,并證明HATCH的regret bound低至O(√T)。實驗結果證明了該方法在合成數據集和實際應用中的有效性和效率。

網址:

  1. Off-policy Learning in Two-stage Recommender Systems

作者:Jiaqi Ma, Zhe Zhao, Xinyang Yi, Ji Yang, Minmin Chen, Jiaxi Tang, Lichan Hong, Ed H. Chi

摘要:許多現實世界中的推薦系統需要高度可伸縮性:將數百萬個項目與數十億用戶進行匹配,并只具有毫秒級的延遲。可伸縮性的要求導致了廣泛使用的兩階段推薦系統,由第一階段高效的候選生成模型和第二階段更強大的排序模型組成。通常使用記錄的用戶反饋(例如,用戶點擊或停留時間)來構建用于推薦系統的候選生成和排名模型。雖然很容易收集大量這樣的數據,但因為反饋只能在以前系統推薦的項目上觀察到,因此這些數據在本質上是有偏見的。近年來,推薦系統研究領域對此類偏差的off-policy 修正引起了越來越多的關注。然而,現有的大多數工作要么假設推薦系統是一個單階段系統,要么只研究如何將離策略校正應用于系統的候選生成階段,而沒有顯式地考慮這兩個階段之間的相互作用。在這項工作中,我們提出了一種兩階段離策略(two-stage off-policy)策略梯度方法,并證明了在兩階段推薦系統中忽略這兩個階段之間的交互會導致次優策略。該方法在訓練候選生成模型時明確考慮了排序模型,有助于提高整個系統的性能。我們在具有大項目空間的真實數據集上進行了實驗,驗證了所提方法的有效性。

網址:

付費5元查看完整內容

隨著網絡新聞的爆炸式增長,個性化的新聞推薦對于網絡新聞平臺幫助用戶發現感興趣的信息變得越來越重要。現有的新聞推薦方法通過從新聞內容和用戶與新聞的直接交互(如點擊)中構建精確的新聞表示和用戶表示來實現個性化,而忽略了用戶與新聞之間的高階關聯。**本文提出了一種新聞推薦方法,通過對用戶和新聞之間的關系進行圖形化建模,增強用戶和新聞之間的表示學習。**在我們的方法中,用戶和新聞都被看作是歷史用戶點擊行為構造的二部圖中的節點。對于新聞表示,首先利用transformer架構構建新聞語義表示。然后通過一個圖注意力網絡將其與圖中相鄰新聞信息相結合。對于用戶表示,我們不僅表示來自其歷史上單擊的新聞的用戶,而且還仔細地將其鄰居用戶的表示合并到圖中。在大型真實數據集上的改進性能驗證了我們所提方法的有效性。

付費5元查看完整內容

知識圖譜補全(KGC)任務的目的是自動推斷知識圖譜(KG)中缺失的事實信息。在本文中,我們采用了一個新的視角,旨在利用豐富的用戶-項目交互數據(簡稱用戶交互數據)來改進KGC任務。我們的工作靈感來自于許多KG實體對應于應用程序系統中的在線項目的觀察。然而,這兩種數據源具有非常不同的內在特性,使用簡單的融合策略可能會影響原始的性能。

為了解決這一挑戰,我們提出了一種利用KGC任務的用戶交互數據的新穎的對抗性學習方法。我們的生成器是與用戶交互數據隔離的,用于提高鑒別器的性能。鑒別器將從用戶交互數據中學習到的有用信息作為輸入,逐步增強評價能力,以識別生成器生成的虛假樣本。為了發現用戶的隱式實體偏好,我們設計了一種基于圖神經網絡的協同學習算法,該算法將與鑒別器共同優化。這種方法可以有效地緩解KGC任務的數據異構性和語義復雜性問題。在三個真實數據集上的大量實驗證明了我們的方法在KGC任務上的有效性。

付費5元查看完整內容

Properly handling missing data is a fundamental challenge in recommendation. Most present works perform negative sampling from unobserved data to supply the training of recommender models with negative signals. Nevertheless, existing negative sampling strategies, either static or adaptive ones, are insufficient to yield high-quality negative samples --- both informative to model training and reflective of user real needs. In this work, we hypothesize that item knowledge graph (KG), which provides rich relations among items and KG entities, could be useful to infer informative and factual negative samples. Towards this end, we develop a new negative sampling model, Knowledge Graph Policy Network (KGPolicy), which works as a reinforcement learning agent to explore high-quality negatives. Specifically, by conducting our designed exploration operations, it navigates from the target positive interaction, adaptively receives knowledge-aware negative signals, and ultimately yields a potential negative item to train the recommender. We tested on a matrix factorization (MF) model equipped with KGPolicy, and it achieves significant improvements over both state-of-the-art sampling methods like DNS and IRGAN, and KG-enhanced recommender models like KGAT. Further analyses from different angles provide insights of knowledge-aware sampling. We release the codes and datasets at //github.com/xiangwang1223/kgpolicy.

題目:GNEG:Graph-Based Negative Sampling for word2vec

論文摘要; 負抽樣是分布式詞表示學習的一個重要組成部分。我們假設,考慮全局的語料庫級信息,為每個目標詞生成不同的噪聲分布,比原始的基于頻率的分布更能滿足每個訓練詞的反例要求。為此,我們從語料庫中預先計算單詞的共現統計量,并將其應用于隨機游走等it網絡算法中。我們通過一系列實驗驗證了這一假設,實驗結果表明,我們的方法將單詞類比任務提高了約5%,并將單詞相似性任務的性能提高了約1%。

付費5元查看完整內容

論文題目: Efficient Heterogeneous Collaborative Filtering without Negative Sampling for Recommendation

論文摘要:

最近關于推薦的研究主要集中在探索最先進的神經網絡,以提高模型的表達能力,同時通常采用負抽樣(NS)策略來提高學習效率。盡管有效,現有方法中有兩個重要問題沒有得到充分考慮:1) NS波動劇烈,基于抽樣的方法在實際應用中難以獲得最優的排序性能;2)盡管異構反饋(如查看、單擊和購買)在許多在線系統中廣泛存在,但大多數現有方法僅利用一種主要類型的用戶反饋,如購買。在這項工作中,我們提出了一種新的非抽樣轉移學習解決方案,命名為高效異構協同過濾(EHCF),用于Top-N推薦。它不僅可以對細粒度的用戶-項目關系進行建模,而且可以從整個異構數據(包括所有未標記的數據)中高效地學習模型參數,并且具有較低的時間復雜度。對三個真實數據集的大量實驗表明,EHCF在傳統(單一行為)和異構場景中都顯著優于最先進的推薦方法。此外,EHCF在培訓效率方面有顯著的改進,使其更適用于真實世界的大型系統。我們的實現已經發布,以促進更有效的基于全數據的神經方法的進一步發展。

論文作者:

張敏博士是清華大學計算機科學與技術系的終身副教授,專門從事網絡搜索和推薦以及用戶建模。她是計算機系智能技術與系統實驗室副主任,清華-MSRA媒體與搜索實驗室執行主任。她還擔任ACM信息系統事務(TOIS)的副編輯,SIGIR 2019教程主席,SIGIR 2018短論文主席,WSDM 2017項目主席等。發表論文100余篇,被引用次3500余次,H指數32分。2016年獲北京市科技獎(一等獎),2018年獲全國高校計算機科學優秀教師獎等。她還擁有12項專利,并與國內外企業進行了大量的合作。

馬少平是清華大學智能技術與系統國家重點實驗室計算機科學與技術系教授,研究領域為智能信息處理, 信息檢索。主要研究興趣是智能信息處理,主要集中在信息檢索與Web信息挖掘等方面,尤其研究基于網絡用戶行為分析的語義挖掘,以改進搜索引擎的性能。

付費5元查看完整內容
北京阿比特科技有限公司