雖然像CNNs這樣的深度學習模型在醫學圖像分析方面取得了很大的成功,但是小型的醫學數據集仍然是這一領域的主要瓶頸。為了解決這個問題,研究人員開始尋找現有醫療數據集之外的外部信息。傳統的方法通常利用來自自然圖像的信息。最近的研究利用了來自醫生的領域知識,通過讓網絡模仿他們如何被訓練,模仿他們的診斷模式,或者專注于他們特別關注的特征或領域。本文綜述了將醫學領域知識引入疾病診斷、病變、器官及異常檢測、病變及器官分割等深度學習模型的研究進展。針對不同類型的任務,我們系統地對所使用的不同類型的醫學領域知識進行了分類,并給出了相應的整合方法。最后,我們總結了挑戰、未解決的問題和未來研究的方向。
摘要
一個綜合的人工智能系統不僅需要用不同的感官(如視覺和聽覺)感知環境,還需要推斷世界的條件(甚至因果)關系和相應的不確定性。在過去的十年里,我們看到了許多感知任務的重大進展,比如視覺對象識別和使用深度學習模型的語音識別。然而,對于更高層次的推理,具有貝葉斯特性的概率圖模型仍然更加強大和靈活。近年來,貝葉斯深度學習作為一種將深度學習與貝葉斯模型緊密結合的統一的概率框架出現了。在這個總體框架中,利用深度學習對文本或圖像的感知可以提高更高層次推理的性能,推理過程的反饋也可以增強文本或圖像的感知。本文對貝葉斯深度學習進行了全面的介紹,并對其在推薦系統、主題模型、控制等方面的最新應用進行了綜述。此外,我們還討論了貝葉斯深度學習與其他相關課題如神經網絡的貝葉斯處理之間的關系和區別。
介紹
在過去的十年中,深度學習在許多流行的感知任務中取得了顯著的成功,包括視覺對象識別、文本理解和語音識別。這些任務對應于人工智能(AI)系統的看、讀、聽能力,它們無疑是人工智能有效感知環境所必不可少的。然而,要建立一個實用的、全面的人工智能系統,僅僅有感知能力是遠遠不夠的。首先,它應該具備思維能力。
一個典型的例子是醫學診斷,它遠遠超出了簡單的感知:除了看到可見的癥狀(或CT上的醫學圖像)和聽到患者的描述,醫生還必須尋找所有癥狀之間的關系,最好推斷出它們的病因。只有在那之后,醫生才能給病人提供醫療建議。在這個例子中,雖然視覺和聽覺的能力讓醫生能夠從病人那里獲得信息,但醫生的思維能力才是關鍵。具體來說,這里的思維能力包括識別條件依賴、因果推理、邏輯演繹、處理不確定性等,顯然超出了傳統深度學習方法的能力。幸運的是,另一種機器學習范式,概率圖形模型(PGM),在概率或因果推理和處理不確定性方面表現出色。問題在于,PGM在感知任務上不如深度學習模型好,而感知任務通常涉及大規模和高維信號(如圖像和視頻)。為了解決這個問題,將深度學習和PGM統一到一個有原則的概率框架中是一個自然的選擇,在本文中我們稱之為貝葉斯深度學習(BDL)。 在上面的例子中,感知任務包括感知病人的癥狀(例如,通過看到醫學圖像),而推理任務包括處理條件依賴性、因果推理、邏輯推理和不確定性。通過貝葉斯深度學習中有原則的整合,將感知任務和推理任務視為一個整體,可以相互借鑒。具體來說,能夠看到醫學圖像有助于醫生的診斷和推斷。另一方面,診斷和推斷反過來有助于理解醫學圖像。假設醫生可能不確定醫學圖像中的黑點是什么,但如果她能夠推斷出癥狀和疾病的病因,就可以幫助她更好地判斷黑點是不是腫瘤。 再以推薦系統為例。一個高精度的推薦系統需要(1)深入了解條目內容(如文檔和電影中的內容),(2)仔細分析用戶檔案/偏好,(3)正確評價用戶之間的相似度。深度學習的能力有效地處理密集的高維數據,如電影內容擅長第一子任務,而PGM專攻建模條件用戶之間的依賴關系,項目和評分(參見圖7為例,u, v,和R是用戶潛在的向量,項目潛在的向量,和評級,分別)擅長其他兩個。因此,將兩者統一在一個統一的概率原則框架中,可以使我們在兩個世界中都得到最好的結果。這種集成還帶來了額外的好處,可以優雅地處理推薦過程中的不確定性。更重要的是,我們還可以推導出具體模型的貝葉斯處理方法,從而得到更具有魯棒性的預測。
作為第三個例子,考慮根據從攝像機接收到的實時視頻流來控制一個復雜的動態系統。該問題可以轉化為迭代執行兩項任務:對原始圖像的感知和基于動態模型的控制。處理原始圖像的感知任務可以通過深度學習來處理,而控制任務通常需要更復雜的模型,如隱馬爾科夫模型和卡爾曼濾波器。由控制模型選擇的動作可以依次影響接收的視頻流,從而完成反饋回路。為了在感知任務和控制任務之間實現有效的迭代過程,我們需要信息在它們之間來回流動。感知組件將是控制組件估計其狀態的基礎,而帶有動態模型的控制組件將能夠預測未來的軌跡(圖像)。因此,貝葉斯深度學習是解決這一問題的合適選擇。值得注意的是,與推薦系統的例子類似,來自原始圖像的噪聲和控制過程中的不確定性都可以在這樣的概率框架下自然地處理。 以上例子說明了BDL作為一種統一深度學習和PGM的原則方式的主要優勢:感知任務與推理任務之間的信息交換、對高維數據的條件依賴以及對不確定性的有效建模。關于不確定性,值得注意的是,當BDL應用于復雜任務時,需要考慮三種參數不確定性:
通過使用分布代替點估計來表示未知參數,BDL提供了一個很有前途的框架,以統一的方式處理這三種不確定性。值得注意的是,第三種不確定性只能在BDL這樣的統一框架下處理;分別訓練感知部分和任務特定部分相當于假設它們之間交換信息時沒有不確定性。注意,神經網絡通常是過參數化的,因此在有效處理如此大的參數空間中的不確定性時提出了額外的挑戰。另一方面,圖形模型往往更簡潔,參數空間更小,提供了更好的可解釋性。
除了上述優點之外,BDL內建的隱式正則化還帶來了另一個好處。通過在隱藏單元、定義神經網絡的參數或指定條件依賴性的模型參數上施加先驗,BDL可以在一定程度上避免過擬合,尤其是在數據不足的情況下。通常,BDL模型由兩個組件組成,一個是感知組件,它是某種類型神經網絡的貝葉斯公式,另一個是任務特定組件,使用PGM描述不同隱藏或觀察變量之間的關系。正則化對它們都很重要。神經網絡通常過度參數化,因此需要適當地正則化。正則化技術如權值衰減和丟失被證明是有效地改善神經網絡的性能,他們都有貝葉斯解釋。在任務特定組件方面,專家知識或先驗信息作為一種正規化,可以在數據缺乏時通過施加先驗來指導模型。 在將BDL應用于實際任務時,也存在一些挑戰。(1)首先,設計一個具有合理時間復雜度的高效的神經網絡貝葉斯公式并非易事。這一行是由[42,72,80]開創的,但是由于缺乏可伸縮性,它沒有被廣泛采用。幸運的是,這個方向的一些最新進展似乎為貝葉斯神經網絡的實際應用提供了一些啟示。(2)第二個挑戰是如何確保感知組件和任務特定組件之間有效的信息交換。理想情況下,一階和二階信息(例如,平均值和方差)應該能夠在兩個組件之間來回流動。一種自然的方法是將感知組件表示為PGM,并將其與特定任務的PGM無縫連接,如[24,118,121]中所做的那樣。 本綜述提供了對BDL的全面概述,以及各種應用程序的具體模型。綜述的其余部分組織如下:在第2節中,我們將回顧一些基本的深度學習模型。第3節介紹PGM的主要概念和技術。這兩部分作為BDL的基礎,下一節第4節將演示統一BDL框架的基本原理,并詳細說明實現其感知組件和特定于任務的組件的各種選擇。第5節回顧了應用于不同領域的BDL模型,如推薦系統、主題模型和控制,分別展示了BDL在監督學習、非監督學習和一般表示學習中的工作方式。第6部分討論了未來的研究問題,并對全文進行了總結。
結論和未來工作
BDL致力于將PGM和NN的優點有機地整合在一個原則概率框架中。在這項綜述中,我們確定了這種趨勢,并回顧了最近的工作。BDL模型由感知組件和任務特定組件組成;因此,我們分別描述了過去幾年開發的兩個組件的不同實例,并詳細討論了不同的變體。為了學習BDL中的參數,人們提出了從塊坐標下降、貝葉斯條件密度濾波、隨機梯度恒溫器到隨機梯度變分貝葉斯等多種類型的算法。 BDL從PGM的成功和最近在深度學習方面有前景的進展中獲得了靈感和人氣。由于許多現實世界的任務既涉及高維信號(如圖像和視頻)的有效感知,又涉及隨機變量的概率推理,因此BDL成為利用神經網絡的感知能力和PGM的(條件和因果)推理能力的自然選擇。在過去的幾年中,BDL在推薦系統、主題模型、隨機最優控制、計算機視覺、自然語言處理、醫療保健等各個領域都有成功的應用。在未來,我們不僅可以對現有的應用進行更深入的研究,還可以對更復雜的任務進行探索。此外,最近在高效BNN (BDL的感知組件)方面的進展也為進一步提高BDL的可擴展性奠定了基礎。
深度學習方法對各種醫學診斷任務都非常有效,甚至在其中一些任務上擊敗了人類專家。然而,算法的黑箱特性限制了臨床應用。最近的可解釋性研究旨在揭示對模型決策影響最大的特征。這一領域的大多數文獻綜述都集中在分類學、倫理學和解釋的需要上。本文綜述了可解釋的深度學習在不同醫學成像任務中的應用。本文從一個為臨床最終用戶設計系統的深度學習研究者的實際立場出發,討論了各種方法、臨床部署的挑戰和需要進一步研究的領域。
摘要: 大數據時代,數據呈現維度高、數據量大和增長快等特點。如何有效利用其中蘊含的有價值信息,以實現數據的智能化處理,已成為當前理論和應用的研究熱點。針對現實普遍存在的多義性對象,數據多標簽被提出并被廣泛應用于數據智能化組織。近年來,深度學習在數據特征提取方面呈現出高速、高精度等優異性,使基于深度學習的多標簽生成得到廣泛關注。文中分五大類別總結了最新研究成果,并進一步從數據、關系類型、應用場景、適應性及實驗性能方面對其進行對比和分析,最后探討了多標簽生成面臨的挑戰和未來的研究方向。
隨著機器學習、圖形處理技術和醫學成像數據的迅速發展,機器學習模型在醫學領域的使用也迅速增加。基于卷積神經網絡(CNN)架構的快速發展加劇了這一問題,醫學成像社區采用這種架構來幫助臨床醫生進行疾病診斷。自2012年AlexNet取得巨大成功以來,CNNs越來越多地被用于醫學圖像分析,以提高臨床醫生的工作效率。近年來,三維(3D) CNNs已被用于醫學圖像分析。在這篇文章中,我們追溯了3D CNN的發展歷史,從它的機器學習的根源,簡單的數學描述3D CNN和醫學圖像在輸入到3D CNNs之前的預處理步驟。我們回顧了在不同醫學領域,如分類、分割、檢測和定位,使用三維CNNs(及其變體)進行三維醫學成像分析的重要研究。最后,我們討論了在醫學成像領域使用3D CNNs的挑戰(以及使用深度學習模型)和該領域可能的未來趨勢。
【導讀】辭九迎零,我們迎來2020,到下一個十年。在2019年機器學習領域繼續快速發展,元學習、遷移學習、小樣本學習、深度學習理論等取得很多進展。在此,專知小編整理這一年這些研究熱點主題的綜述進展,共十篇,了解當下,方能向前。
1、A guide to deep learning in healthcare(醫療深度學習技術指南)
斯坦福&谷歌Jeff Dean最新Nature論文:醫療深度學習技術指南(29頁綜述)
Google 斯坦福 Nature Medicine
作者:Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov, Mark DePristo, Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun & Jeff Dean
摘要:我們介紹了醫療保健的深度學習技術,重點討論了計算機視覺、自然語言處理、強化學習和廣義方法的深度學習。我們將描述這些計算技術如何影響醫學的幾個關鍵領域,并探討如何構建端到端系統。我們對計算機視覺的討論主要集中在醫學成像上,我們描述了自然語言處理在電子健康記錄數據等領域的應用。同樣,在機器人輔助手術的背景下討論了強化學習,并綜述了基因組學的廣義深度學習方法。
網址:
//www.nature.com/articles/s41591-018-0316-z
2、Multimodal Machine Learning: A Survey and Taxonomy(多模態機器學習)
人工智能頂刊TPAMI2019最新《多模態機器學習綜述》
CMU TPAMI
作者:Tadas Baltru?aitis,Chaitanya Ahuja,Louis-Philippe Morency
摘要:我們對世界的體驗是多模態的 - 我們看到物體,聽到聲音,感覺質地,聞到異味和味道。情態是指某種事物發生或經歷的方式,并且當研究問題包括多種這樣的形式時,研究問題被描述為多模式。為了使人工智能在理解我們周圍的世界方面取得進展,它需要能夠將這種多模態信號一起解釋。多模態機器學習旨在構建可以處理和關聯來自多種模態的信息的模型。這是一個充滿活力的多學科領域,具有越來越重要的意義和非凡的潛力。本文不是關注特定的多模態應用,而是研究多模態機器學習本身的最新進展。我們超越了典型的早期和晚期融合分類,并確定了多模式機器學習所面臨的更廣泛的挑戰,即:表示,翻譯,對齊,融合和共同學習。這種新的分類法將使研究人員能夠更好地了解該領域的狀況,并確定未來研究的方向。
網址:
3、Few-shot Learning: A Survey(小樣本學習)
《小樣本學習(Few-shot learning)》最新41頁綜述論文,來自港科大和第四范式
香港科大 第四范式
作者:Yaqing Wang,Quanming Yao
摘要:“機器會思考嗎”和“機器能做人類做的事情嗎”是推動人工智能發展的任務。盡管最近的人工智能在許多數據密集型應用中取得了成功,但它仍然缺乏從有限的數據示例學習和對新任務的快速泛化的能力。為了解決這個問題,我們必須求助于機器學習,它支持人工智能的科學研究。特別地,在這種情況下,有一個機器學習問題稱為小樣本學習(Few-Shot Learning,FSL)。該方法利用先驗知識,可以快速地推廣到有限監督經驗的新任務中,通過推廣和類比,模擬人類從少數例子中獲取知識的能力。它被視為真正人工智能,是一種減少繁重的數據收集和計算成本高昂的培訓的方法,也是罕見案例學習有效方式。隨著FSL研究的廣泛開展,我們對其進行了全面的綜述。我們首先給出了FSL的正式定義。然后指出了FSL的核心問題,將問題從“如何解決FSL”轉變為“如何處理核心問題”。因此,從FSL誕生到最近發表的作品都被歸為一個統一的類別,并對不同類別的優缺點進行了深入的討論。最后,我們從問題設置、技術、應用和理論等方面展望了FSL未來可能的發展方向,希望為初學者和有經驗的研究者提供一些見解。
網址:
4、meta Learning: A Survey(元學習)
元學習(Meta-Learning) 綜述及五篇頂會論文推薦
作者:Joaquin Vanschoren
摘要:元學習,或學習學習,是一門系統地觀察不同機器學習方法如何在廣泛的學習任務中執行的科學,然后從這種經驗或元數據中學習,以比其他方法更快的速度學習新任務。這不僅極大地加快和改進了機器學習管道或神經體系結構的設計,還允許我們用以數據驅動方式學習的新方法取代手工設計的算法。在本文中,我們將概述這一迷人且不斷發展的領域的最新進展。
網址:
5、A Comprehensive Survey on Transfer Learning(遷移學習)
中科院發布最新遷移學習綜述論文,帶你全面了解40種遷移學習方法
作者:Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Senior Member, IEEE, Hui Xiong, Senior Member, IEEE, and Qing He
摘要:遷移學習的目的是通過遷移包含在不同但相關的源域中的知識來提高目標學習者在目標域上的學習表現。這樣,可以減少對大量目標域數據的依賴,以構建目標學習者。由于其廣泛的應用前景,遷移學習已經成為機器學習中一個熱門和有前途的領域。雖然已經有一些關于遷移學習的有價值的和令人印象深刻的綜述,但這些綜述介紹的方法相對孤立,缺乏遷移學習的最新進展。隨著遷移學習領域的迅速擴大,對相關研究進行全面的回顧既有必要也有挑戰。本文試圖將已有的遷移學習研究進行梳理使其系統化,并對遷移學習的機制和策略進行全面的歸納和解讀,幫助讀者更好地了解當前的研究現狀和思路。與以往的文章不同,本文從數據和模型的角度對40多種具有代表性的遷移學習方法進行了綜述。還簡要介紹了遷移學習的應用。為了展示不同遷移學習模型的性能,我們使用了20種有代表性的遷移學習模型進行實驗。這些模型是在三個不同的數據集上執行的,即Amazon Reviews,Reuters-21578和Office-31。實驗結果表明,在實際應用中選擇合適的遷移學習模型是非常重要的。。
網址:
6、Multimodal Intelligence: Representation Learning, Information Fusion, and Applications(多模態智能論文綜述:表示學習,信息融合與應用) 【IEEE Fellow何曉東&鄧力】多模態智能論文綜述:表示學習,信息融合與應用,259篇文獻帶你了解AI熱點技術
京東
作者:Chao Zhang,Zichao Yang,Xiaodong He,Li Deng
【摘要】自2010年以來,深度學習已經使語音識別、圖像識別和自然語言處理發生了革命性的變化,每種方法在輸入信號中都只涉及一種模態。然而,人工智能的許多應用涉及到多種模態。因此,研究跨多種模態的建模和學習的更困難和更復雜的問題具有廣泛的意義。本文對多模態智能的模型和學習方法進行了技術綜述。視覺與自然語言的結合已成為計算機視覺和自然語言處理研究的一個重要領域。本文從學習多模態表示、多模態信號在不同層次上的融合以及多模態應用三個新角度對多模態深度學習的最新研究成果進行了綜合分析。在多模態表示學習中,我們回顧了嵌入的關鍵概念,將多模態信號統一到同一個向量空間中,從而實現了多模態信號的交叉處理。我們還回顧了許多類型的嵌入的性質,構造和學習的一般下游任務。在多模態融合方面,本文著重介紹了用于集成單模態信號表示的特殊結構。在應用方面,涵蓋了當前文獻中廣泛關注的選定領域,包括標題生成、文本到圖像生成和可視化問題回答。我們相信這項綜述可促進未來多模態智能的研究。
網址:
7、Object Detection in 20 Years: A Survey(目標檢測)
密歇根大學40頁《20年目標檢測綜述》最新論文,帶你全面了解目標檢測方法
作者:Zhengxia Zou (1), Zhenwei Shi (2), Yuhong Guo (3 and 4), Jieping Ye
摘要:目標檢測作為計算機視覺中最基本、最具挑戰性的問題之一,近年來受到了廣泛的關注。它在過去二十年的發展可以說是計算機視覺歷史的縮影。如果我們把今天的目標檢測看作是深度學習力量下的一種技術美學,那么讓時光倒流20年,我們將見證冷兵器時代的智慧。本文從目標檢測技術發展的角度,對近四分之一世紀(20世紀90年代至2019年)的400余篇論文進行了廣泛的回顧。本文涵蓋了許多主題,包括歷史上的里程碑檢測器、檢測數據集、度量、檢測系統的基本構建模塊、加速技術以及最新的檢測方法。本文還綜述了行人檢測、人臉檢測、文本檢測等重要的檢測應用,并對其面臨的挑戰以及近年來的技術進步進行了深入分析。
網址:
8、A Survey of Techniques for Constructing Chinese Knowledge Graphs and Their Applications(中文知識圖譜)
作者:Tianxing Wu, Guilin Qi ,*, Cheng Li and Meng Wang
摘要:隨著智能技術的不斷發展,作為人工智能支柱的知識圖譜以其強大的知識表示和推理能力受到了學術界和產業界的廣泛關注。近年來,知識圖譜在語義搜索、問答、知識管理等領域得到了廣泛的應用。構建中文知識圖譜的技術也在迅速發展,不同的中文知識圖譜以支持不同的應用。同時,我國在知識圖譜開發方面積累的經驗對非英語知識圖譜的開發也有很好的借鑒意義。本文旨在介紹中文知識圖譜的構建技術及其應用,然后介紹了典型的中文知識圖譜,此外我們介紹了構建中文知識圖譜的技術細節,并介紹了了中文知識圖譜的幾種應用。
網址:
9、Advances and Open Problems in Federated Learning(聯邦學習)
【重磅】聯邦學習FL進展與開放問題萬字綜述論文,58位學者25家機構聯合出品,105頁pdf438篇文獻
摘要:聯邦學習(FL)是一種機器學習設置,在這種設置中,許多客戶(例如移動設備或整個組織)在中央服務器(例如服務提供商)的協調下協作地訓練模型,同時保持訓練數據分散。FL體現了集中數據收集和最小化的原則,可以減輕由于傳統的、集中的機器學習和數據科學方法所帶來的許多系統隱私風險和成本。在FL研究爆炸性增長的推動下,本文討論了近年來的進展,并提出了大量的開放問題和挑戰。
網址:
10、Optimization for deep learning: theory and algorithms(深度學習優化理論算法)
【2019年末硬貨】深度學習的最優化:理論和算法綜述論文,60頁pdf257篇文獻
摘要:什么時候以及為什么能夠成功地訓練神經網絡?本文概述了神經網絡的優化算法和訓練理論。首先,我們討論了梯度爆炸/消失問題和更一般的不期望譜問題,然后討論了實際的解決方案,包括仔細的初始化和歸一化方法。其次,我們回顧了用于訓練神經網絡的一般優化方法,如SGD、自適應梯度方法和分布式方法,以及這些算法的現有理論結果。第三,我們回顧了現有的關于神經網絡訓練的全局問題的研究,包括局部極值的結果、模式連接、彩票假設和無限寬度分析。
網址:
異常檢測是一個在各個研究領域和應用領域內得到廣泛研究的重要問題。本研究的目的有兩個方面:首先,我們對基于深度學習的異常檢測的研究方法進行了系統全面的綜述。此外,我們還回顧了這些方法對不同應用領域異常的應用,并評估了它們的有效性。我們根據所采用的基本假設和方法,將最先進的研究技術分為不同的類別。在每一類中,我們概述了基本的異常檢測技術,以及它的變體,并給出了關鍵的假設,以區分正常行為和異常行為。對于我們介紹的每一類技術,我們還介紹了它們的優點和局限性,并討論了這些技術在實際應用領域中的計算復雜性。最后,我們概述了研究中的未決問題和采用這些技術時所面臨的挑戰。
題目: Understanding Deep Learning Techniques for Image Segmentation
簡介: 機器學習已被大量基于深度學習的方法所淹沒。各種類型的深度神經網絡(例如卷積神經網絡,遞歸網絡,對抗網絡,自動編碼器等)有效地解決了許多具有挑戰性的計算機視覺任務,例如在不受限制的環境中對對象進行檢測,定位,識別和分割。盡管有很多關于對象檢測或識別領域的分析研究,但相對于圖像分割技術,出現了許多新的深度學習技術。本文從分析的角度探討了圖像分割的各種深度學習技術。這項工作的主要目的是提供對圖像分割領域做出重大貢獻的主要技術的直觀理解。從一些傳統的圖像分割方法開始,本文進一步描述了深度學習對圖像分割域的影響。此后,大多數主要的分割算法已按照專用于其獨特貢獻的段落進行了邏輯分類。