亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要: 近年來, 基于卷積神經網絡的目標檢測研究發展十分迅速, 各種檢測模型的改進方法層出不窮. 本文主要對近幾年內目標檢測領域中一些具有借鑒價值的研究工作進行了整理歸納. 首先, 對基于卷積神經網絡的主要目標檢測框架進行了梳理和對比. 其次, 對目標檢測框架中主干網絡、頸部連接層、錨點等子模塊的設計優化方法進行歸納, 給出了各個模塊設計優化的基本原則和思路. 接著, 在COCO數據集上對各類目標檢測模型進行測試對比, 并根據測試結果分析總結了不同子模塊對模型檢測性能的影響. 最后, 對目標檢測領域未來的研究方向進行了展望.

//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190756

付費5元查看完整內容

相關內容

在深度學習中,卷積神經網絡(CNN或ConvNet)是一類深度神經網絡,最常用于分析視覺圖像。基于它們的共享權重架構和平移不變性特征,它們也被稱為位移不變或空間不變的人工神經網絡(SIANN)。它們在圖像和視頻識別,推薦系統,圖像分類,醫學圖像分析,自然語言處理,和財務時間序列中都有應用。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

目標檢測一直以來都是計算機視覺領域的研究熱點之一,其任務是返回給定圖像中的單個或多個特定目 標的類別與矩形包圍框坐標.隨著神經網絡研究的飛速進展,R-CNN 檢測器的誕生標志著目標檢測正式進入深度學習時代,速度和精度相較于傳統算法均有了極大的提升.但是,目標檢測的尺度問題對于深度學習算法而言也始終是 一個難題,即檢測器對于尺度極大或極小目標的檢測精度會顯著下降,因此,近年來有不少學者在研究如何才能更好 地實現多尺度目標檢測.雖然已有一系列的綜述文章從算法流程、網絡結構、訓練方式和數據集等方面對基于深度 學習的目標檢測算法進行了總結與分析,但對多尺度目標檢測的歸納和整理卻鮮有人涉足.因此,首先對基于深度學 習的目標檢測的兩個主要算法流派的奠基過程進行了回顧,包括以 R-CNN 系列為代表的兩階段算法和以 YOLO、 SSD 為代表的一階段算法;然后,以多尺度目標檢測的實現為核心,重點詮釋了圖像金字塔、構建網絡內的特征金字 塔等典型策略;最后,對多尺度目標檢測的現狀進行總結,并針對未來的研究方向進行展望。

//www.jos.org.cn/jos/ch/reader/create_pdf.aspx?file_no=6166&journal_id=jos

付費5元查看完整內容

小目標檢測一直是目標檢測領域中的熱點和難點,其主要挑戰是小目標像素少,難以提取有效的特征信息.近年來,隨著深度學習理論和技術的快速發展,基于深度學習的小目標檢測取得了較大進展,研究者從網絡結構、訓練策略、數據處理等方面入手,提出了一系列用于提高小目標檢測性能的方法.該文對基于深度學習的小目標檢測方法進行詳細綜述,按照方法原理將現有的小目標檢測方法分為基于多尺度預測、基于數據增強技術、基于提高特征分辨率、基于上下文信息,以及基于新的主干網絡和訓練策略等5類方法,全面分析總結基于深度學習的小目標檢測方法的研究現狀和最新進展,對比分析這些方法的特點和性能,并介紹常用的小目標檢測數據集.在總體梳理小目標檢測方法的研究進展的基礎上,對未來的研究方向進行展望.

//journal.bjut.edu.cn/article/2021/0254-0037/20210310.html

付費5元查看完整內容

行人檢測技術在智能交通系統,智能安防監控等領域表現出了極高的應用價值,已經成為計算機視覺領域的重要研究方向之一。得益于深度學習的飛速發展,基于深度卷積神經網絡的通用目標檢測模型被不斷擴展應用到行人檢測領域,并取得了良好的性能。但是由于行人目標內在的特殊性、復雜性,特別是考慮到復雜場景下的行人遮擋、尺度變化等問題,深度學習方法也面臨著嚴峻的挑戰。本文針對上述問題,以基于深度學習的行人檢測技術為研究對象,在充分調研文獻的基礎上,分別從基于錨點框、基于無錨點框以及通用技術改進(例如損失函數,非極大值抑制等)三個角度,對各類行人檢測算法進行細分,并選取具有代表性的方法進行詳細介紹和對比分析。此外,本文對行人檢測的通用數據集進行了詳細的介紹,對該領域先進算法的性能進行了對比分析,對行人檢測中待解決的問題與未來的研究方向做出預測和展望。

//www.cjig.cn/jig/ch/reader/view_abstract.aspx?flag=2&file_no=2020&journal_id=jig

付費5元查看完整內容

摘要: 目標檢測技術是光學遙感圖像理解的基礎問題, 具有重要的應用價值. 本文對遙感圖像目標檢測算法發展進行了梳理和分析. 首先闡述了遙感圖像目標檢測的特點和挑戰; 之后系統總結了典型的檢測方法, 包括早期的基于手工設計特征的算法和現階段基于深度學習的方法, 對于深度學習方法首先介紹了典型的目標檢測模型, 進而針對遙感圖像本身的難點詳細梳理了優化改進方案; 接著介紹了常用的檢測數據集, 并對現有方法的性能進行比較; 最后對現階段問題進行總結并對未來發展趨勢進行展望.

//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c200596

付費5元查看完整內容

為了解圖像分割領域的研究現狀,對圖像分割方法進行了系統性梳理,首先按照基于閾值、邊緣、區域、聚類、圖論及特定理論等6類方法介紹傳統圖像分割方法;然后介紹基于深度學習的分割方法,并探討了幾種常用的分割網絡模型,包括全卷積網絡(full convolutional network,FCN)、金字塔場景解析網絡(pyramid scene parsing network,PSPNet)、DeepLab、Mask R-CNN;最后在圖像分割的常用數據集上對同類方法進行了性能比較和分析。

付費5元查看完整內容

目標檢測的任務是從圖像中精確且高效地識別、定位出大量預定義類別的物體實例。隨著深度學習的廣泛應用,目標檢測的精確度和效率都得到了較大提升,但基于深度學習的目標檢測仍面臨改進與優化主流目標檢測算法的性能、提高小目標物體檢測精度、實現多類別物體檢測、輕量化檢測模型等關鍵技術的挑戰。針對上述挑戰,本文在廣泛文獻調研的基礎上,從雙階段、單階段目標檢測算法的改進與結合的角度分析了改進與優化主流目標檢測算法的方法,從骨干網絡、增加視覺感受野、特征融合、級聯卷積神經網絡和模型的訓練方式的角度分析了提升小目標檢測精度的方法,從訓練方式和網絡結構的角度分析了用于多類別物體檢測的方法,從網絡結構的角度分析了用于輕量化檢測模型的方法。此外,對目標檢測的通用數據集進行了詳細介紹,從4個方面對該領域代表性算法的性能表現進行了對比分析,對目標檢測中待解決的問題與未來研究方向做出預測和展望。目標檢測研究是計算機視覺和模式識別中備受青睞的熱點,仍然有更多高精度和高效的算法相繼提出,未來將朝著更多的研究方向發展。

付費5元查看完整內容

目標檢測作為機器視覺中重要任務之一,是人工智能體系中一個具有重要研究價值的技術分支。對于卷積神經網絡框架、anchor-based模型和anchor-free模型三個主流的目標檢測模型進行梳理。首先,綜述了主流卷積神經網絡框架的網絡結構、優缺點以及相關的改進方法;其次從one-stage和two-stage兩個分支對anchor-based類模型進行深入分析,總結了不同目標檢測方法的研究進展;從早期探索、關鍵點和密集預測三部分分析anchor-free類模型。最后對該領域的未來發展趨勢進行了思考與展望。

付費5元查看完整內容

簡介: 目標檢測作為機器視覺中重要任務之一,是人工智能體系中一個具有重要研究價值的技術分支. 對于卷積神經網絡框架、 anchor-based模型和anchor-free模型三個主流的目標檢測模型進行梳理. 首先,綜述了主流卷積神 經網絡框架的網絡結構、優缺點以及相關的改進方法;其次從one-stage和two-stage兩個分支對anchor-based類模型進行深入分析, 總結了不同目標檢測方法的研究進展; 從早期探索、關鍵點和密集預測三部分分析anchor-free類模型. 最后對該領域的未來發展趨勢進行了思考與展望.

付費5元查看完整內容
北京阿比特科技有限公司