亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

元學習理論的一個關鍵問題是如何理解任務分布對遷移風險的影響,即從未知任務分布中得出的元學習器對新任務的預期錯誤。本文針對高斯噪聲和高斯任務(或參數)分布的固定設計線性回歸問題,給出了任意算法的分布相關的遷移風險下界,同時給出了一種新的,所謂的偏置正則化回歸方法的加權版本能夠將這些下界匹配到一個固定的常數因子。值得注意的是,權重是由高斯任務分布的協方差得到的。總之,我們的結果提供了在這種高斯設置下元學習的困難的精確表征。雖然這個問題設置可能看起來很簡單,但我們證明它足夠豐富,可以統一元學習的“參數共享”和“表示學習”流; 特別地,表示學習是作為任務分布的協方差矩陣未知的特殊情況得到的。在這種情況下,我們提出采用EM方法,這在我們的情況下顯示了有效的更新。本文通過對EM的實證研究完成,實驗結果表明,EM算法可以隨著任務數量的增加而達到下界,同時在表示學習環境中,該算法也能成功地與其他算法相媲美。

//icml.cc/Conferences/2021/Schedule?showEvent=10047

付費5元查看完整內容

相關內容

Meta Learning,元學習,也叫 Learning to Learn(學會學習)。是繼Reinforcement Learning(增強學習)之后又一個重要的研究分支。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

譜方法是對子空間并集附近的數據點進行聚類的一種常用方法,稱為子空間聚類。典型的用法是先構造一個隨機幾何圖,然后用譜方法對圖進行聚類,得到聚類結果。后一步被稱為光譜聚類。據我們所知,盡管在基于譜方法的子空間聚類中這兩個步驟都很重要,但現有的理論結果都集中在構建圖的第一步,而忽略了通過譜聚類糾正錯誤連接的最后一步。本文首次建立了一個理論來證明這種方法的有效性,在此理論中,我們通過分析在廣泛使用的半隨機模型下的一個簡化算法來論證譜聚類的機理。在此基礎上,我們證明了子空間聚類在相當廣泛的條件下的有效性。本文的見解和分析技術也可能對其他隨機圖問題有啟示。

//proceedings.mlr.press/v139/li21f/li21f.pdf

付費5元查看完整內容

考慮到用戶數據刪除請求、刪除噪聲的示例或刪除損壞的訓練數據,這只是希望從機器學習(ML)模型中刪除實例的幾個原因。然而,從ML模型中有效地刪除這些數據通常是困難的。在本文中,我們引入了數據移除(DaRE)森林,這是隨機森林的一種變體,可以在最少的再訓練的情況下刪除訓練數據。森林中每棵DaRE樹的模型更新都是精確的,這意味著從DaRE模型中刪除實例產生的模型與對更新后的數據進行從頭再訓練完全相同。

DaRE樹利用隨機性和緩存來高效刪除數據。DaRE樹的上層使用隨機節點,它均勻隨機地選擇分割屬性和閾值。這些節點很少需要更新,因為它們對數據的依賴性很小。在較低的層次上,選擇分割是為了貪婪地優化分割標準,如基尼指數或互信息。DaRE樹在每個節點上緩存統計信息,在每個葉子上緩存訓練數據,這樣當數據被刪除時,只更新必要的子樹。對于數值屬性,貪婪節點在閾值的隨機子集上進行優化,以便在逼近最優閾值的同時保持統計量。通過調整貪婪節點的閾值數量和隨機節點的數量,DaRE樹可以在更準確的預測和更有效的更新之間進行權衡。

在13個真實數據集和一個合成數據集上的實驗中,我們發現DaRE森林刪除數據的速度比從頭開始訓練的速度快幾個數量級,同時幾乎不犧牲預測能力。

//icml.cc/Conferences/2021/Schedule?showEvent=10523

付費5元查看完整內容

本教程將是關于無監督學習和強化學習的交叉。隨著自然語言處理中基于語言模型的預訓練和計算機視覺中的對比學習的出現,無監督學習(UL)在過去幾年中真正得到了發展。在這些領域中,無監督預訓練的一些主要優勢是在下游有監督學習任務中出現的數據效率。在如何將這些技術應用于強化學習和機器人方面,社區中有很多人感興趣。考慮到問題的連續決策性質,RL和機器人技術比被動地從互聯網上的圖像和文本中學習面臨更大的挑戰,它可能不會那么簡單。本教程將涵蓋如何在強化學習中應用和使用無監督學習的基本模塊,希望人們可以帶回最新的最先進的技術和實踐的知識,以及在這個具有挑戰性和有趣的交叉領域的廣泛的未來可能性和研究方向。

//icml.cc/Conferences/2021/Schedule

付費5元查看完整內容

我們提出了一個嚴格的方法,使用一組任意相關的弱監督源,以解決多類分類任務時,只有一個非常小的標記數據集可用。我們的學習算法可證明收斂于一個模型,該模型對于一組未標記數據的可行標記的對抗性選擇具有最小的經驗風險,其中標記的可行性是通過對弱監督源的嚴格估計統計量定義的約束來計算的。我們為這種依賴于弱監督來源提供的信息的方法提供了理論保障。值得注意的是,該方法不要求弱監督源具有與多類分類任務相同的標注空間。我們通過實驗證明了我們的方法在各種圖像分類任務中的有效性。

付費5元查看完整內容

在統一魯棒半監督變分自編碼器(URSVAE)中,通過同時處理噪聲標簽和異常值,提出了一種新的噪聲魯棒半監督深度生成模型。輸入數據的不確定性通常是將不確定性優先于概率密度分布的參數,以確保變分編碼器對異常值的魯棒性。隨后,我們將噪聲轉換模型自然地集成到我們的模型中,以減輕噪聲標簽的有害影響。此外,為了進一步增強魯棒性,采用魯棒散度測度,推導并優化了新的變分下界來推斷網絡參數。通過證明對所提證據下界的影響函數是有界的,證明了所提模型在存在復合噪聲的情況下在分類方面的巨大潛力。通過對圖像分類任務的評價和與現有方法的比較,實驗結果表明了該框架的優越性。

//proceedings.mlr.press/v139/chen21a.html

付費5元查看完整內容

在真實的應用中,數據通常以增長的方式出現,其中數據量和類的數量可能會動態增加。這將給學習帶來重大挑戰:隨著數據量或類的數量不斷增加,人們必須立即調整神經模型的容量,以獲得良好的性能。現有的方法要么忽視數據增長的本質,要么尋求對給定數據集獨立搜索最優體系結構,因此無法針對變化的數據及時調整體系結構。為了解決這一問題,我們提出了一種神經結構自適應方法,即adaptive eXpert (AdaXpert),可以在不斷增長的數據上有效地調整以前的結構。具體來說,我們引入了一個體系結構調整器,根據以前的體系結構以及當前和以前數據分布之間的不同程度,為每個數據快照生成合適的體系結構。此外,我們提出一個適應條件來確定調整的必要性,從而避免不必要的和耗時的調整。在兩種增長場景(增加數據量和類數)上的大量實驗證明了所提方法的有效性。

//www.zhuanzhi.ai/paper/5b09e4a225a2ba1040ba9848b5a5cd24

付費5元查看完整內容

我們提出了一種新的參數化方案來解決在大型神經網絡上運用差分私有SGD所面臨的挑戰,這些挑戰包括1) 存儲單個梯度的巨大存儲成本,2) 附加的噪聲嚴重依賴于維數。具體地說,我們用兩個小維的梯度載波矩陣和一個殘差權矩陣來重新參數化每個權矩陣。我們認為,這樣的重新參數化保持向前/向后過程不變,同時使我們能夠在不計算梯度本身的情況下計算投影梯度。為了學習差分隱私,我們設計了重參數梯度擾動(RGP),它擾亂梯度載體矩陣上的梯度,并從有噪聲的梯度中重建原始權重的更新。重要的是,我們使用歷史更新來尋找梯度載波矩陣,其最優性在線性回歸下得到嚴格證明,并通過深度學習任務得到經驗驗證。RGP顯著降低了內存成本并改進了實用程序。例如,我們首次能夠在BERT模型上應用差分隱私,并在e = 8的四個下游任務上實現了83.9%的平均精度,與非私有基準相比,損失在5%以內,但隱私泄漏風險要低得多。

//www.zhuanzhi.ai/paper/3daeb1dc335f94ac104faf7abb027f98

付費5元查看完整內容

多任務學習(Multi-task learning, MTL)旨在通過對多個相關任務的聯合學習來提高任務的泛化能力。作為對比,除了聯合訓練方案,現代元學習允許在測試階段進行一些不可見的、標簽有限的任務,希望能夠快速適應它們。盡管MTL和元學習在問題表述上存在細微的差異,但兩種學習范式都認為,現有訓練任務之間的共享結構可以導致更好的泛化和適應性。本文通過理論分析和實證調查,進一步了解了這兩種學習模式之間的密切聯系。理論上,我們首先證明了MTL與一類基于梯度的元學習(GBML)算法具有相同的優化公式。然后我們證明了對于具有足夠深度的過參數化神經網絡,MTL和GBML學習到的預測函數是接近的。特別是,這一結果表明,這兩個模型給出的預測是相似的,在相同的看不見的任務。通過實證,我們證實了我們的理論發現,通過適當的實現,MTL可以在一組少樣本分類基準上與先進的GBML算法相媲美。由于現有的GBML算法經常涉及代價高昂的二階兩級優化,我們的一階MTL方法在大型數據集(如微型imagenet)上快了一個數量級。我們相信,這項工作可以幫助彌合這兩種學習模式之間的差距,并提供一個計算效率高的替代GBML,也支持快速任務適應。

//www.zhuanzhi.ai/paper/5d6fac14a84a1a6163d80eb46284b0af

付費5元查看完整內容

促進行為多樣性對于解決具有非傳遞性的動態博弈至關重要,因為這些博弈的策略存在周期性,而且沒有一致的贏家(例如,剪刀石頭布)。然而,在定義多樣性和構建具有多樣性意識的學習動態方面缺乏嚴格的處理。這項工作提供了游戲中行為多樣性的幾何解釋,并引入了一種基于決定點過程(DPP)的新的多樣性度量。通過將多樣性度量納入最佳響應動態,我們開發了多樣化的策略空間響應機制,用于解決正常形式的博弈和開放式博弈。我們證明了不同最佳響應的唯一性和我們算法在兩人博弈上的收斂性。重要的是,我們證明了最大化基于DPP的多樣性度量保證了擴大由代理策略混合跨越的凸多面體。為了驗證我們的多樣性感知求解器,我們在數十個顯示出強非傳遞性的博弈上進行了測試。結果表明,通過找到有效和多樣化的策略,可以實現比最先進的求解器更低的可利用性。

//www.zhuanzhi.ai/paper/92bae43a935a4cb28d57af4652726ba7

付費5元查看完整內容

元學習的研究越來越受到學者們的重視,從最初在圖像領域的研究逐漸拓展到其他領域,目前推薦系統領域也出現了相關的研究問題,本文介紹了5篇基于元學習的推薦系統相關論文,包括用戶冷啟動推薦、項目冷啟動推薦等。

  1. MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation

本文提出了一種新的推薦系統,解決了基于少量樣本物品來估計用戶偏好的冷啟動問題。為了確定用戶在冷啟動狀態下的偏好,現有的推薦系統,如Netflix,在啟動初向用戶提供物品選擇,我們稱這些物品為候選集。然后根據用戶選擇的物品做出推薦。以往的推薦研究有兩個局限性:(1) 只有少量物品交互行為的用戶推薦效果不佳,(2) 候選集合不足,無法識別用戶偏好。為了克服這兩個限制,我們提出了一種基于元學習的推薦系統MeLU。從元學習中,MeLU可以通過幾個例子快速地應用于新任務,通過幾個消費物品來估計新用戶的偏好。此外,我們提供了一個候選集合選擇策略,以確定自定義偏好估計的區分項目。我們用兩個基準數據集對MeLU進行了驗證,與兩個對比模型相比,該模型的平均絕對誤差至少降低了5.92%。我們還進行了用戶研究實驗來驗證選擇策略的有效性。

  1. Meta-Learning for User Cold-Start Recommendation 冷啟動問題是對實際推薦系統的長期挑戰。大多數現有的推薦算法依賴于大量的觀測數據,對于很少交互的推薦場景來說是脆弱的。本文用少樣本學習和元學習來解決這些問題。我們的方法是基于這樣一種見解,即從幾個例子中有一個很好的泛化,依賴于一個通用的模型初始化和一個有效的策略來使這個模型適應新出現的任務。為了實現這一點,我們將場景指定的學習與模型無關的序列元學習結合起來,并將它們統一到一個集成的端到端框架中,即場景指定的序列元學習者(或s^2 Meta)。我們的元學習器通過聚合來自各種預測任務的上下文信息來生成一個通用的初始模型,同時通過利用學習到的知識來有效地適應特定的任務。在各種現實世界數據集上的實驗表明,我們提出的模型可以在在線推薦任務中獲得對冷啟動問題的最好效果。

  2. Sequential Scenario-Specific Meta Learner for Online Recommendation

冷啟動問題是對實際推薦系統的長期挑戰。大多數現有的推薦算法依賴于大量的觀測數據,對于很少交互的推薦場景來說是脆弱的。本文用少樣本學習和元學習來解決這些問題。我們的方法是基于這樣一種見解,即從幾個例子中有一個很好的泛化,依賴于一個通用的模型初始化和一個有效的策略來使這個模型適應新出現的任務。為了實現這一點,我們將場景指定的學習與模型無關的序列元學習結合起來,并將它們統一到一個集成的端到端框架中,即場景指定的序列元學習者(或s^2 Meta)。我們的元學習器通過聚合來自各種預測任務的上下文信息來生成一個通用的初始模型,同時通過利用學習到的知識來有效地適應特定的任務。在各種現實世界數據集上的實驗表明,我們提出的模型可以在在線推薦任務中獲得對冷啟動問題的最好效果。

  1. A Meta-Learning Perspective on Cold-Start Recommendations for Items 矩陣分解(M F)是最流行的項目(item)推薦技術之一,但目前存在嚴重的冷啟動問題。項目冷啟動問題在一些持續輸出項目的平臺中顯得特別尖銳(比如Tweet推薦)。在本文中,我們提出了一種元學習策略,以解決新項目不斷產生時的項目冷啟動問題。我們提出了兩種深度神經網絡體系結構,實現了我們的元學習策略。第一個體系結構學習線性分類器,其權重由項目歷史決定,而第二個體系結構學習一個神經網絡。我們評估了我們在Tweet推薦的現實問題上的效果,實驗證明了我們提出的算法大大超過了MF基線方法。

  2. One-at-a-time: A Meta-Learning Recommender-System for Recommendation-Algorithm Selection on Micro Level

推薦算法的有效性通常用評價指標來評估,如均方根誤差、F1或點擊率CTR,在整個數據集上計算。最好的算法通常是基于這些總體度量來選擇的,然而,對于所有用戶、項目和上下文來說并沒有一個單獨的最佳算法。因此,基于總體評價結果選擇單一算法并不是最優的。在本文中,我們提出了一種基于元學習的推薦方法,其目的是為每個用戶-項目對選擇最佳算法。我們使用MovieLens 100K和1m數據集來評估我們的方法。我們的方法(RMSE,100K:0.973;1M:0.908)沒有優于單個的最佳算法SVD++(RMSE,100k:0.942;1M:0.887)。我們還探索了元學習者之間的區別,他們在每個實例(微級別),每個數據子集(中級)和每個數據集(全局級別)上進行操作。評估表明,與使用的總體最佳算法相比,一個假設完美的微級元學習器將提高RMSE 25.5%。

付費5元查看完整內容
北京阿比特科技有限公司