如今是人工智能高歌猛進的時代,機器學習的發展也如火如荼。然而,復雜的數學公式和難解的專業術語容易令剛接觸這一領域的學習者望而生畏。有沒有這樣一本機器學習的書,能摒棄復雜的公式推導,帶領讀者通過實踐來掌握機器學習的方法?
《機器學習與優化》正是這樣一本書!它的寫作脫胎于意大利特倫托大學機器學習與智能優化實驗室(LION lab)的研究項目,語言輕松幽默,內容圖文并茂,涵蓋了機器學習中可能遇到的各方面知識。更重要的是,書中特別介紹了兩個機器學習的應用,即信息檢索和協同推薦,讓讀者在了解信息結構的同時,還能利用信息來預測相關的推薦項。
本書作者以及讀者群發布的數據、指導說明和教學短片都可以在本書網站上找到://intelligent-optimization.org/LIONbook/。
本書內容要點: ● 監督學習——線性模型、決策森林、神經網絡、深度和卷積網絡、支持向量機等 ● 無監督模型和聚類——K均值、自底而上聚類、自組織映射、譜圖繪制、半監督學習等 ● 優化是力量之源——自動改進的局部方法、局部搜索和反饋搜索優化、合作反饋搜索優化、多目標反饋搜索優化等 ● 應用精選——文本和網頁挖掘,電影的協同推薦系統
【導讀】《機器學習:貝葉斯和優化的視角》是雅典大學信息學和通信系的教授Sergios Theodoridis的經典著作,對所有主要的機器學習方法和新研究趨勢進行了深入探索,涵蓋概率和確定性方法以及貝葉斯推斷方法。非常值得學習。
Sergios Theodoridis教授是雅典大學信息學和通信系的教授,香港中文大學(深圳)客座教授。他的研究領域是信號處理和機器學習。他的研究興趣是自適應算法,分布式和稀疏性感知學習,機器學習和模式識別,生物醫學應用中的信號處理和學習以及音頻處理和檢索。
他的幾本著作與合著蜚聲海內外,包括《機器學習:貝葉斯和優化的視角》以及暢銷書籍《模式識別》。他是2017年EURASIP Athanasios Papoulis獎和2014年EURASIP Meritorious Service獎的獲得者。
機器學習:貝葉斯和優化方法
本書對所有主要的機器學習方法和新研究趨勢進行了深入探索,涵蓋概率和確定性方法以及貝葉斯推斷方法。其中,經典方法包括平均/小二乘濾波、卡爾曼濾波、隨機逼近和在線學習、貝葉斯分類、決策樹、邏輯回歸和提升方法等,新趨勢包括稀疏、凸分析與優化、在線分布式算法、RKH空間學習、貝葉斯推斷、圖模型與隱馬爾可夫模型、粒子濾波、深度學習、字典學習和潛變量建模等。全書構建了一套明晰的機器學習知識體系,各章內容相對獨立,物理推理、數學建模和算法實現精準且細致,并輔以應用實例和習題。本書適合該領域的科研人員和工程師閱讀,也適合學習模式識別、統計/自適應信號處理和深度學習等課程的學生參考。
本書通過提供真實的案例研究和示例,為使用Python庫進行機器學習提供了堅實的基礎。它涵蓋了諸如機器學習基礎、Python入門、描述性分析和預測分析等主題。包括高級機器學習概念,如決策樹學習、隨機森林、增強、推薦系統和文本分析。這本書在理論理解和實際應用之間采取了一種平衡的方法。所有的主題都包括真實世界的例子,并提供如何探索、構建、評估和優化機器學習模型的逐步方法。
書名: Hands-On Machine Learning with Scikit-Learn and TensorFlow
主要內容:
這本書分為兩個部分。
第一部分,機器學習的基礎知識,涵蓋以下主題:
第二部分,神經網絡和深度學習,包括以下主題:
第一部分主要基于 scikit-learn ,而第二部分則使用 TensorFlow 。 注意:不要太急于深入學習到核心知識:深度學習無疑是機器學習中最令人興奮的領域之 一,但是你應該首先掌握基礎知識。而且,大多數問題可以用較簡單的技術很好地解決(而 不需要深度學習),比如隨機森林和集成方法(我們會在第一部分進行討論)。如果你擁有 足夠的數據,計算能力和耐心,深度學習是最適合復雜的問題的,如圖像識別,語音識別或 自然語言處理。
書籍介紹: 機器學習是一門人工智能的科學,該領域的主要研究對象是人工智能,特別是如何在經驗學習中改善具體算法的性能。機器學習是人工智能及模式識別領域的共同研究熱點,其理論和方法已被廣泛應用于解決工程應用和科學領域的復雜問題。本書從機器學習的基礎入手,分別講述了分類、排序、降維、回歸等機器學習任務,是入門機器學習的一本好書。
作者: Mehryar Mohri,是紐約大學庫蘭特數學科學研究所的計算機科學教授,也是Google Research的研究顧問。
大綱介紹:
作者主頁://cs.nyu.edu/~mohri/
【北京郵電大學】機器學習在材料科學中的應用綜述,Machine learning in materials science //onlinelibrary.wiley.com/doi/pdf/10.1002/inf2.12028