這項研究的目的是開發一種基于模型的競爭性技術情報方法,以預測競爭對手的系統。這種分析目前是由撰寫長篇敘述性報告來驅動的,這些報告的維護和更新都很費力,同時也幾乎沒有明確說明預測是如何形成的。為了做到這一點,從系統工程的技術過程中得出了一個對立面過程的框架,或稱反過程。然后將其與競爭性技術情報領域的分析技術相結合,建立一個SysML參考模型,然后將其應用于一個小型案例研究,以加強和完善該模型。反過程為在所探討的特定階段對競爭者的系統進行框架和分析提供了堅實的基礎。SysML參考模型的分層方法提供了可追溯性和解構每個反過程的分析過程的手段。最后,貝葉斯推理技術的參數模型,主觀邏輯,使一個可動態更新的模型能夠計算每個反過程中的預測的可能性和不確定性。最終,反過程框架和SysML參考模型為競爭對手系統的情報預測提供了一個嚴格的、基于模型的方法。
這項研究是由本世紀以來自主系統的增加以及測試和評估其性能的挑戰性所驅動。對當前文獻的回顧顯示,提出了驗證自主系統的方法,但很少有實施。它暴露了當前驗證和確認方法中的一些差距,并提出了填補這些差距的目標。通過使用建模、軟件循環(SITL)和飛行測試,這項研究驗證了無人駕駛航空系統(UAS)的自主蜂群算法,并驗證了測試框架的一個典范。
在兩天的飛行測試中產生的13組三飛行器群數據提供了一個基線算法分析。在這些測試中,飛行器分離距離平均偏離理想狀態5.61米,分離距離違規率<6.39%。蜂群在最佳情況下實現了0.27米的平均偏差和0.43%的違規率。在5赫茲的更新率下,飛行器之間的平均數據包損失為4.94%,最佳通信滯后< 0.04秒。
通過定性和定量分析的搭配所創建的多方位經驗分析提供了對飛行器行為的完整理解。該分析還確定了算法和測試框架的各種改進領域。這項研究的結果形成了一個基線測試連續體,可用于對自主系統的正式驗證的各種后續調查。
未來的系統開發包括指揮和控制(C2)技術,以支持空戰管理人員(ABM)和戰斗機飛行員,因為他們支持在一個更大的系統系統中使用自主無人機系統(UAS)的復雜任務。在復雜的、不斷發展的和動態的環境中,人類作戰員有效地觀察、定位、決定和行動的能力是必不可少的。然而,在ABM和飛行員之間的UAS監管變化過程中,作戰者的表現可能會下降,這大大增加了作戰者的認知工作量,超過了以往任務中通常看到的工作量。不幸的是,C2技術的發展往往把重點放在自動化和硬件上,使人類作戰員的參與度不足,不利于人與自動化的互動。目前,數字工程和基于模型的系統工程(MBSE)工具正在迅速被系統開發、整合和管理所采用,以支持整合這些系統所需的復雜開發工作。目前的研究在MBSE工具中整合了人的考慮,以分析開發過程中人與自動化的合作。該方法支持在建模的任務模擬中用一對專門的活動圖表示自動化輔助和人類作戰者,稱為任務行為者圖和OODA2活動圖,允許分析作戰過程中的錯誤和瓶頸。這種方法說明有可能減少作戰員的認知工作量,改善作戰員的決策,提高系統性能,同時減少系統重新設計的時間。
通過這項美海軍的頂點研究,人工智能(AI)三人小組利用系統工程(SE)的方法來研究人工智能輔助的多任務資源分配(MMRA)如何使所有軍種的任務規劃者受益。這項研究的動力來自于優化我們武裝部隊中的MMRA問題集,對于戰術領導人有效管理現有資源至關重要。存在著一個將人類決策者與人工智能支持的MMRA規劃工具相結合的機會。在計算速度、數據存儲和商業應用中的整體公眾接受度方面的快速技術進步促進了這一點。
該團隊從三個任務集著手處理MMRA問題:車隊保護、航空支援和航母打擊群(CSG)行動。車隊保護用例探討了利用定向能(DE)的移動式地基防空系統。航空用例探討了美國陸軍的未來垂直遠程攻擊機(FLRAA)的能力組合,這是一個未來垂直升降機(FVL)的前里程碑B計劃。最后,CSG用例從高度復雜的系統(SoS)角度探討了MMRA。
盡管這些用例各不相同,但團隊探討了這些觀點之間的相似性和矛盾性。每個用例都應用了一般的MMRA流程架構。然而,每個用例的輸入和輸出都是單獨評估的。圖A描述了MMRA的總體流程架構。
如圖A所示,MMRA被設想為在確定的決策點由人在回路中激活。在這些事件中,MMRA系統用實時輸入進行一次循環。由黑盒MMRA系統確定的輸出被顯示給人在回路中的人,以進行標準決策程序。雖然這項研究僅限于問題的分解,但未來的研究領域是開發一個由人類系統集成(HSI)驅動的產品實現。MMRA通過對日益復雜和相互依賴的資源分配問題進行客觀評估,加強了指揮系統的決策。圖B描述了MMRA人工智能系統過程的行動圖。
MMRA決策已經超出了傳統決策過程的復雜程度。這種復雜性適用于任務規劃的各個層面。戰術層面是在士兵個人的直接指揮系統或單位層面進行的。行動和戰略層面則是在梯隊或總部層面進行。所有這些都需要對現有資源進行準確和有效的分配。
圖C中的圖形,"戰術評估過程。圖C "戰術評估過程:MMRA決策的復雜性 "描述了MMRA是如何在一個作戰場景的決策點上隨時間推移而進行的。初始規劃是在??0進行的,與 "MMRA過程結構 "中的 "初始 "黃色活動塊相關。之后的某個時間,??1, ??2, ??3, ..., ????決策點與 "MMRA過程流 "中的 "決策點重新規劃 "黃色活動相關。"初始 "和"決策點重新規劃 "這兩個黃色活動塊啟動了一個完整的 MMRA 過程流,它包含了 "初始 "和 "決策點重新規劃 "連續體中描述的所有活動。
決策點在三個MMRA用例中被普遍定義。然而,為了解情況,對設想中的場景采用了獨特的故事情節。雖然這里不能列出所有的案例,但CSG獨特決策點的一個例子是CSG內部、CSG外部或自然災害援助的應急反應。通常,所有的決策點都發生在出現新的任務、提供不同的任務優先級、資源耗盡、資源被破壞或任務無法繼續完成時。
為了更好地理解MMRA問題集的范圍,該團隊對所有三個用例進行了可擴展性和復雜性分析。可擴展性分析抓住了靜態MMRA問題集的范圍,與該用例的歷史背景相比較。因此,可擴展性分析為最初的MMRA規劃問題集提供了一個從傳統系統到現在用例方案的背景。在DE Convoy Protection和CSG用例中,可擴展性都有不可量化的增加。對于DE車隊保護來說,由于精確攻擊的技術進步,紅色部隊的能力增加。此外,CSG的藍軍能力增加了,在某些地方是三倍,因為反措施能力、導彈類型的可用性和不同級別驅逐艦之間的數量擴大了。作為補充,航空用例產生了15%的可擴展性,從傳統的實用級直升機到FVL FLRAA。
復雜性分析抓住了動態MMRA問題集的范圍,與各自用例的歷史背景相比較。這些復雜性分析提供了進一步的MMRA背景,因為當MMRA在交戰中被重新規劃時,戰術決策發生在多個決策點。所有三個用例的復雜性分析都構建了故事情節,展示了無形的、越來越具有挑戰性的MMRA考慮。隨著MMRA的可擴展性和復雜性的增加,未來對人工智能輔助的MMRA決策的關鍵需求變得清晰。
繼續分解人工智能輔助的MMRA問題集可能會引起美國武裝部隊的興趣。在所有的使用案例中,在初始和重新規劃的作戰場景中,戰術決策的復雜性都顯示出隨著時間的推移而增加。我們強烈建議對人工智能支持的MMRA問題集進行進一步研究。確定的未來研究領域有:工具的倍數、硬件/軟件部署戰略、戰術與作戰與戰略層面的資源配置、連續與離散的重新規劃節奏、人工智能機器學習的考慮,如數據的數量/質量、人類在環路中對人工智能的接受程度、人工智能輸出儀表板的顯示以及人工智能的倫理。
數字工程和數字設計是美國空軍(USAF)的一個新興重點領域,特別是用于現代復雜系統。高復雜度系統的一個例子是網絡合作自主彈藥群(NCAM),它優先考慮廣域搜索和多視角目標確認。首先,本研究討論了在基于模型的系統工程(MBSE)工具中建立行為模型的方法。然后,本研究介紹了NCAM在兩個環境中的并行建模工作:Cameo系統建模器中的MBSE模型,以及仿真、集成和建模高級框架(AFSIM)中的基于物理學的模型。每個數字模型在其環境中都為設計過程中的利益相關者提供了不同的好處,所以這些模型必須呈現出一致和平行的信息。因此,這項研究也提出了在模型之間翻譯設計信息的自動化方法。總的來說,這對協同工作的模型通過系統認知和數字場景模擬對自主過程的理解,與決策部門建立信任關系。
在始于1903年萊特兄弟首次飛行的重于空氣的飛行歷史中,美國軍隊促進了空對地攻擊能力的持續和快速發展。最初,飛行在軍事上的應用僅限于1909年美國陸軍信號部隊的偵察和監視;然而,第一次世界大戰和后來的第二次世界大戰的爆發創造了軍用飛機技術和理論的繁榮。到1946年,簡單的偵察雙翼飛機被可以超過音速的噴氣機所取代。美國看到了這種快速發展的技術的可行性,并在1947年創建了獨立的美國空軍(USAF)服務。空中力量的勢頭一直持續到現在,現代美國空軍的飛機可以隱藏他們的雷達信號,并精確地投擲制導彈藥,在地面上的同一個洞里投擲5枚炸彈!這就是美國空軍。
在美國空軍這個令人難以置信的組合中,一個合乎邏輯的下一個能力是合作和自主的彈藥,它利用相互通信來尋找、識別和打擊一個目標,同時評估對目標的損害。國防部研究與工程助理部長(USD(R&E))對這種能力有兩個關鍵定義。
"自動化。該系統的功能沒有或很少有人類操作者的參與。然而,系統的性能被限制在它被設計為做的具體行動上。通常,這些都是定義明確的任務,有預先確定的反應(即基于規則的簡單反應)。
自主性。系統有一套基于智能的能力,使其能夠對系統部署前沒有預先編程或預期的情況做出反應(即基于決策的反應)。自治系統具有一定程度的自治和自我指導行為(由人類代理決策)"。[4]
目前的制導彈藥非常嚴格地遵循自動化的定義。通過激光或全球定位手動指定目標,然后彈藥執行程序化的行動以擊中指定位置。在這種情況下,控制權被操作者緊緊抓住,對目標開火的決定需要多個人為步驟。這些人為步驟使操作者對自動化有一種信任感,因為扣動扳機時風險最小化;與操作者使用無制導彈藥相比,彈藥利用其自動化技術更準確地擊中目標。當討論下一步的自主化發展時,人們有一種理性的擔心,即人類通常控制的決定將由自主系統的機器大腦來代替。這種不信任導致人們對部署旨在自主摧毀目標的武器猶豫不決。
理解與系統自主決策相關的行為是建立對自主性信任的絕佳方式。有多種方法可以將行為理解傳達給人類評估者:首先是提供描述系統各個方面的正式文件,接下來是創建一個數字模型,用圖表表示系統結構和行為,另一個是運行涵蓋廣泛場景的模擬,最后演示可以證明物理系統在測試和評估中的能力。文檔方法一直是所有國防部采購的標準,可以追溯到手繪示意圖的設計時代。然而,最近,國防部對使用建模和仿真來記錄和管理系統表示了興趣。已經出現的一個概念是數字孿生,系統的每個方面都被虛擬建模,以實現快速的修改原型和精確的配置控制。[5]這種數字孿生的焦點也為它所代表的系統的物理結構和行為創造了清晰的、可瀏覽的數據,從而使系統得到合理的理解。
如Reed[6]所示,基于模型的系統工程(MBSE)已經迅速被美國空軍的數字工程工作所采用,用于程序和系統結構建模項目。然而,復雜系統的行為MBSE建模在美國空軍的相同項目中并不常見。對于自主系統,算法的復雜性和這些自主系統協作時出現的突發行為使得評估邏輯行為和性能影響變得困難。對系統行為進行建模的能力是MBSE過程所固有的,但MBSE模型通常缺乏提供詳細的基于物理學的模型的能力,無法對系統的運行情況進行性能評估。有一些專門建立的基于物理的仿真平臺,如高級仿真、集成和建模框架(AFSIM),就是為了這后一種目的而存在的,但它們往往與MBSE工具中的定義模型脫節[3]。一種將復雜系統的MBSE行為模型和同一復雜系統的基于物理學的仿真模型聯系起來的方法和工具是必要的。要確保這對模型之間的行為一致,需要有能力在建模平臺之間傳輸設計數據。
本研究的目的是建立一個復雜的合作彈藥系統的行為MBSE模型,并建立一個自動和可重復的方法,將數據從MBSE模型轉移到AFSIM場景中,以執行相同的合作彈藥行為的模擬。MBSE模型將足以驗證單個自主彈藥的邏輯行為,以及在合作概念中同一彈藥的數量。AFSIM模擬將反過來為建模者提供反饋,以便對彈藥模型進行潛在的修改,從而實現更高的性能。
合作彈藥模型的研究問題包括:
SysML在行為建模中的優勢和劣勢是什么?
哪些MBSE元素和/或屬性適合翻譯成AFSIM的原生語言用于情景模擬?
SysML數字模型在多大程度上可以代表AFSIM模擬中使用的合作彈藥的行為?
在SysML模型和AFSIM場景之間可以利用哪些自動和可重復的方法進行數據交換?
這項研究必須首先確定連接點和集成到AFSIM的所需變量,這將有助于定義合作彈藥的MBSE系統模型的邏輯接口。這些接口有助于定義合作彈藥的MBSE模型的邊界,并為整合到AFSIM的場景模型提供數據點。設計和測試的關鍵領域是:為AFSIM實體所需的變量和基本方程建模;提供從MBSE模型到AFSIM的彈藥和場景參數的自動導出可用性;以及確定MBSE模型中會影響模擬的可修改區域。基于對連接點的評估,研究將轉向創建一個MBSE模型,以保持連接點,同時建立與AFSIM模型平行的行為。MBSE模型中的行為將根據AFSIM模型的情況進行評估。
本研究僅限于虛擬彈藥的建模和模擬。此外,本研究定義的合作彈藥概念是名義上的;因此,彈藥模型將由名義上的數據填充。
第2章是對與彈藥建模、AFSIM集成、自主無人機系統行為建模和美國空軍先進彈藥的歷史應用有關的出版物的文獻回顧。第3章介紹了合作彈藥概念的設計方法和將數據自動傳輸到AFSIM場景模擬的方法。第4章討論了已完成的網絡化合作自主彈藥(NCAM)MBSE模型的行為分析、自動轉換結果和平行模型之間的比較。第5章總結了研究的重要發現,并推薦了未來的研究課題。
數字工程和MBSE有可能將設計決策加速到開發過程的早期階段。
如果沒有構建和整合人類模型,這些決定可能是在不了解人類影響的情況下做出的。
需要一個強大的框架來支持人類建模工作的發展--也許衡量標準的分類法是一個重要的起點。
框架模型的標準化可以推進系統模型中人的表述的使用,改善人與系統的整合。
本報告著重于2025年混合部隊的任務工程過程。來自OPNAV N9I的最新任務強調了關注使用成本保守的無人系統的必要性。具體來說,重點放在近鄰的競爭對手大國以及在南海的反介入/區域拒止(A2/AD)情況下可能出現的問題。海軍水面作戰中心的任務工程方法被用來確定擬議的替代艦隊架構的具體事件,然后使用作戰模擬和優化模型進行分析。對目前的無人系統,特別是那些正在開發的高技術準備水平無人系統的性能特征和成本的研究進行了匯編。提議的無人系統架構是作為A2/AD問題的解決方案而開發的。然后,無人系統架構通過優化模型運行,以最大限度地提高系統性能,同時最小化成本。然后,架構優化的結果被輸入到建模和仿真中。然后比較每個架構的整體有效性,以找到最有效的解決方案。對結果進行了分析,以顯示預期的任務有效性和利用擬議解決方案的無人架構的擬議成本。最有效的架構包括搜索、反蜂群、運送和攻擊系統。
系統工程分析31組由美海軍作戰司令部戰爭整合處(OPNAV N9I)負責確定一個解決方案,以彌補與大國在2025年的預期能力差距(Boensel 2021)。該解決方案系統必須具有成本效益并能在2025年之前交付。SEA團隊利用任務工程過程來確定候選的未來艦隊架構來解決問題(工程副主任辦公室2020)。
到2025年,如何才能有效地對抗近鄰對手的反介入和區域拒止能力?
以具有成本效益的方式調整目前的能力,并創建一個未來的架構,以加強美國海軍的作戰能力,包括存在、欺騙、ISR以及在反介入和區域拒止環境中的防御和進攻能力。
利用任務工程流程,總體情景被設定在2025年的南海。大國已執行了其九段線的領土要求,并建立了一個反介入/區域拒止(A2/AD)區。大國不斷擴大的艦隊、對人造島嶼的使用、遠距離ASCMs以及對無人系統的擴大使用使美國的水面作戰艦艇處于高風險之中。總體任務是美國海軍DDG通過提高其殺傷力和生存能力,在A2/AD區域內進行FONOPS。在整個方案中,有三個小場景被開發出來。OTH ISR、目標選擇和交戰,威脅無人機蜂群,以及提供目標選擇的威脅無人機ISR資產。
衡量任務成功與否的總體標準是美國海軍部隊在近乎同行的反介入區域拒止環境中的作戰能力。有助于衡量成功的有效性的措施是DDG的生存能力和殺傷力的提高程度與解決方案系統的成本相結合。
為了分析擬議的系統解決方案(SoS)是否能達到既定的成功標準,設計了一個價值體系。利用通用的海軍任務列表,項目組確定了擬議的系統解決方案需要完成的三個二級任務,以完成任務(海軍部,2008)。
對三個選定任務下的后續任務進行了評估,以確定擬議系統需要完成的具體功能。通過這次審查,確定了候選無人系統需要完成的四項高級功能。這些功能是交付、搜索、通信中繼和打擊。為每項功能選擇了性能措施,以用于多屬性價值分析。
多屬性價值分析被用來比較完成四個功能中一個或多個功能的候選系統。一個系統的價值是根據每個性能指標對完成一個特定功能的重要性,給每個性能指標分配一個權重而得出的。權重從1到5不等,其中5表示最重要的MOP。計算MOP和權重的乘積,并將每個乘積相加,以獲得系統的價值。
為了確定可行的候選系統,項目組成員各自研究了一個不同的無人系統,并收集了每個候選系統的性能衡量標準。如果一個特定的無人系統的MOP值不知道,則推斷其值與一個類似的系統相同。如果不存在這樣的類似系統,則使用啟發式方法估計該值。對于每項功能,至少有一個系統符合技術成熟度,可考慮用于2025年的混合部隊。
為了實現所有四個功能,候選系統的組合被排列組合成16個系統簇。每個備選方案的系統價值和成本都被計算出來。系統價值的計算方法是將每個備選方案中的每個系統的價值相加。
為了產生用于比較的替代方案,該團隊使用整數線性規劃生成了架構。這是用Pyomo的優化功能完成的。線性規劃被創建、約束以更好地表示現實,并被解決以生成分別針對性能、預算和替代合約選項進行優化的替代架構。
現代導彈戰可以使用炮擊作戰模型進行評估。這個模型被用來計算每個小場景中的每個SoS備選方案的有效性。結果顯示了超視距ISR平臺的重要性,一個獨立的武器系統來對付敵人的無人機,目前IAMD作戰系統的有限防御能力,以及超視距搜索和瞄準能力。
“大國”和美國都擁有深入的綜合空中和導彈防御。為了證明這種互動,在微軟Excel中使用反二項式函數對不同的交戰進行了建模。每一個擬議的艦隊架構都被輸入到三個小插曲的戰斗模擬中。為了獲得隨機的結果,試驗的數量被設定為300次,每個概率都有一個可能的值范圍。該模型中的自變量可分為防御性或進攻性變量。防御性變量是每個單位的綜合防空和導彈防御武器的殺傷數量和殺傷概率。PLAN的進攻性變量是YJ-18 ASCM和Harpy無人機的命中數。美國海軍的進攻性變量是海上攻擊戰斧、ASCM和特定攻擊無人機的進攻性命中數量。
模擬的結果顯示了擊中敵方水面平臺或美國海軍水面部隊的數量。通過比較建議的系統與基線的命中率,可以得出變化的百分比。在我們的分析中,進攻和防御的有效性被平均加權,允許將進攻和防御百分比變化的高值相加,以計算出高低變化的總百分比。
基于智能體的建模和仿真(ABMS)被用來驗證每個設想的系統架構與所需的MOE。ABMS旨在通過對智能體之間的相互作用進行建模,來捕捉戰爭交戰的隨機性,但又很復雜。進行了蒙特卡洛分析,以收集每個系統性能的個體層面的數據。隨后的統計分析提供了一個途徑,以確定和量化每個擬議的系統架構所實現的改進。為此目的,指揮部:現代行動(CMO),是一個跨領域的現代兵棋推演計算機軟件,旨在模擬戰術到作戰水平的行動,被用作仿真引擎。CMO模擬的是基于規則的智能體,它們相互之間以及與環境之間的互動,包括感興趣的場景中的武器系統(Coyote, YJ-18, Chaff)和平臺(例如PLAN DDG, Luyang)。與多屬性價值分析方法相比,CMO允許對定量的系統MOP進行建模,并在模擬結果中觀察其相對差異。
電子表格戰斗模型模擬的第一個結果是解放軍DDG在三個不同的迭代中對美國海軍DDG的命中率,即只用YJ-18攻擊,只用哈比攻擊,以及YJ-18和哈比同時攻擊。同時使用YJ-18和Harpy的命中率被作為防御性MOE的基線值。接下來,兩種不同的防御性無人機系統被分別加入到作戰模型中。對只有哈比的攻擊和YJ-18與哈比的同時攻擊進行了重復模擬。每個系統的防御性百分比變化是用前面描述的公式計算的。
接下來的結果是美國海軍DDG在三次不同的迭代中擊中PLAN DDG的次數。模擬了僅用MST攻擊、僅用ASUW無人機攻擊以及MST和ASUW同時攻擊的結果。只用MST攻擊的命中率作為進攻性MOE的基線值。接下來,七個不同的運載系統被分別加入到作戰模型中。對僅有ASUW無人機攻擊和同時進行的MST和ASUW無人機攻擊進行了重復模擬。每個投送系統的進攻百分比變化被計算出來。
將同等權重的進攻和防守百分比變化相加,計算出高和低的總變化百分比。根據該模型,期望值是這樣的:在0.95的置信度下,增加SoS將使水面部隊的有效性增加一個介于高值和低值之間的百分比。
總的來說,從ABMS觀察到的性能與從電子表格模型觀察到的性能MOE相關。在所有提議的架構中,都觀察到了防御和進攻MOE的明顯改善。這是預料之中的,因為在DDG上增加任何防御性武器系統應該減少艦隊DDG的直接命中數量。同樣,增加一個具有增強OTH感知能力的進攻性武器系統會增加對目標直接作用的武器數量。
對防御性和進攻性MOE與每一方所消耗的平均武器數量的比率的進一步分析顯示,由于美國海軍DDG上增加了反群武器系統,防御性MOE得到了改善。這種增加被證明是對所有架構的一種有效的廣泛改進。三種提議的架構之間最明顯的差異來自于進攻性MOE(%),其中性能系統優于其他架構。與發射的武器總數相比,預計一個性能更好的系統會向目標發射更少的武器,同時造成更多的命中。
這項工作證明了低成本的無人駕駛威脅系統給傳統水面戰艦帶來的危險,這些系統可以在幾乎沒有警告的情況下進行協調和攻擊,并為船員提供很少的反應時間。為了避免強制增加對峙距離以提高生存能力,有必要使用增程傳感器系統和反無人機系統來彌補預期的能力差距并提供進入被拒絕區域的機會。為了使這些系統可行和安全,高帶寬的通信系統將是必需的。
為了滿足這些需求,建議的解決方案系統利用Dive-LD來運送Coyote無人機平臺。搜索和通信中繼將由兩個VBAT無人機平臺提供。這種平臺組合為每一美元的系統成本提供了最高的進攻和防御能力的提高。叢林狼 "無人機也將作為一個蜂群來防御威脅性無人機群和威脅性無人機ISR資產。增加解決方案系統的采購將提高艦隊的生存能力和殺傷力,并允許在其他艦隊優先領域進行額外投資。
建議通過為無人機平臺配備額外的無源傳感器來改進該系統,以利用電磁頻譜的所有部分,從而提高在所有天氣和戰斗條件下探測敵方威脅的能力。此外,擬議的解決方案系統可以擴展到許多其他領域和任務區,如港口防御和反對出口。
美國海軍陸戰隊正在探索使用人機協作來控制前線部署環境中的無人駕駛航空系統(UAS),其任務范圍廣泛,包括情報、監視和偵察(ISR)、電子戰(EW)、通信中繼和動能殺傷。美國海軍陸戰隊設想使用未來的垂直起降平臺(VTOL)來支持混合戰爭任務并實現軍事優勢。對于美國海軍陸戰隊的混合戰爭應用,以實現任務優勢和戰爭主導權,美國海軍陸戰隊需要了解VTOL機組和無人機系統之間錯綜復雜的人機互動和關系,以獲得戰斗空間態勢感知,并有效地計劃和執行針對常規和不對稱威脅的旋轉翼行動。這項研究的重點是美國海軍陸戰隊在海洋環境中的打擊協調和偵察(SCAR)任務,以促進遠征基地先進作戰(EABO)在沿岸地區。有多種復雜的功能必須加以考慮和評估,以支持人機協作互動,提高任務的有效性:任務規劃、移動和滲透、區域偵察、偵察戰斗交接和過渡。
這份頂點報告探討了SCAR任務期間三個系統之間的人機協作:UAS、VTOL和地面控制站(GCS)。該研究從VTOL項目的文獻回顧開始,研究了美國海軍陸戰隊SCAR任務戰術和用于促進EABO的理論概念。此外,它還包括對自主性和自動化、人工智能和機器學習的研究。通過使用合作設計模型來探索這三個系統的人機協作互動和過程,文獻回顧探討了如何使用基于三個因素的相互依賴性分析(IA)框架來確定人類執行者和機器團隊成員之間的相互依賴性:可觀察性、可預測性和可指導性。
通過基于模型的系統工程(MBSE)工具,將SCAR任務的高級功能分解為分層次的任務和子任務,系統分析被用來支持聯合設計方法。根據Johnson(2014)的說法,合作設計方法研究了相互依賴的概念,并使用IA框架作為設計工具。IA框架捕捉了主要執行者和支持團隊成員之間的互動,以發展支持每個主要任務和分層子任務的所需能力,從而產生HMT要求。這份頂點報告分析了兩種選擇。第一個方案認為UAS是主要執行者,VTOL和GCS是輔助團隊成員。第二種方案認為VTOL是主要執行者,UAS和GCS是輔助團隊成員。基于這兩種選擇,IA框架評估了17個主要任務、33個分層子任務和85個執行SCAR任務的所需能力。
此外,研究發現需要一個強大的數字任務規劃系統,如升級后的海軍陸戰隊規劃和行動后系統(MPAAS),通過存儲以前的任務和經驗教訓的數據來促進機器學習。美國海軍陸戰隊將面臨無人機系統的處理能力和信息存儲方面的挑戰。應盡一切努力增加UAS的處理能力。必須實施一個有效的主要、備用、應急和緊急(PACE)通信計劃,以確保UAS、VTOL和GCS之間所有通信平臺的冗余。美國海軍陸戰隊必須實施支持信任、提供快速反饋和簡單操作的接口。
最后,為了準確評估VTOL、UAS和GCS之間的HMT要求,頂點報告促成了一個探索性實驗的發展,該實驗將在海軍研究生院(NPS)建模虛擬環境和模擬(MOVES)實驗室使用,以促進未來的研究。制定了操作要求和測量方法,以確定HMT要求的有效性。
這項頂點研究為在SCAR任務中執行VTOL/UAS混合行動的人機互動復雜性提供了明確的證據。該頂點研究確定了使用系統分析和協同設計作為一種有效的方法,通過IA框架促進人機協作需求的發展。此外,該研究確定了對復雜的自主性和技術準備程度的需求,這可能是目前還沒有的。頂點建議美國海軍陸戰隊繼續研究人機協作,并利用SCAR任務探索性實驗來進一步完善和研究VTOL/UAS的高級系統要求,以支持具有前沿部署的UAS的混合行動,重點是實現4級自主權。
我們最強大的力量投射和作戰能力,是為應對當前和未來的威脅而開發的,技術先進,價格昂貴,并且有半個世紀的使用壽命。這些特點中的第一個給了我們一個暫時的、可能是短暫的戰爭優勢。第二個特點給予我們的政治領導人短暫的經濟和政治優勢。最后一個特點將我們鎖定在多年的維護和升級的高額費用上,以證明最初的沉沒成本是合理的。這種組合迫使我們進入一個對我們更敏捷的對手來說透明的高慣性安全軌道,為他們提供關于這個軌道的可靠信息,同時給他們時間用更便宜的反擊力量、技術和戰略來適應。
因此,我們必須對服役期,即 "遙遠的未來"進行兵棋推演,以確保我們當前和未來的武器系統和作戰概念是為近期和遠期設計的。然而,50年的預測范圍已經超出了兵棋推演的可信度極限。工作組和研討會探討并記錄了兵棋推演可以處理這一范圍的方法。
工作組和研討會的參與者選擇了以下對遠期作戰的廣泛挑戰進行研究--本報告中記錄了細節:
機構
? 美國國家安全機構只關注短期。
? 和平時期的軍隊在面對大規模突發事件時變得不靈活。
? 對近期的關注減少了在對遠期進行推演時的嚴格動機。
過程
? 遠期兵棋推演是被動的。
? 先進技術部隊的指揮和控制是不明確的。
不確定性
? 不確定性和不確定性隨著人們對遙遠未來的展望而增長。
? 可能的相互作用和未來的組合爆炸。
? 未來情景的可信度、合理性和概率難以確定。
? 技術上的不連續和黑天鵝進展將發生。
? 當展望未來時,相互作用的因果因素的復雜性會增加。
本報告探討了以下涵蓋這些挑戰的方法,并記錄了它們的優勢、劣勢和實施障礙。由于大多數方法涵蓋了一個以上的挑戰,因此挑戰和方法之間沒有一對一的映射關系。
組織方面
? 建立一個有明確任務的組織,旨在對未來進行兵棋推演。
? 重振兵棋推演的最佳實踐,并確定遠期推演所需的新實踐。
社會工程
? 探討兵棋推演如何影響軍事思想,而不僅僅是軍事思想如何影響兵棋推演。
? 使用兵棋推演來提高人們處理未知未來的能力。
? 考慮到人們如何思考和擔心未來的心理。
未來主義
? 在兵棋推演過程中嵌入未來框架和展望規劃。
? 使用系統思維來設計未來情景。
? 以能源變化驅動的軍事事務革命(RMAs)為基礎的未來情景。
過程
? 對美國防部的采購進行戰爭演練,以便在數月和數年內發展能力。
? 以月/年的采購戰為輸入,對從現在到遠期的軌跡進行戰役。
? 將我們穩定的社會價值與對手的社會價值進行戰爭。
? 以每次不同的游戲設計進行多次兵棋推演。
? 對每個游戲設計進行多次兵棋推演。
? 對許多游戲進行戰時敏感度分析,以探索假設的技術或能力水平何時會對作戰決策者有用。
? 將情景規劃和作戰設計結合到路徑游戲中
本文件包含了工作組撰寫的論文,他們在2018年11月至2019年6月期間撰寫和完善這些論文時的討論,以及在2019年8月聯結美國兵棋推演會議期間舉行的研討會上的討論。
實時戰略游戲已經成為開發和分析人工智能(AI)和基于深度機器學習的競爭、攻擊者與防御者場景的算法的一個有吸引力的環境。基于計算機的實時戰略游戲和用于軍事訓練的戰爭游戲的特征之間的相似性也提供了一種手段,可以將基于人工智能的實時戰略游戲的結果和教訓過渡到幫助和告知作戰人員的決策能力。我們的論文研究了基于人工智能的實時戰略游戲和軍事決策中的戰略規劃之間的這種交集,這個領域被稱為對抗性人工智能。我們描述了在實時戰略游戲中開發有效的對抗性人工智能的問題和挑戰,我們最近組織了一次對抗性人工智能競賽,使用的是海洋環境中的模擬版奪旗游戲。我們討論了比賽的條目、結果和從競爭者的反饋中獲得的教訓,并為基于人工智能的、復雜的、對立的實時戰略游戲規定了未來的方向和公開的挑戰。
近年來,人工智能(AI)已經成為用于軍事和民用領域的自動化系統背后的主要使能技術。自動化系統必須不斷與環境中的其他實體互動,包括人類、智能設備、計算機和其他人工智能。傳統上,基于人工智能的系統在設計時假定與它們互動的其他實體是良性的。換句話說,互動的實體不會故意做出對抗性的行為來打敗或顛覆人工智能。然而,在現實世界中,隨著基于人工智能的系統變得更加普遍,敵對行為者不斷想出新的方法來迷惑基于人工智能的系統,使其失敗并以不正確、不安全甚至危險的方式運行。我們的論文描述了正在進行的應對這些挑戰的努力,作為 "五眼"(FVEY)技術合作計劃(TTCP)人工智能戰略挑戰(AISC)的一部分,在一個被稱為對立人工智能(OAI)的技術領域。
OAI的目標是更好地理解來自不同利益相關者的基于人工智能的系統在以噪聲和低質量數據為特征的環境中相互作用時出現的問題,這些利益相關者的心態和目標是不一致的,可能是相反的。OAI支柱的一個主要方向是將OAI問題建模為一個防御者與攻擊者的游戲,并使用強化學習技術開發和分析不同的游戲策略。為了實現這一目標,我們正在使用一個名為Aquaticus奪旗(CTF)的多人游戲。游戲編程界面是用Python和OpenAI Gym編寫的,以便與強化學習算法輕松靈活地整合,通過分析可能的攻擊和防御策略空間,智能地學習游戲和贏得比賽。在本文中,我們描述了與開發有效的基于人工智能的技術有關的問題和挑戰,這些技術可以使玩家在OAI場景中獲得決定性的優勢,以及我們在組織首屆OAI Aquaticus CTF比賽中的經驗。最后,我們討論了從比賽中獲得的一些經驗,并確定了未來的方向,這些方向將使人工智能研究普遍化,并使其更適于過渡到戰場上的對立場景中的有效決策。