本項目研究了反艦彈道導彈(ASBM)搭載合成孔徑雷達(SAR)導引頭(尋的器)在特定參數下的性能潛力與局限。通過荷蘭應用科學研究組織(TNO)提供的"非線性軌跡生成與優化算法"(GIANT)工具,構建ASBM動力學模型并整合海上目標捕獲約束條件。研究中將ASBM角速度設定為最優控制問題變量,優化目標包括:最小化/最大化導彈暴露時間與垂向末端速度,以及最小化SAR導引頭單次成像所需時間。
通過三組實驗探究不同初始條件與分辨率約束對優化軌跡的影響。首組實驗針對典型ASBM初始再入條件優化軌跡,目標點設置于無修正彈道飛行落點,以此對比分析優化機動與原始彈道軌跡差異。第二組實驗保持目標點不變,利用GIANT優化初始再入條件以獲取最優軌跡。末組實驗放寬目標分辨率約束,測試系統極限性能。
實驗表明:增大ASBM再入初始斜視角可提升整體性能。較大斜視角使導彈在再入段實施最小機動即可在SAR階段獲得更大導引頭觀測角,從而在確保SAR駐留時間與導彈暴露時間最短的同時最大化垂向末端速度。研究同時證實:在平均駐留時間0.1170秒條件下,系統可實現1.60米的地距與跨距分辨率。更高分辨率需求下,SAR導引頭帶寬成為所選參數集的性能制約因素。
第二章闡述坐標系與導彈狀態變量的理論背景。第三章探討目標捕獲的要素與需求條件。第四章詳述滿足上述需求的合成孔徑雷達(SAR)導引頭基本原理,涵蓋參數設置、核心方程及約束條件。第五章系統闡釋最優化問題的定義框架與配置方案,第六章對輸入模型部分方程進行驗證與確認。第七章解析研究成果,包括分辨率限制性分析。第八章總結全文并提出后續研究方向建議。
本研究圍繞兩種40°后緣對齊基準構型的無人作戰飛行器(UCAV)平面布局展開。第一種構型采用中等前/后緣后掠角(Λ=40°),第二種則為高后掠構型(前緣Λ=60°,后緣Λ=40°)。研究目標包括:預測兩種飛翼布局氣動性能(尤其最大升力特性);通過在飛翼外側段設置前緣與弦向縫翼控制流動,分析粘性流場演化以優化操縱面效能。
第一部分采用無粘渦格法(VLM)、歐拉方程及粘性CFD雷諾平均納維-斯托克斯方程(RANS)方法進行驗證。計算結果與風洞實驗數據吻合良好:VLM預測升力與俯仰力矩隨迎角呈線性變化,但誘導阻力預測顯著偏低;RANS與歐拉方程結果與實驗高度一致。
第二部分提出一種弦向縫翼創新優化設計方案,應用于高后掠UCAV構型以提升后緣操縱面升力。增強操縱面氣流可顯著改善中高迎角下的飛行器橫向控制能力。研究識別弦向縫腔四維優化參數:位置、寬度、長度及縫腔軌跡與自由流夾角(相對于飛行器后緣測量)。通過CFD優化結果與基準構型及實驗數據對比,證實弦向縫翼構型可提升操縱面質量流量,進而提高升力。前緣縫翼方案雖能改善低迎角流控效果,但對中高迎角高后掠UCAV構型效能有限。
當前無人作戰飛行器(UCAV)技術驗證機普遍采用飛翼式邊緣對齊構型以降低雷達散射截面積(RCS)。對于設計巡航于高亞音速馬赫數的飛行器而言,此類布局的翼面后掠角在氣動性能上并非最優選擇(Schütte, Hummel & Hitzel, 2012;Barnard & Philpott, 2010)。此類構型的大后掠前緣在中高迎角下易誘發分離渦流,雖能增強升力生成,但會導致翼面外側段產生顯著的橫向流動(Gudmundsson, 2014a;Shevell, 1989;Barnard & Philpott, 2010;Bertin, 2002;Kerstin, Andreas & Martin, 2012;Frink, Tormalm & Schmidt, 2012;Kermode, 2012)。翼面外側段的橫向流動分離成為制約前緣渦流高升力效能開發的關鍵因素,同時還會對中高迎角下的飛行器穩定性與控制能力產生負面影響,并在迎角接近失速時引發機鼻上仰力矩(Gudmundsson, 2014a;Barnard & Philpott, 2010;Shevell, 1989;Robert et al., 2007)。為解決這些問題,本研究首次在飛翼構型上應用前緣縫翼與弦向縫腔創新設計,通過最大化操縱面升力實現流動控制。需指出,前緣縫翼雖曾用于低后掠翼提升升力,但據文獻考證尚未被應用于高后掠飛翼構型的操縱面性能優化;弦向縫腔在飛翼構型被動流動控制中的應用亦屬研究空白,構成該研究的創新維度。
未來UCAV需兼具高機動性與低可探測性以確保在敵對防空環境中生存。圖1.1展示了不同隱身設計的現代飛翼UCAV構型,其幾何特征主要基于隱身需求進行優化(Barnard & Philpott, 2010;Bertin, 2002)。由圖可見,飛翼構型前/后緣設計與現役飛行器存在顯著差異,且因缺乏傳統穩定面及相關操縱面,在純粹形態下面臨固有穩定性與控制難題(Schütte et al., 2012;Lee, 2014;Kermode, 2012;Barnard & Philpott, 2010)。受雷達散射截面積(RCS)特征與重量限制,前/后緣需以40°至60°的共面角對齊,形成介于純三角翼、菱形翼與Lambda翼間的氣動布局(Tianyuan & Xiongqing, 2009;Schütte et al., 2012)。
后掠翼飛行器具備高速低阻的優良特性,且能通過前緣渦流效應在高攻角下持續產生升力。前緣渦流作為后掠翼氣動布局的核心要素,為高攻角飛行控制提供升力支撐(J.D. Anderson, 2010;Houghton & Carpenter, 2003;Wilson & Lovell, 1947;Hummel & Srinivasan, 1967)。然而,隨著攻角增大,前緣渦流會逐漸分離并向翼面外側段遷移,這種遷移強度隨攻角提升而加劇(Frink et al., 2012;Kerstin et al., 2012;Barnard & Philpott, 2010)。由此導致的后緣操縱面分離流環境嚴重削弱滾轉控制效能,使得前緣渦流生成的高升力無法有效轉化為中高攻角下的飛行器橫向控制力。此外,當攻角接近失速時,飛行器還會經歷劇烈的機鼻上仰力矩(Gudmundsson, 2014a;Kermode, 2012)。
現有研究聚焦前緣襟翼、導流板、鴨翼與翼刀等被動流動控制技術以緩解上述問題(Buchholz & Tso, 2000;D. F. Anderson, 2000;Kermode, 2012;Gudmundsson, 2014b)。但這些技術受制于雷達散射截面積(RCS)約束,無法應用于典型飛翼構型——前緣襟翼、導流板與垂直翼刀會顯著惡化隱身特征(Schütte et al., 2012;Barnard & Philpott, 2010)。為此,本研究首次在飛翼構型上采用前緣縫翼與橫向縫槽替代方案,通過優化中高攻角下操縱面升力實現流動控制。平滑增強的操縱面氣流可維持飛行器在中高攻角下的有效滾轉控制(Shevell, 1989)。需特別指出,所研究縫槽與機翼表面齊平,相較于傳統流動控制技術對RCS特征的影響微乎其微。
本研究聚焦兩大核心目標:其一,通過高、低精度計算流體力學(CFD)技術,深化對兩種低可探測性無人作戰飛行器(UCAV)流場特性的認知,并精準預測其高升力性能。飛行器的高升力性能直接影響重量與穩定性,因此精確預測至關重要。其二,探究機翼弦向縫槽能否提升高攻角下控制面偏轉時的升力系數,利用前緣與弦向縫槽抑制翼面外側段橫向流動發展,最終開發一種通過縫槽優化控制面性能的創新設計。
為實現第一目標,研究在低速風洞中測量氣動力/力矩隨攻角變化規律,并將結果與自主開發及商業CFD軟件(基于歐拉方程、雷諾平均納維-斯托克斯方程(RANS))以及低精度渦格法(VLM)進行對比。評估飛行器縱向與橫向穩定性,揭示導致非線性特性的流場成因。通過無粘與粘性流場計算研究,解析高升力特性預測能力,并分析UCAV構型外側段粘性流動演化。采用流線可視化技術呈現后掠翼上表面流場特征,開展網格細化研究以考察分辨率對計算結果的影響,同時對湍流模型、邊界條件及求解器進行參數研究,探究不同計算策略對飛翼構型解算的影響。
為實現第二目標,針對帶縫槽機翼開展流動控制計算研究,將結果與基準構型對比并通過實驗驗證。選擇前緣與弦向縫槽方案因其與翼面齊平,預期對雷達散射截面積(RCS)影響極小。采用數值優化方法開發弦向縫槽創新設計,應用于高后掠UCAV構型以最大化后緣控制面效能。通過測量優化構型后緣法向質量流量并與基準構型對比,證實優化設計的有效性。
本論文第二章涵蓋無人作戰飛行器(UCAV)飛翼構型的背景與文獻綜述,包括飛翼基礎氣動原理概述、現行流動控制技術及其雷達散射截面積(RCS)特征限制分析。同時探討現代UCAV作戰定位,以及解決飛翼氣動問題的計算空氣動力學方法體系,闡述非線性與線性計算理論框架,并簡介數值優化及其算法。最后對后掠翼相關研究進行批判性綜述與歷史成果總結。
第三章闡述研究采用的方法論,詳細描述用于分析基準UCAV構型的實驗與計算手段,并列出實驗與計算研究的關鍵參數。
第四章深入對比分析中等后掠與高后掠基準UCAV構型,探究線性與非線性方法預測飛翼高升力特性與渦結構的能力,結合表面流線可視化技術解析飛翼外側段粘性流動演化規律。
第五章重點研究中等前緣后掠構型的預測與穩定性,通過計算與實驗對比評估UCAV俯仰與偏航特性,并基于雷諾平均納維-斯托克斯方程(RANS)計算對比控制面偏轉構型與基準構型,量化后緣控制面效能。
第六章聚焦前緣與弦向縫槽的被動流動控制研究,將帶縫槽構型的計算結果與基準構型及實驗數據對比驗證,同時通過計算分析論證弦向縫槽對控制面偏轉升力的提升作用。
第七章提出基于數值優化方法的弦向縫槽創新設計方案,計算優化構型后緣質量流量并與基準構型對比,通過實驗驗證優化結果的可靠性。
第八章總結研究成果并提出未來研究方向。
本論文闡述了一種新型無人機(UAV)飛行控制器FARN的功能原理,該控制器專需高精度可靠導航的任務場景而設計。通過融合低成本慣性傳感器、超寬帶(UWB)無線電測距以及全球導航衛星系統(GNSS)原始觀測值與載波相位數據,系統實現了所需精度要求。該飛行控制器基于兩項科研項目的任務需求開發,并在實際環境中完成驗證。
FARN集成GNSS羅盤功能,可在地磁羅盤不可靠環境下實現精確航向估計。該技術通過融合雙GNSS接收機原始觀測數據與實時姿態解算能力,使得在ROBEX項目北極科考任務中,即便地球磁場水平分量微弱仍能保障無人機可靠運行。
此外,FARN支持多無人機厘米級實時相對定位,既實現蜂群內精準機動飛行,也支持多機協同作業——包括目標協同或物理耦合任務。結合MIDRAS項目,開發了雙機協同防御系統:兩架無人機通過協調動作操控懸掛網具,實現空中危險目標捕獲。
本研究涵蓋無人機研發的理論與實踐層面,重點涉及信號處理、制導控制、電氣工程、機器人學、計算機科學及嵌入式系統編程等領域。同時為后續無人機研究提供系統性參考框架。
研究工作詳細建模并描述了無人機平臺構型、推進系統、電子設備架構及傳感器配置。建立姿態表征數學規范后,重點闡釋飛行控制核心——嵌入式自運動估計框架及控制架構原理。基于基礎GNSS導航算法,推導出進階載波相位處理技術及其與自運動估計的耦合機制。系統闡述各模塊實施細節與優化策略,并在兩項科研項目中完成部署驗證。通過系統性能的批判性評估,明確現有技術邊界并提出改進方向。
無人水面艦艇(USV)通常依靠全球定位系統(GPS)和射頻(RF)通信進行導航和多車協調。在戰時環境中,全球定位系統和無線電信號屏蔽對 USV 的有效導航和控制提出了挑戰。本論文研究了使用低成本人工智能(AI)立體相機作為傳感器,實現 USV 的無 GPS 和 RF 導航與協調。這些相機還可用于對水面船只進行分類和定位。我們使用安裝在多艘 Mokai USV 上的 OAK-D AI 攝像機進行了實驗。對神經網絡 (NN) 模型進行了訓練,以識別兩個對象類別:Mokai USV 和其他船只。利用開源 Python 庫,該模型被直接加載到攝像頭上,并集成到機器人操作系統 (ROS) 軟件中,以提取檢測到的物體的相對姿態信息。為了分析該模型的有效性,我們在未見過的視頻上以及使用 Mokai USV 和其他水面艦艇進行的現場實驗中對 NN 進行了測試。將攝像機估計的物體定位與在實驗室環境中通過物理驗證收集的物體地面實況位置進行了比較。最后,還探討了特定相機硬件和立體視覺在此應用中的局限性,以評估其進一步開發的可行性。
美國海軍正在重組其艦隊結構。美海軍正在探索使用無人潛航器 (UUV) 平臺來補充艦隊的可行性。目前的 UUV 只能提供最低限度的監視和水雷探測能力;一種解決方案是在 UUV 平臺上增加攻擊性和增強型探測能力。本研究采用基于模型的系統工程(MBSE)方法,在聯合戰區模擬級全球作戰環境中探索具有增強能力的 UUV 的效果。該方法包括概念原型開發過程、作戰概念、效果衡量標準、不同的 UUV 因素(速度、組成和聲納類型)以及實驗設計。在對 540 次模擬運行的輸出結果進行分析后,結果證明所有三個因素對 UUV 的作戰性能都有重要影響,并表明使用先進的 UUV 可以提高特遣部隊的能力。此外,實驗還揭示了 UUV 的組成與探測和交戰速度之間的強相關性,并證實了使用主動聲納在作戰中的優勢,從而形成了 UUV 功能的交換空間。這項研究證明了 MBSE 在為未來艦隊進行可行性評估方面的實用性。
2016 財年,美國參議院軍事委員會下令海軍將艦隊規模擴大到 355 艘。然而,建造設施的缺乏阻礙了這一工作。負責預算的海軍副助理部長布萊恩-盧瑟少將估計,355 艘艦艇的目標要到 2050 年代才能實現(Larter 2018)。因此,美國海軍正在探索潛在的艦隊重組方案。海軍對用無人系統來補充傳統的有人海軍資產非常感興趣。無人潛航器 (UUV) 就是這樣一種系統。由于高層對艦隊和無人系統都很感興趣,海軍研究辦公室(N9)要求提供測試 UUV 未來能力的方法和流程,以及開展此類研究的實驗環境或工具。此外,目前的無人潛航器主要用于支持水雷戰和小型監視任務(美國防部,2007 年),因此還不了解其對其他角色的影響。
本研究的目的是在計算機輔助兵棋推演中使用基于模型的系統工程(MBSE)方法,特別是聯合戰區級模擬全球行動(JTLS-GO),以探索先進的 UUV 能力作為未來美國海軍艦隊資產的影響,以及作為日益減少的潛艇部隊的替代品的影響。
MBSE 方法是一個多步驟過程,從頭至尾探索整個項目。通過這種方法,我們開發出了一種先進的 UUV 概念和 "眼鏡蛇黃金 2018"(CG18)小插圖或作戰概念(CONOP),這是一種六國(太平洋司令部主辦)指揮所演習(CPX)。小插圖的創建允許對 CG18 進行反復檢查,以確定 UUV 可以解決的能力不足問題。在這種情況下,虛擬演習的重點是敵方(索諾拉)特遣部隊與盟軍特遣部隊(包括 USS Benfold (DDG-65) 和 RSS Endurance (LS-207))之間的互動。實際演習的結果包括上述艦艇的傷亡。造成這些傷亡的原因是缺乏態勢感知和進攻火力。這些問題為在模擬中注入 UUV 以增強傳感器和火力提供了機會和動力。隨后,確定和建立新能力的作戰要求和限制的過程隨之展開。新的模擬 UUV 設計必須能夠提供額外的進攻和偵察能力。衡量無人潛航器的性能如何以及哪些屬性需要改變,從而制定了效能衡量標準(MOE)和性能衡量標準(MOPs)。這些衡量標準有助于指導實驗設計(DOE)的制定,從而指導名義 UUV 的實驗和評估。
性能指標包括探測效果和敵方減員。關注的性能因素(屬性)包括 UUV 速度、UUV 數量(UUV 艦隊組成)和聲納類型(主動或被動)。DOE 包括對這些因素在三個不同值(水平)下的測試。不同水平的因素組合產生了 18 個設計點。
JTLS-GO 模型是由 Rolands and Associates 設計的事件驅動兵棋推演模擬,用于測試多方聯合戰役和行動(Rolands and Associates 2018)。該項目測試戰爭的多個層面,包括政治、戰略、作戰和戰術層面。
雖然 JTLS-GO 在模擬交戰方面很有用,但根據 Cayirci 和 Marincic(2009 年)的說法,其功能是培訓總部人員更有效地指揮和控制單元。因此,僅使用 JTLS-GO 測試未來概念是不可行的,因為這需要大量資源。為了充分利用 CG18 的人的反應和結果,作者在 NPS 仿真實驗和高效設計(SEED)中心的幫助下,將原始 JTLS-GO 仿真程序轉換為自動化計算機輔助兵棋推演(CAW)仿真。這種轉換允許對未來能力進行多次重復模擬,以便進行統計分析。
這項工作涉及 540 次模擬運行,耗費了 810 個小時的計算機時間。通過回歸分析、趨勢分析和分區樹分析,得出了以下結論:
1.通過在 JTLS-GO 中的 CG18 自動版本中建立建模和實驗環境,MBSE 方法為評估未來 UUV 能力對作戰的影響提供了途徑。
JTLS-GO 中的 CG18 提供了一個框架,利用 MBSE 方法來定義操作差距、創建 UUV 原型、定義測量方式和內容(MOE 和因素)并快速進行實驗。MBSE 所要求的有條不紊和一絲不茍的努力表明,應用這一過程有利于探索 UUV 的未來能力,同時也表明它如何為考察未來艦隊的一系列能力提供機會。
2.UUV 的存在為提供態勢感知和攻擊火力提供了額外的能力,減少了水面的脆弱性。
即使增加了效果最差的因子組合的 UUV,也產生了積極的結果:3 個 "索諾蘭 "單元被擊斃,60% 的單元被發現。采用首選探測因子值的 UUV 使 RSS Endurance (LS-207) 在 30 次模擬中擊沉了 12 次。與此同時,USS Benfold (DDG-65) 在使用這些 UUV 的 30 次模擬演習中只擊沉了 2 次。當環境中存在具有優先損耗因子值的 UUV 時,RSS Endurance (LS-207) 在 30 次模擬中擊沉了 10 次,USS Benfold (DDG-65) 在 30 次模擬中擊沉了 2 次。因此,UUV 的性能導致模擬環境中盟軍傷亡人數減少。
3.主動聲納提高了殺傷力和探測能力,但在速度和 UUV 艦隊組成方面,并不是越多越好。
表 ES-1 列出了實驗中最佳和最差的 UUV 配置。根據該表,推薦的最佳組合是一支中等規模的 UUV 艦隊,以 8 節的速度航行并配備主動聲納。這種配置平均可摧毀近 88% 的敵方目標。
采用自動 JTLS-GO 仿真軟件包的 MBSE 方法所得出的結果可為先進的 UUV 性能提供深入見解,而無需投入大量人力和物力。海軍在規劃其未來架構的過程中,應考慮使用此類工具對平臺進行評估。此外,海軍還應考慮增加先進的 UUV 平臺以補充艦隊。
伊卡洛斯團隊創建了一個基于無人潛航器(UUV)的數字工程案例研究,通過執行 MagicGrid 架構開發方法,提供了使用 Cameo Systems Modeler 開發架構的強大視圖。案例研究包括通過中間件軟件(ModelCenter MBSE)連接該架構模型,以直接驅動多個工程分析工具(Excel、MATLAB/Simulink、計算機輔助設計工具)。通過實驗設計對設計進行改進,并通過軟件工具(ModelCenter Explore)實現可視化。本案例研究提供給海軍水面作戰中心-胡內姆港分部(NSWC PHD),作為系統工程師和系統后勤人員培訓的補充,以填補現有培訓的空白。
近年來,數字工程(DE)和基于模型的系統工程(MBSE)已成為美國國防部(DOD)和海軍部(DON)的行業標準。數字工程被定義為 "一種綜合的數字方法,它使用權威的系統數據源和模型作為跨學科的連續體,以支持從概念到處置的生命周期活動"(Shepard 和 Scherb,2020 年)。許多海軍組織已經適應了數字工程方法,并開始提供培訓計劃,重點關注數字工程的各個組成部分以及有助于支持這些流程的工具。
其中一些培訓項目嚴格專注于數字工程流程的一個特定組成部分。雖然許多培訓項目都深入關注某一特定組成部分,但它們只是對數字工程或架構開發方法進行了有限的分割。不同組成部分之間缺乏流動性,這暴露了數字工程教學的不足。所提供的培訓課程并沒有展示建筑開發和工程分析工具之間是如何相互作用的,也沒有展示它們是如何協同工作以實現成功的數字工程流程的。因此,學生在構思整個建筑開發方法和探索優化建筑設計的數字工程技術時受到限制。
本文的主要目標是利用 MBSE 和數字工程實施對理論上的無人潛航器 (UUV) 進行案例研究,以補充當前的培訓和教育。這將通過三項成果來完成:理論無人潛航器數字系統架構示例、MagicGrid 架構開發方法(包括工程分析軟件工具的使用)的書面和可視化教程,以及關于整個案例研究的最終報告。
理論UUV 是一個系統概念,將使用 Cameo Systems Modeler 將其轉化為數字架構模型。利用 MagicGrid 架構開發方法,除了 Model Center MBSE 外,UUV 架構模型還可通過不同的工程分析工具 [即 Excel 和 MATLAB/Simulink(計算機輔助設計工具)] 進行連接和分析。為了說明開發過程,在架構的同時還完成了基于文本和視頻的教程。最后,在架構模型上進行實驗設計,以測試系統能力并完善設計。
這些教程包括一個模型模板,作為當前培訓和教育的補充,提供更深入的 MBSE 和數字工程工具、技術和流程。這滿足了利益相關者的目標和要求,最終成果還可用于重新評估當前基于模型的程序執行流程。
本預研究的重點是在一家雷達公司早期概念開發的背景下,如何在民用應用中處理非法闖入和具有潛在危險的多旋翼飛行器。不過,本研究的結果也可用于軍用多旋翼飛行器探測場景。研究范圍是 C-UAS 系統(反無人機系統),因為如果不從系統角度(包括阻止無人機的方法)考慮,就無法有效地開發無人機探測系統。
一個強大的反無人機系統需要多方面的投入,這些投入會隨著時間的推移而發生變化,而概念的目標是面向未來。潛在的應用領域已經確定,并轉化為客戶細分市場,這些細分市場的威脅和復雜需求大相徑庭。除市場和客戶需求輸入外,發現和攔截無人機的基礎技術都要根據特定細分市場的需求分析所產生的大量屬性進行映射和基準測試。這種量化對于促進基于事實的設計選擇以創建一個強大和穩健的系統是必要的。通過黑盒和流程圖對分段情景進行分析和定義,清楚地顯示出不同的復雜性。整個論文的視角在需求和解決方案領域之間轉換。
研究的結果是一個高度抽象的概念性模塊化多資產系統,該系統對移動目標和不同的無人機場景都具有很強的魯棒性。論文介紹了這種系統的現有構件和概念構件,并根據研究的基準評分結果對其進行了論證。還介紹了針對若干客戶群的具體應用系統概念。
本報告介紹了用于基于事件的視覺慣性里程測量的機載事件傳感器的性能和結果,項目名稱為 Have T-Rex。測試由俄亥俄州賴特-帕特森空軍基地空軍技術研究所自主導航技術中心(AFIT/ANT)要求進行。開發測試的牽頭機構是加利福尼亞州愛德華茲空軍基地的空軍測試中心。執行測試機構是第 412 測試聯隊。測試由美國空軍試飛員學校 20A 班在加利福尼亞州愛德華茲空軍基地進行,是學生測試管理項目的一部分。測試于 2020 年 9 月 8 日至 2020 年 9 月 21 日進行,包括駕駛編號為 87-0377 的 F-16 進行 21.4 個小時(13 架次)的飛行測試,以及駕駛 T-38C 作為空中目標進行 2.2 個小時(2 架次)的飛行測試支持。
全球定位系統(GPS)是軍事和商業定位、導航和定時應用的關鍵。全球定位系統的導航性能取決于能否可靠、無障礙地接收低功率衛星信號。這些信號很容易受到干擾或欺騙。AFIT 自主與導航技術中心已投資于各種替代導航解決方案,以降低這種風險。基于事件傳感器的視覺慣性測距(EVIO)導航就是其中一個研究領域。視覺里程計使用安裝在車輛上的攝像頭,通過識別和跟蹤圖像特征來估計車輛的運動。運動估算的準確性受到攝像機性能的限制,因為每秒低幀捕獲率會錯過幀間的關鍵信息,尤其是在快速運動時。另外,捕獲率極高的相機需要更強的處理能力。
測試中的系統(SUT)包括基于事件的傳感器(EBS)和慣性測量單元(IMU),安裝在 F-16D 上的可重構機載傳感器、通信和激光(RASCAL)吊艙中,以提高目視測距性能。EBS 通過硬件實現強度變化檢測。這種操作理念提高了時間分辨率和動態范圍,而且功耗低,有利于快速運動和低/變化的環境照明條件。SUT 的導航算法通過卡爾曼濾波器處理 EBS 圖像來識別特征運動,并輔以 IMU 數據來預測飛機的位置、速度和姿態。SUT 算法尚未用于飛行中的導航估計;所有導航估計都是在飛行后進行的。
總體測試目標是確定 EVIO 算法的準確性,并收集數據以支持正在進行的目標探測和跟蹤算法開發。具體的測試目標有四個:展示 SUT 生成導航解決方案的功能,確定不同飛行條件下導航解決方案的準確性,收集具有操作代表性的飛行剖面數據,以及收集目標跟蹤數據用于未來研究。
數據是在不同高度(200 英尺到 20,000 英尺地面高度)和不同地面速度(250 節到 520 節)、不同地形(灌木叢沙漠、城市、山區、湖床)和環境照明條件(白天、黎明/黃昏和夜晚)下收集的。此外,還執行了俯仰和滾轉機動,以確定動態機動的影響。最后,還針對空中和地面移動目標收集了數據。
所收集的數據顯示,SUT 的精確度在視線率、環境照明條件、地形或動態機動方面沒有明顯的變化趨勢。持續存在的極大解算誤差阻礙了對這些因素如何影響 SUT 性能的適當調查。研究小組建議在繼續進行飛行測試之前,調查并糾正 EVIO 算法精度方面的缺陷。結果表明,在測試的配置中,被測系統無法產生可靠或有用的導航解決方案。結果還顯示,該系統能夠探測空中和地面移動目標;但是,還需要進一步分析,以開發目標跟蹤算法。
這項研究的目的是討論目前最先進的在點云數據上執行的機器學習算法的方法。所進行的研究將應用于三維激光雷達可視化和開發(3DLIVE)團隊的內部工作,其主要目標是為目標坐標測量(TCM)創建一個可視化和與點云數據互動的新系統。所提出的機器學習方法與三維點云和計算機視覺的機器學習的三個主要課題有關,每個課題都有自己研究的論文部分。這些主題是分割、分類和目標檢測,所選的論文是最近的研究,取得了最先進的性能。這項研究的結果是選定的幾種方法,它們向3DLIVE團隊展示了最有希望的結果和有效性。有效性在很大程度上取決于算法對3DLIVE使用案例的可擴展性和適用性,以及其準確性和精確性。
在傳統的計算機視覺問題中,二維數據一直是用于推理的主要信息形式。隨著近來價格低廉且廣泛使用的3D傳感器(如蘋果深度相機、Kinect和飛行時間相機)的發展,3D數據已經變得非常豐富,并為解決計算機視覺問題提供了許多優勢。也就是說,它包含了更多的拓撲信息(深度維度、形狀和比例信息),這些信息對場景的理解至關重要,并提供了一個更自然的世界表現。由于這一技術層面的原因,將三維數據應用于自動駕駛、機器人、遙感和醫療等領域已經成為近期研究的重點,并將繼續擴展到其他領域[1]。
三維數據可以有很多格式,包括網格、深度圖像、體積網格和點云。場景理解應用中最常見的格式是點云-結構化數據,因為這種數據形式保留了三維空間中的原始幾何信息,沒有任何離散化損失。在進行分析之前,需要對點云進行定義:點云是一組數據點(x,y,z),通常代表一個(多個)三維物體的外表面,由合成或三維掃描器產生。三維數據面臨的一個挑戰是存儲要求--三維場景比二維的同一場景需要多出幾個數量級的存儲。點云解決了這個問題,因為它不需要存儲多邊形網格,因此提高了性能并降低了開銷--這是對時間敏感的應用的關鍵考慮[2]。
三維LiDAR可視化和開發(3DLIVE)項目旨在為目標坐標測量(TCM)和三維分析創建一個新系統。目前的TCM方法使用立體圖像,利用英偉達3D視覺眼鏡以及專門的GPU和顯示器來查看重疊的二維圖像,給人一種三維的感覺。然而,這種方法很難訓練,而且會造成眼睛疲勞;此外,它所使用的英偉達軟件和硬件已經達到了使用壽命的終點,不再得到支持或生產。因此,需要開發一種新的3D數據開發解決方案。
用于TCM的3DLIVE方法旨在利用主要由LiDAR傳感器收集的3D點云。然后使用游戲引擎Unity將這些數據可視化。此外,由于上述數據可以通過Octree格式有效地加載到Unity中,因此可以使用大規模的數據集。點的元數據信息可以在查看器中查看和分析,用戶可以在整個大的地理區域內導航并選擇點進行分析。有多種方法可以與數據互動,從在某一地點投放一個感興趣的點到測量距離、長度和面積。
有多種模式可以與3D點云數據互動。它們包括標準的鼠標和鍵盤、虛擬現實和增強現實(使用Hololens 2)。增強現實的互動是3DLIVE團隊的主要開發重點,因為它使用戶沉浸在數據中,同時仍然類似于立體眼鏡的方法。我們目前還在尋求使用機器學習(ML),使我們能夠自動獲得這些點云數據集中的物體信息,例如它們是什么物體,在空間內有什么界限,并進行自動目標識別(ATR)。
在過去的10-20年里,大多數深度學習計算機視覺研究都集中在2D圖像上,但隨著更多可用的3D數據的興起,最近的研究著眼于將傳統的深度學習技術應用于計算機視覺的3D數據。這項新的研究使得場景理解的場景有了重大的進展,但是在將模型從二維過渡到三維的過程中,仍然存在著一些障礙。具體到點云,數據是非結構化和無序的,這意味著以點云為輸入的深度學習網絡不能直接應用標準的深度學習方法,如卷積神經網絡(CNN)[1]。相反,必須開發定制的解決方案,使其具有包絡不變性,通常用對稱函數實現。另一個挑戰是從點云中捕捉局部和全局結構信息。通過單個點來評估點云會失去點與點之間的局部和整體結構信息,因此網絡在設計時必須通過查看鄰近的數據來考慮這一點。由于直接處理點云的困難,許多方法將點云數據轉化為一種中間格式,如將點云投影到二維圖像中,這樣就可以應用傳統的深度學習方法[1]。最后,從三維傳感器收集的點云數據并不完美--由于傳感器的局限性,采集設備的固有噪聲,以及被采集表面的反射性質,往往存在噪聲污染和異常值,會破壞數據采集[1]。從上面可以看出,在點云數據上應用深度學習方法并不簡單,需要對現有的技術進行重新設計,以便在網絡中使用,但是三維點云比二維數據的描述能力的提升超過了負面因素。
計算機視覺任務通常被分成3個不同的類別:分類、目標檢測和分割。對于點云,這些類別通常被定義為: 三維形狀分類,三維目標檢測和跟蹤,以及三維點云分割[1]。
三維形狀分類方法試圖通過首先學習每個點的嵌入,然后使用聚合方法從整個點云中提取一個全局形狀嵌入,來對點云中的物體進行分類(標記)。這個全局嵌入被輸入到幾個完全連接的層中以實現分類[1]。
三維目標檢測和跟蹤方法可以分為3類: 1)目標檢測,2)物體跟蹤,以及3)場景流估計。對于目標檢測方法,它們在每個檢測到的物體周圍為輸入的點云產生定向的三維邊界盒。接下來,三維物體跟蹤的目的是預測物體的狀態,因為它以前的狀態。與物體跟蹤相關的是三維場景流估計,即給定同一場景在兩個不同時刻的兩個點云,描述每個點從第一個點云到第二個點云的運動[1]。
與目標檢測和跟蹤一樣,三維點云的分割也可以根據所需的粒度分為三類。這些類別從最普遍到最不普遍:語義分割(場景級別)、實例分割(物體級別)和部分分割(部分級別)。給定一個點云,三維點云語義分割的目標是根據點的語義將點云分成幾個子集(例如,將場景中的所有椅子涂成相同的顏色)。更低一級的是三維點云實例分割,它比語義分割更具挑戰性,因為它需要對點進行更準確和精細的推理。實例分割不僅需要區分具有不同語義的點,還需要區分具有相同語義的獨立實例(例如,給每把椅子涂上不同的顏色,而不是所有椅子都是同一顏色)。最后,在最細微的層面上,部分分割試圖將具有相同語義的物體的各個部分分開(例如,給椅子的各個部分涂上不同的顏色),由于具有相同語義標簽的形狀部分具有較大的幾何變化和模糊性,因此這項任務特別困難[1]。
3DLIVE努力的目標之一是創建一個系統(利用機器學習),該系統接收一個地理區域的點云,將具有類似屬性的點分組為對象,并為每個組成對象和結構貼上標簽,使數據更容易使用和分析。在我們著手實現這些目標之前,我們確定研究當前點云數據集的分割和分類技術狀況將是有價值的。Guo等人在2019年完成了一項關于點云的深度學習方法的調查[1]。我們的目的是確認研究中提出的信息仍然是準確和相關的(針對點云數據集的ML是一個快速發展的領域),進行我們自己的研究并創建一個類似的調查,并決定在研究的分類、分割和目標檢測的方法中,哪些是最適合我們的使用案例的。AFRL RIEA/RIED內部研究小組(IHURT)被召集起來,與3DLIVE團隊一起做這項研究,并回答以下研究問題:
目前3D點云分割和分類的技術水平如何,哪些方法對3DLIVE的工作最有效?我們能否開始為我們打算使用的大規模三維城市點云的分割、分類和目標檢測奠定框架并制定行動方案?
這項研究的結果將使3DLIVE團隊能夠推進ML點云的分析工作。我們希望最終能復制出性能最高、最相關的分割、分類和目標檢測方法,并將其用于NGA地理空間存儲和數據管理(GRID)服務器的地理3D點云數據。此外,3DLIVE團隊已經開發了一種生成大規模合成城市點云數據集的方法,我們可以利用這種合成數據作為我們創建和使用的模型的額外訓練數據。這項研究將為3DLIVE團隊使用ML創建額外的工具來幫助作戰人員分析和衡量三維數據奠定基礎。這將最終實現上述目標,即創建一個新的TCM系統,供目標人員(如第363 ISR聯隊和其他目標部門的人員)使用,用一種利用越來越多的本地3D數據的替代技術取代目前已被淘汰的技術。
圖2. RPVNet的概述。它是一個具有多種交互作用的三分支網絡,其中體素分支和范圍分支共享類似的Unet架構,而點分支只利用每點的MLPs。
作者正在研究分布式雷達在穿墻感應中的應用。這項技術的預期操作場景是在建筑物外的(安全)遠程距離內探測和識別建筑物內的人員和武器裝備。本研究使用的雷達結構和信號處理算法類似于美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)實施的埋藏和隱蔽表面目標探測的設計;目前的雷達發射和接收頻率更高。
在這項研究中,實驗是在ARL的阿德爾菲實驗中心(ALC)507號樓("沙盒 "區域)進行的,使用的是室內低金屬兩層夾板結構。用來測試分布式雷達的受控環境與用來測試ARL針對電子目標的諧波雷達的低金屬環境相同。
圖1 步進頻率雷達收發器:(a)賽靈思的RFSoC與Alion/HII的雷達固件,以及(b)定制的發射器/接收器(Tx/Rx)濾波器和放大器PCB,由28VDC供電
本研究中收集的數據表明,在低矮的金屬建筑中,相互成直角的天線對能夠探測到多個移動目標,而這些目標從建筑外是看不到的。隨時間變化的距離圖顯示了目標所遵循的路徑;在一個頻道中跟蹤的目標路徑的模糊性可以通過在另一個頻道中跟蹤同一目標來緩解。仍需努力將同時收集的數據的IQ振幅一致地結合起來,以解決多個目標。一個目標是在二維(下行和上行)圖像上繪制目標位置,也許是以視頻動畫的形式疊加在場景的俯視圖上(即被成像的建筑物的典型平面圖)。在對移動目標進行成像時,發射器和接收器天線的雙穩態配對是否具有優勢(與標準的單穩態發射器天線配對相比)還有待確定。
本研究調查了使用雷達跟蹤數據將無人機(UAs)分類為旋翼或固定翼類,作為減少誤報和操作員負擔的一種手段。該研究使用來自實驗飛行的UA遙測數據以及模擬雷達軌跡數據來訓練機器學習(ML)分類器。探討了遷移學習的應用。使用有限的數據集獲得的結果顯示,根據所使用的配置,真陽性和真陰性率超過80%。初步研究強調了改善這一性能的一些重要途徑。
探測和識別無人機對加拿大武裝部隊保護部隊和資產至關重要。作為一種全天候和遠程能力,雷達提供關鍵的軌跡數據,可以提示光電/紅外(EO/IR)系統或操作員。本研究開發了一種基于雷達航跡數據的分類器,用于區分旋翼和固定翼兩類無人機,以減少誤報和操作人員負擔。
在本節中,我們將概述當前研究的數據流。基本概念是利用飛行中保存在無人機上的遙測數據。這些數據集代表了典型的UA軌跡,無論是在飛行員控制下還是使用預先編程的航路點,以及在真實的風環境條件下飛行等。這些遙測數據集可以告知軌跡本身,并可以作為訓練分類器區分uav和雜波(特別是鳥類)或不同UA類型之間的基礎。在本研究中,我們研究訓練分類器來區分I類的旋轉翼和固定翼無人機。
圖1中的原理圖解釋了數據流。首先,對遙測數據集進行預處理,并將其標記為屬于旋翼類(ID = 0)或固定翼類(ID = 1)。預處理的軌跡可以并將直接與涉及ML模型的其余數據流一起使用。經過預處理的軌跡數據還可以作為Stone Soup跟蹤庫的輸入,與建模的雷達參數和位置一起,生成模擬雷達軌跡數據。這個過程將在第4節中介紹。
軌跡(來自預處理器和模擬軌跡數據)用于創建更多數量的子軌跡。這里的想法是獲得一個分類器,它可以在只處理子軌跡后區分UA類。可以研究創建子軌跡的不同方法,這將在第5節中討論。對于本研究,我們選擇將子軌跡視為獨立的實體,但其他選項都是有效的研究思路,如第7節所述。
其余的數據流涉及典型的監督機器學習技術,將數據集分為訓練、驗證和測試數據集、計算特征以及訓練和測試ML模型。在我們的例子中,我們有預處理的遙測數據和模擬雷達軌跡數據的混合。
圖1:當前研究中涉及的不同步驟的示意圖。