亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

論文題目: Knowledge-based Conversational Search

摘要:

允許對數字存儲信息進行直觀和全面訪問的對話接口仍然是一個目標。在這篇論文中,分析了對話搜索系統的需求,并提出了一些具體的解決方案來自動化這些系統應該支持的基本組件和任務,從而為對話搜索系統的設計奠定了基礎。我們描述了幾個相互依賴的研究,這些研究分析了更高級的對話搜索系統的設計需求,該系統能夠支持復雜的類人對話交互,并提供對巨大知識庫的訪問。在前兩章的研究中,重點分析了信息搜索對話中常見的結構,從領域獨立的話語功能關系和領域特定的隱含語義關系兩方面分析了重復模式。結果顯示,問題回答是特定信息訪問的關鍵組成部分之一,但它不是會話搜索系統應該支持的對話交互的唯一類型。在第三章的研究中,提出了一種新穎的方法來解決復雜的問題。在最后的研究章節中,將注意力轉向了另一種交互模式,稱之為對話瀏覽,在這種模式中,會話系統與問題回答不同,在對話交互過程中起著更積極的作用。結果表明,由于詞匯量不匹配問題,該方法可以幫助用戶發現僅使用問題回答無法檢索的相關條目。

論文作者:

Svitlana Vakulenko是阿姆斯特丹大學博士,研究范圍是自然語言處理、對話系統、問答、對話搜索。

論文下載鏈接: //svakulenk0.github.io/pdfs/Conversational_Search_in_Structure__PhD_Thesis_Vakulenko_.pdf

ppt下載鏈接:

付費5元查看完整內容

相關內容

語義分析的最終目的是理解句子表達的真實語義。但是,語義應該采用什么表示形式一直困擾著研究者們,至今這個問題也沒有一個統一的答案。語義角色標注(semantic role labeling)是目前比較成熟的淺層語義分析技術。基于邏輯表達的語義分析也得到學術界的長期關注。

主題: Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion

摘要: 會話推薦系統(CRS)旨在通過交互式對話向用戶推薦高質量的項目。盡管已為CRS做出了一些努力,但仍有兩個主要問題有待解決。首先,對話數據本身缺少足夠的上下文信息,無法準確地了解用戶的偏好。第二,自然語言表達與項目級用戶偏好之間存在語義鴻溝。為了解決這些問題,我們結合了面向單詞和面向實體的知識圖(KG)來增強CRS中的數據表示,并采用互信息最大化來對齊單詞級和實體級的語義空間。基于對齊的語義表示,我們進一步開發了用于進行準確推薦的KGenhanced推薦器組件,以及可以在響應文本中生成信息性關鍵字或實體的KG增強對話框組件。大量的實驗證明了我們的方法在推薦和對話任務上都能產生更好的性能。

付費5元查看完整內容

摘要

推薦系統是一種軟件應用程序,它可以幫助用戶在信息過載的情況下找到感興趣的主題。當前的研究通常假設一個一次性的交互范式,其中用戶偏好是根據過去歷史觀察到的行為來估計的,并且按照等級排序的推薦列表是用戶交互的主要的且是單向的形式。對話推薦系統(CRS)采用了一種不同的方法,支持更豐富的交互。例如,這些交互可以幫助改進偏好激發過程,或者允許用戶詢問關于推薦的問題并給出反饋。對CRS的興趣在過去幾年里顯著增加。這種發展主要是由于自然語言處理領域的重大進展,新的語音控制家庭助手的出現,以及聊天機器人技術的增加使用。在本文中,我們詳細介紹了現有的對話推薦方法。我們將這些方法按不同的維度進行分類,例如,根據支持的用戶意圖或用戶在后臺使用的知識。此外,我們還討論了技術方法,回顧了CRS的評估方法,并最終確定了一些在未來值得更多研究的差距。

介紹

推薦系統是人工智能在實踐中最明顯的成功案例之一。通常,這些系統的主要任務是為用戶指出感興趣的潛在主題,例如電子商務網站。因此,它們不僅可以在信息超載的情況下幫助用戶,還可以對服務提供商的業務做出重大貢獻。 在這些實際應用中,推薦是一個一次性的交互過程。通常,底層系統會隨著時間的推移監視其用戶的行為,然后在預定義的導航情況下(例如,當用戶登錄到服務時)提供一組定制的建議。盡管這種方法在各個領域都很常見,也很有用,但是它可能有一些潛在的限制。例如,在許多應用程序場景中,用戶首選項無法從其過去的交互中可靠地估計出來。對于高介入的產品(例如,當推薦一款智能手機時),我們甚至可能完全沒有過去的觀察結果。此外,在一組建議中包含哪些內容可能與上下文高度相關,而且可能很難自動確定用戶的當前情況或需求。最后,另一個假設通常是,當用戶登錄網站時,他們已經知道自己的偏好。然而,這未必是真的。例如,用戶可能只在決策過程中確定他們的首選項,例如,當他們意識到選項的空間時。在某些情況下,他們也可能只在與推薦者的交互過程中了解這塊內容和可用的選項。 對話推薦系統(CRS)是可以幫助解決這些的挑戰中的許多這樣的問題。一般來說,這種系統的總體思想是支持與用戶進行面向任務的多回合對話。例如,在這樣的對話中,系統可以引出用戶當前的詳細偏好,為主題推薦提供解釋,或者處理用戶對所提建議的反饋。 鑒于這類系統的巨大潛力,對CRS的研究已經有了一定的傳統。早在20世紀70年代末,Rich就設想了一個電腦化的圖書管理員,通過用自然語言互動地向用戶提問有關他們的個性和偏好的問題,向他們提出閱讀建議。除了基于自然語言處理(NLP)的接口外,近年來還提出了多種基于表單的用戶接口。CRS中較早的基于這些接口的交互方法之一稱為critiquing,它在1982年就被提出作為數據庫領域的查詢重新制定的一種方法。在critiquing方法中,用戶很快會在對話中看到一個建議,然后可以對這些建議應用預先定義的評論。 基于表單的方法通常很有吸引力,因為用戶可以使用的操作是預先定義的、明確的。然而,這樣的對話也可能出現非自然的,用戶可能在表達他們的偏好的方式上感到約束。另一方面,基于NLP的方法在很長一段時間內受到了現有的限制,例如在處理語音命令的上下文中。然而,近年來,語言技術取得了重大進展。因此,我們現在習慣于向智能手機和數字家庭助手發出語音命令,這些設備的識別精度已經達到了令人印象深刻的水平。與語音助手領域的這些發展相對應,我們注意到聊天機器人技術在最近幾年的快速發展。聊天機器人,無論是簡單的還是復雜的,通常也能處理自然語言,現在廣泛應用于各種應用領域,例如,處理客戶服務請求。 這些技術的進步導致在過去幾年中對CRS的興趣增加。然而,與以前的許多方法相比,我們注意到今天的技術建議更多地是基于機器學習技術,而不是遵循預先定義的對話路徑,用于確定要向用戶詢問的下一個問題。然而,通常在語音助手和聊天機器人的功能與支持真正的對話推薦場景(如系統是語音控制的)所需的功能之間仍然存在差距。 本文從不同的角度對對話推薦系統的文獻進行了綜述。具體地說,我們將討論(i)CRS的交互模式(第3節),(ii)CRS基于的知識和數據(第4節), 和(iii)CRS中典型的計算任務(第5節)。然后,我們討論CRS的評估方法(第6節),最后展望未來的發展方向。

對話系統的特征描述

關于什么是CRS,文獻中沒有一個公認的定義。在這項工作中,我們使用以下定義。 CRS是一個軟件系統,它支持用戶通過多回合的對話來實現推薦相關的目標。

CRS的概念架構:在過去的二十年中,人們提出了各種CRS模型的技術途徑。這些解決方案的技術體系結構的細節取決于系統的功能,例如,是否支持語音輸入。盡管如此,仍然可以確定此類體系結構的許多典型概念組件,如圖1所示。

CRS交互模式

最近對CRS的興趣是由NLP的發展和技術進步(如寬帶移動互聯網接入和智能手機和家庭助手等新設備)推動的。然而,我們對文獻的回顧表明,用戶和CRS之間的交互既不局限于自然語言輸入和輸出,也不局限于特定的設備。

知識和背景數據

根據所選擇的技術方法,CRS必須結合各種類型的知識和背景數據才能發揮作用。顯然,像任何推薦人一樣,必須有關于推薦項目的知識。同樣,推薦的生成要么基于明確的知識,例如推薦規則或約束,要么基于在一些背景數據上訓練的機器學習模型。然而,對話系統通常依賴于其他類型的知識,例如對話中的可能狀態,或者用于訓練機器學習模型的數據,如記錄和轉錄的自然語言推薦對話。

計算任務

在討論了推薦對話中可能的用戶意圖之后,我們現在將回顧CRS的常見的計算任務和技術方法。我們區分(i)主要任務,即那些與推薦過程更直接相關的,例如,計算推薦或確定下一個要問的問題,以及(ii)額外的支持任務。

介紹對話系統的評價

一般情況下,推薦系統可以通過不同的方法從不同的維度進行評價。首先,當系統在其使用上下文中進行評估時,即,當它被部署時,我們通常最感興趣的是通過A/B測試來衡量系統是否達到了設計目標的具體關鍵性能指標(KPI),例如,增加的銷售數字或用戶參與度。其次,用戶研究(實驗室實驗)通常調查與系統感知質量相關的問題。常見的質量維度是建議的適宜性、流程的可感知透明性或易用性。最后,計算性實驗不需要用戶參與評估,而是基于客觀指標來評估質量,例如,通過測量建議的多樣性或計算運行時間來預測測試集中的輔助評級的準確性。同樣的質量維度和研究方法也適用于CRS。然而,在比較面向算法的研究和對話系統的研究時,我們發現評估的主要焦點往往是不同的。由于CRS是高度交互的系統,因此與人機交互有關的問題更常用于這些系統的研究。此外,在測量方法方面,CRS評估不僅關注任務的完成,即,如果建議是合適的或最終被接受的,但也涉及到與談話本身的效率或質量有關的問題。

總結和未來工作

總的來說,我們的研究表明,CRS領域在過去幾年中出現了一定程度的復興,其中最新的方法依賴于機器學習技術,尤其是深度學習和基于自然語言的交互。考慮到語音控制系統(如智能音箱)最近的興起,以及聊天機器人系統的日益普及,我們預計在未來幾年將看到對CRS的更多研究。雖然在某些方面取得了重大進展,但仍有許多領域需要進行更多的研究。在接下來的文章中,我們將概述一些有待解決的問題以及該領域未來可能的發展方向。 第一個問題涉及模式的選擇。盡管近年來,“自然語言”越來越流行,但究竟哪種情況下“自然語言”才是最好的選擇,目前還不完全清楚。需要進行更多的研究來了解哪種模式適合當前給定的任務和情況,或者是否應該向用戶提供替代模式。一個有趣的研究方向還在于解釋用戶的非言語交際行為。此外,完全基于語音的CRS也有一定的局限性,例如,在一個交互周期中提供完整的推薦集合。在這種情況下,用戶可能希望對一組推薦進行總結,因為在大多數情況下,當CRS向用戶推薦過多(例如多于兩三個)選項時,這可能沒有意義。

付費5元查看完整內容

教程簡介: 最近AI對話技術的飛躍式發展,無疑與越來越復雜的深度學習算法有關,而深度學習算法所捕捉到的模式是由各種數據收集機制生成的。因此,本教程的目標是雙重的。首先,它旨在讓學術界熟悉基于統計學的對話系統算法設計的最新進展,其中包括開放性領域和基于任務的對話范例。本教程的重點是介紹對話系統端到端的學習機制,以及它們與更加常見的模塊系統之間的關聯。從理論上講,從數據中學習端到端可以為對話系統提供無縫的、空前的可移植性,有著非常廣闊的應用前景。從實踐的角度來看,該領域仍然存在大量的研究挑戰和機會:在本教程中,我們會分析理論和實踐之間的差異,并介紹當前端到端對話學習的主要優勢和實踐中的局限性。

目錄:

  • 理解數據(帶注釋和不帶注釋的)收集對AI對話系統的重要性。
  • 介紹最新的關于AI對話系統的數據收集范式。
  • 闡述大規模無結構的對話數據在對話系統預訓練方面的可用性。
  • 提供端到端數據驅動在AI對話學習模型的概述。
  • 討論數據和算法選擇之間的重要性。
  • 關于當前(任務導向)AI對話在實際操作中的一個行業視角。

下載鏈接: //pan.baidu.com/s/1qV4uQItQSZj0kWsXa4QgPg 提取碼: kk3v

付費5元查看完整內容

題目: Semantic search on text and knowledge bases

摘要: 本文全面綜述了基于文本和知識庫的語義搜索的廣泛領域。簡而言之,語義搜索就是“有意義的搜索”。這個“含義”可以指搜索過程的各個部分:理解查詢(而不僅僅是在數據中找到其組件的匹配項),理解數據(而不僅僅是搜索這樣的匹配),或者以一種適合有意義檢索的方式表示知識。語義搜索是在各種不同的社區中研究的,對這個問題有各種不同的看法。在本次調查中,我們根據兩個維度對這項工作進行分類:數據類型(文本、知識庫、它們的組合)和搜索類型(關鍵字,結構化、自然的語言)。我們考慮所有九種組合。重點是基本技術、具體系統和基準。調查還考慮了高級問題:排序、索引、本體匹配和合并以及推理。它還簡要地概述了有助于語義搜索的自然語言處理技術:詞性標注、命名實體識別和消歧、句子分析和詞向量。

下載鏈接: //ad-publications.informatik.uni-freiburg.de/FNTIR_semanticsearch_BBH_2016.pdf

付費5元查看完整內容

論文摘要: 我們提出了一個大型的可調神經會話響應生成模型DIALOGPT(對話生成預訓練Transformer)。經過2005年至2017年期間從Reddit評論中提取147M大小的類似的對話內容,DialoGPT擴展了Hugging Face PyTorch transformer,在單輪對話設置中實現了在自動和人類評估性方面都接近人類。我們表明,利用DialoGPT的會話系統比基線系統生成更相關、更有內容和上下文一致的響應。預訓練的模型和訓練方法已經公開發布,以促進對神經響應生成的研究和更智能的open-domain對話系統的開發。

代碼鏈接//github.com/microsoft/DialoGPT

付費5元查看完整內容

論文題目:Challenges in Building Intelligent Open-domain Dialog Systems

論文摘要:由于大量的對話數據的可用性和最新的漸進式對話方法AI的興起,人們對開發智能的開放域對話系統產生了濃厚的興趣。與傳統的面向任務的機器人一樣,開放域對話系統旨在通過滿足人類對交流,情感和情感的需求與用戶建立長期聯系。社會歸屬感。本文回顧了有關神經方法的最新工作,該方法致力于解決開發此類系統的三個挑戰:語義,一致性和交互性。語義要求對話系統不僅要了解對話的內容,還要識別對話過程中用戶的情感和社交需求;一致性要求該系統表現出一致的個性以贏得用戶的信任并獲得他們的長期信任。該系統生成人際反應以實現特定社會目標(如娛樂性,順從性和任務完成性)的能力。我們在本次調查中選擇呈現的研究基于我們的獨特觀點,但絕不是完整的。盡管如此,我們希望該討論會激發新的研究,以開發更多的智能到筆域對話系統。

付費5元查看完整內容

自然語言理解(NLU)系統需要把人類產生的文本進行編碼,然后在深層次的語義層面上進行推理。NLU系統通常都會包括到兩個部分:第一個是編碼器(encoder),它將語言中的單詞組合在一起作為輸入,編碼產生一個新的表示,然后將這些表示作為第二部分--預測器(predictor)中的特征,然后在這些編碼過的輸入信息上進行推理并生成所需的輸出。本文的研究目標是構建一個端到端的NLU系統,能夠結合相關的背景知識對輸入信息進行編碼,然后在上下文的語境中對其進行推理。

論文目錄

Part I 背景知識編碼

  • 相關工作:學習編碼
  • 用本體論的背景知識來編碼句子
  • 將選擇偏好作為編碼事件的背景知識

Part II 用上下文知識進行推理

  • 相關工作:學習推理
  • 用于語義分析的解碼約束
  • 使用迭代覆蓋引導搜索來訓練語義分析器
付費5元查看完整內容

主題: Deep Natural Language Processing for Search Systems

簡介: 搜索引擎處理豐富的自然語言數據,如用戶查詢和記錄。提高搜索質量需要有效地處理和理解這類信息,通常使用自然語言處理技術。作為搜索系統中的代表性數據格式,查詢或記錄數據被表示為單詞序列。在傳統方法中,理解這樣的序列信息通常是一項非常重要的任務,面臨著來自數據稀疏性和數據泛化的挑戰。深度學習模型提供了一個有效提取有代表性的相關信息的機會,從而更好地理解復雜的語義和潛在的搜索意圖。近年來,深度學習在各種自然語言處理任務中取得了顯著的進步,顯示出其在促進搜索系統方面的巨大潛力。

然而,開發搜索系統中自然語言處理的深度學習模型不可避免地需要滿足復雜的搜索引擎生態系統的要求。例如,一些系統需要頻繁的模型更新,所以冗長的模型訓練時間是不容許的。此外,低服務延遲約束禁止使用復雜模型。如何以相對較低的復雜度保持模型質量是深度學習從業者面臨的持續挑戰。

在本教程中,作者總結了當前在搜索系統中自然語言處理的深度學習工作,首先概述了搜索系統和搜索中的自然語言處理,然后介紹了自然語言處理的深度學習的基本概念,并介紹了如何將深度自然語言處理應用于搜索系統的實踐。本教程全面概述了通過端到端搜索系統在上述組件中應用深度自然語言處理技術。除了傳統的搜索引擎,還包括一些高級搜索系統的用例,如對話搜索和面向任務的聊天機器人。我們還強調了幾個重要的未來趨勢,比如通過查詢生成與用戶交互,以及減少延遲以滿足行業標準。

付費5元查看完整內容
北京阿比特科技有限公司