在許多現實世界的應用中,多主體決策是一個普遍存在的問題,如自動駕駛、多人視頻游戲和機器人團隊運動。多智能體學習的主要挑戰包括其他智能體行為的不確定性,以及由聯合觀察、行動和策略空間的高維性導致的維數災難。由于未知的智能體意圖和意外的、可能的對抗性行為,這些挑戰在對抗性場景中進一步加劇。本文提出了魯棒和可擴展的多智能體學習方法,目標是高效地構建可以在對抗性場景中魯棒運行的自主智能體。通過觀察智能體的行為準確推斷其意圖的能力是魯棒決策的關鍵。在這種情況下,一個挑戰是對手實際行為的高度不確定性,包括潛在的欺騙,這可能與先驗行為模型有很大的不同。捕捉自我主體和對手之間的交互以及對雙方主體可用信息的推理,對于建模這種欺騙行為至關重要。本文采用博弈論對手建模方法解決了這一意圖識別問題,該方法基于一種新的多樣性驅動的信念空間集合訓練技術,用于實現對欺騙的魯棒性**。為了將集成方法擴展到具有多個智能體的場景,本文提出了一種可擴展的多智能體學習技術,該技術通過稀疏注意力機制促進了接近最優的聯合策略學習。該機制的結果是集中的參數更新,這大大提高了采樣效率**。此外,本文還提出了一種新的隱式集成訓練方法,該方法利用多任務學習和深度生成策略分布,以較低的計算和內存成本獲得更好的魯棒性。將魯棒的意圖識別和可擴展的多智能體學習結合起來,可以實現魯棒的、可擴展的離線策略學習。然而,完全自主的智能體還需要能夠不斷地從新的環境和對等智能體中學習(并適應)。因此,本文還提出了一種安全的適應方法,既能適應新的對手,又能在對抗場景中對任何可能的對手剝削保持低可利用性。本文的貢獻有助于構建自主代理,使其能夠在具有不確定性的競爭多智能體場景下做出魯棒的決策,并通過計算效率學習安全地適應以前未見的對等智能體。
計算上下文理解指的是agent融合不同信息源進行決策的能力,因此,通常被認為是人工智能(AI)等復雜機器推理能力的先決條件。數據驅動和知識驅動方法是追求這種機器意義生成能力的兩種經典技術。然而,雖然數據驅動的方法試圖通過在現實世界中的觀察來模擬事件的統計規律,但它們仍然難以解釋,而且缺乏自然地結合外部知識的機制。相反,知識驅動的方法結合了結構化的知識庫,使基于公理原則的符號推理成為可能,并產生更多可解釋的預測; 然而,它們往往缺乏估計推斷的統計顯著性或魯棒地適應輸入中的擾動的能力。為了解決這些問題,我們使用混合AI方法作為綜合兩種方法的優勢的一般框架。具體而言,我們繼承了神經符號的概念,將其作為一種使用領域知識來指導深度神經網絡學習進程的方法。領域知識以多種形式出現,包括:(i) 圖模型,它描述了實體之間的關系,如依賴、獨立、因果、相關和部分相關; (ii) 常識性知識,包括空間知識、物體的物理屬性、語義關系和功能知識; 專家智能體以演示或軟標簽的形式提供特權信息; (iv) 習得的行為原語和先驗,這些行為原語和先驗可能構成可推廣和可轉移的任務執行;以及(v)輔助任務、目標和約束條件——為約束優化精心選擇。
無論可用的領域知識類型是什么,相同的實際目標仍然是:學習有意義的神經表征,用于下游感興趣的任務。神經表征學習的潛在目標是在統計上識別agent輸入數據或觀察中變化的最佳解釋因素,通常需要對輸入中多種模式或觀點之間的互補性的直覺。雖然已經有很多關注于學習特定任務的有效神經表征,然后將學習到的表征轉移或適應其他任務,相對較少的重點放在有各種類型的領域知識的表征學習。這些知識可用于恢復潛在生成過程的信息,設計學習問題的有效建模策略,確保模型的可轉移性或泛化性,或理解視圖之間的互補性。本文研究了將上述類型的領域知識與神經表示相結合的方法,以提高以下問題領域的模型性能和通用性:神經常識推理、多模態機器人導航和自動駕駛。本文提供了一系列工具、方法、任務、國際AI挑戰和排行榜、數據集和知識圖;此外,這項工作還成功組織了兩場關于自動駕駛安全學習的國際研討會。
學習解決順序決策任務是困難的。人類花了數年時間,基本上以一種隨機的方式探索環境,直到他們能夠推理,解決困難的任務,并與他人合作實現一個共同的目標。人工智能智能體在這方面和人類很像。強化學習(RL)是一種眾所周知的通過與環境的交互來訓練自主智能體的技術。遺憾的是,學習過程具有很高的樣本復雜性來推斷一個有效的驅動策略,特別是當多個智能體同時在環境中驅動時。
然而,以前的知識可以用來加速學習和解決更難的任務。同樣,人類通過關聯不同的任務來構建技能并重用它們,RL代理可能會重用來自先前解決的任務的知識,以及來自與環境中其他智能體的知識交換的知識。事實上,目前RL解決的幾乎所有最具挑戰性的任務都依賴于嵌入的知識重用技術,如模仿學習、從演示中學習和課程學習。
本書概述了多agent RL中關于知識重用的文獻。作者為重用知識定義了最先進的解決方案的統一分類,提供了該領域最近進展的全面討論。在這本書中,讀者將發現關于知識在多智能體順序決策任務中重用的許多方法的全面討論,以及在哪些場景中每種方法更有效。作者還提供了他們對該地區目前低垂的發展成果的看法,以及仍然開放的大問題,可能導致突破性的發展。最后,本書為想要加入這一領域或利用這些技術的研究人員提供了資源,包括會議、期刊和實現工具的列表。
這本書將對廣大讀者有用;并有望促進社區間的新對話和該地區的新發展。
//www.morganclaypool.com/doi/10.2200/S01091ED1V01Y202104AIM049
這篇論文表明,通過神經符號模型的視角來看待智能系統比傳統的深度學習方法有幾個好處。神經符號模型包含符號程序性構造,如循環、條件和連續的神經成分。符號部分使模型具有可解釋性、泛化性和穩健性,而神經部分處理智能系統的復雜性。具體而言,本文提出了兩類神經符號模型——狀態機和神經符號transformers,并以基于強化學習的自主系統和多機器人系統為例對它們進行了評估。這些案例研究表明,學習的神經符號模型是人類可讀的,可以外推到看不見的場景,并可以處理規范中的穩健目標。為了有效地學習這些神經符號模型,我們引入了利用機器學習和程序合成的最新技術的神經符號學習算法。
//dspace.mit.edu/handle/1721.1/143249
深度學習徹底改變了機器學習和人工智能,在幾個標準基準上取得了超人的表現。眾所周知,深度學習模型訓練效率低;它們通過多次處理數以百萬計的訓練數據來學習,并且需要強大的計算資源來同時并行處理大量數據,而不是順序處理。深度學習模型也存在非預期失效模式;他們可能會被愚弄,做出錯誤的預測。
在本文中,我們研究了提高深度學習模型訓練效率和魯棒性的方法。在學習視覺語義嵌入的背景下,我們發現優先學習更多的信息訓練數據可以提高收斂速度和提高測試數據的泛化性能。我們形式化了一個簡單的技巧,稱為硬負挖掘,作為學習目標函數的修改,沒有計算開銷。接下來,我們在深度學習的通用優化方法中尋求優化速度的改進。我們展示了對訓練數據采樣的冗余感知修改提高了訓練速度,并開發了一種檢測訓練信號多樣性的有效方法,即梯度聚類。最后,我們研究了深度學習中的對抗魯棒性,以及在不使用額外數據訓練的情況下實現最大對抗魯棒性的方法。對于線性模型,我們證明保證最大的魯棒性實現只有通過適當的選擇優化器,正則化,或架構。
//arxiv.org/pdf/2112.01423.pdf
提供態勢感知是戰術領域的一項關鍵要求和一項具有挑戰性的任務。戰術網絡可以被描述為斷開、間歇和受限 (DIL) 網絡。在 DIL 網絡中使用跨層方法有助于更好地利用戰術通信資源,從而提高用戶感知的整體態勢感知。用于優化應用程序的規則,描述其合適跨層策略(啟發式)的規范仍然是一項具有挑戰性的任務。
我們之前介紹了一種學習環境架構,旨在訓練分散的強化學習 (RL) 智能體,這些智能體應該通過使用跨層信息 [1] 來改善 DIL 網絡中網絡資源的使用。由于這些智能體的訓練需要大量場景,因此定義了一個額外的戰術模型。戰術模型的目的是生成具有動態變化的網絡條件和應用程序之間動態信息交換的場景,從而為訓練 RL 智能體奠定基礎。戰術模型本身也基于 RL 智能體,它在博弈環境中模擬軍事單位。
在本文中,我們展示了這個戰術模型,實驗性的深度強化智能體放置在一個專注于控制多智能體合作博弈中的運動和通信戰術環境中。該博弈的重點是多個智能體,通過在二維空間中進行交流和移動來達到與對方團隊競爭的共同目標。我們研究智能體如何與彼此和環境交互以解決偶發性和連續性任務。由于這項工作的重點是在通信網絡上進行強化學習以增強 DIL 通信網絡,因此我們提出了基于近端策略優化 [2] 的智能體,以適應協作多智能體通信網絡問題。此外,該博弈的最終軌跡用于在 DIL 設置中訓練智能體。
圖4-1:戰術模型的高層架構
圖4-2:戰術環境的可視化
圖5-2:在PoIs和單個單位被打破之前積累單位
盡管最近在深度學習方面取得了進展,但大多數方法仍然采用豎井式的解決方案,即為每個單獨的任務訓練一個單獨的神經網絡。然而,許多現實世界的問題需要同時解決許多任務。例如,一輛自動駕駛汽車應該能夠檢測場景中的所有物體,對其進行定位,估計其距離和軌跡等,以便在其周圍環境中安全導航。類似地,用于商業應用的圖像識別系統應該能夠標記產品、檢索類似的商品、提出個性化的建議等,以便為客戶提供盡可能好的服務。這類問題促使研究人員建立多任務學習模型。多任務學習的核心思想是并行學習多個任務,同時共享學習到的表示。與單任務情況相比,多任務網絡具有許多實際的優點,單任務情況下,每個單獨的任務由自己的網絡單獨解決。首先,由于層的共享,產生的內存占用大大減少。其次,由于它們避免在共享層中重復計算特征,每個任務一次,它們顯示出提高的推理速度。第三,如果相關的任務共享互補信息,或者作為一個正則化器,它們有可能提高性能。
在構建多任務學習模型時,我們面臨著兩個重要的挑戰。首先,我們需要想出能夠處理多個任務的神經網絡架構。其次,我們需要為共同學習任務制定新的訓練方案。特別是,由于我們并行地優化多個目標,一個或多個任務可能會開始主導權重更新過程,從而阻礙模型學習其他任務。在這份手稿中,我們在視覺場景理解的背景下鉆研了這兩個問題。我們提出了兩種新的模型類型來解決體系結構問題。首先,我們探索了分支多任務網絡,其中神經網絡的更深層次逐漸成長為更具體的任務。我們介紹了一種有原則的方法來自動構建這樣的分支多任務網絡。構造過程將可以用一組相似特征來解決的任務組合在一起,同時在任務相似性和網絡復雜性之間進行權衡。通過這種方式,我們的方法生成的模型可以在性能和計算資源量之間做出更好的權衡。
其次,我們提出了一種新的神經網絡結構,用于聯合處理多個密集的預測任務。其關鍵思想是從多個尺度上對其他任務的預測中提取有用信息,從而提高對每個任務的預測。包含多個尺度的動機是基于這樣的觀察:在某個尺度上具有高相似性的任務不能保證在其他尺度上保持這種行為,反之亦然。在密集標記的兩個流行基準上進行的廣泛實驗表明,與之前的工作不同,我們的模型提供了多任務學習的全部潛力,即更小的內存占用,減少的計算數量,以及更好的性能w.r.t.單任務學習。此外,我們還考慮了多任務學習優化問題。我們首先分析幾種平衡任務學習的現有技術。令人驚訝的是,我們發現了這些工作之間的一些差異。我們假設,這可能是由于多任務學習缺乏標準化的基準,不同的基準受益于特定的策略。基于這個結果,我們然后分離最有希望的元素,并提出一組啟發式方法來平衡任務。啟發式具有實際性質,并在不同的基準測試中產生更魯棒的性能。
在最后一章中,我們從另一個角度來考慮場景理解的問題。文獻中描述的許多模型都受益于有監督的預訓練。在這種情況下,在轉移到感興趣的任務之前,模型首先在一個更大的帶注釋的數據集(如ImageNet)上進行預訓練。這使得模型能夠很好地執行,即使是在只有少量標記示例的數據集上。不幸的是,有監督的預訓練依賴于帶注釋的數據集本身,這限制了它的適用性。為了解決這個問題,研究人員開始探索自監督學習方法。我們以對比學習為基礎來回顧最近流行的作品。首先,我們展示了現有的方法,如MoCo可以在不同的數據集上獲得穩健的結果,包括以場景為中心的數據、長尾數據和特定領域的數據。其次,我們通過增加額外的不變性來改進學習的表示。這一結果直接有利于許多下游任務,如語義分割、檢測等。最后,我們證明了通過自監督學習所獲得的改進也可以轉化為多任務學習網絡。綜上所述,本文提出了幾個重要的貢獻,以改進多任務學習模型的視覺場景理解。創新集中在改進神經網絡結構、優化過程和訓練前方面。所有方法都經過了各種基準測試。該代碼公開發布://github.com/SimonVandenhende。
機器人研究的一個長期目標是創建能夠從零開始自動學習復雜控制策略的算法。將這種算法應用到機器人上的挑戰之一是表示的選擇。強化學習(RL)算法已經成功地應用于許多不同的機器人任務中,如帶有機器人手臂的cup中的Ball-in-a-Cup任務和各種機器人世界杯機器人足球啟發的領域。然而,RL算法仍然存在訓練時間長、所需訓練數據量大的問題。為狀態空間、行動空間和策略選擇合適的表示可以大大減少所需的訓練時間和所需的訓練數據。
本文主要研究機器人的深度強化學習。具體來說,狀態空間、動作空間和策略表示的選擇如何減少機器人學習任務的訓練時間和樣本復雜度。特別集中注意兩個主要領域: 1)通過張量狀態-動作空間表示 2)多狀態表示的輔助任務學習
第一個領域探索了在環境變化中改進機器人策略遷移的方法。學習策略的成本可能很高,但是如果策略可以在類似的環境中傳輸和重用,那么訓練成本可以平攤。遷移學習是一個被廣泛研究的領域,涉及多種技術。在這篇論文中,我們著重設計一個易于傳輸的表示。我們的方法將狀態空間和動作空間映射為多維張量,設計成當環境中機器人和其他對象的數量變化時保持固定維數。我們還提出了全卷積Q-Network (FCQN)策略表示,這是一種特殊的網絡架構,與張量表示相結合,允許跨環境大小進行零距離傳輸。我們在模擬的單代理和多代理任務上演示了這種方法,靈感來自于RoboCup Small - Size League (SSL)和Atari Breakout的修改版本。我們還表明,在真實世界的傳感器數據和機器人中使用這樣的表示和模擬訓練策略是可能的。
第二個領域考察了一個機器人深度RL狀態表示的優勢如何彌補另一個機器人深度RL狀態表示的劣勢。例如,我們經常想要利用機器人可用的傳感器來學習任務,其中包括像攝像機這樣的高維傳感器。最近的Deep RL算法可以通過圖像進行學習,但是數據的數量對于真實的機器人來說是難以接受的。或者,可以使用任務完成所需的最小集創建狀態。這樣做的好處是:1)減少策略參數的數量,2)刪除不相關的信息。然而,提取這些特征通常會在工程、額外硬件、校準和實驗室之外的脆弱性方面有很大的成本。我們在仿真和現實世界的多個機器人平臺和任務上演示了這一點。我們證明它在模擬的RoboCup小型聯賽(SSL)機器人上工作。我們還演示了這樣的技術允許在真實的硬件上從零開始學習,通過機器人手臂執行一個球在一個杯子的任務。