最近,越來越多的研究開始將深度學習方法應用到圖數據領域。圖神經網絡在數據具有明確關系的結構場景,如物理系統,分子結構和知識圖譜中有著廣泛的研究價值和應用前景,本文將介紹在KDD 2020上發表的兩個在這一場景下的最新工作。
第一個工作是Research Track的《ASGN: An Active Semi-supervised Graph Neural Network for Molecular Property Prediction》,提出了一種基于主動學習的半監督圖神經網絡模型來對分子性質進行預測方法。
第二個工作是Research Track的《Hierarchical Attention Propagation for Healthcare Representation Learning》,基于注意力機制,提出了一種利用的層次信息表示醫學本體的表示學習模型。
異質信息網絡的概念自 2009 年首次提出以來,迅速成為數據挖掘領域的研究熱點,并在這類網絡上開發了許多創新性的數據挖掘任務。此外,還開發了一些獨特的分析技術來展示異質信息網絡的好處。特別是,隨著大數據時代的到來,異質信息網絡為大數據中復雜對象及其關系的建模和分析提供了一種有效的途徑。
本文將介紹兩篇滴滴在KDD 2020上發表的利用異質信息網絡解決實際問題的工作。 第一個工作是《HetETA: Heterogeneous Information Network Embedding for Estimating Time of Arrival》,提出異質時空圖卷積網絡用于預估到達時間。
第二個工作是《Gemini: A Novel and Universal Heterogeneous Graph Information Fusing Framework for Online Recommendations》,提出一種通用的在線推薦異質信息融合框架。
從社交網絡到分子,許多真實數據都是以非網格對象的形式出現的,比如圖。最近,從網格數據(例如圖像)到圖深度學習受到了機器學習和數據挖掘領域前所未有的關注,這導致了一個新的跨領域研究——深度圖學習(DGL)。DGL的目標不是繁瑣的特征工程,而是以端到端方式學習圖的信息性表示。它在節點/圖分類、鏈接預測等任務中都取得了顯著的成功。
在本教程中,我們的目的是提供一個深入的圖學習的全面介紹。首先介紹了深度圖學習的理論基礎,重點描述了各種圖神經網絡模型(GNNs)。然后介紹DGL近年來的主要成就。具體來說,我們討論了四個主題:1)深度GNN的訓練; 2) GNNs的魯棒性; 3) GNN的可擴展性; 4) GNN的自監督和無監督學習。最后,我們將介紹DGL在各個領域的應用,包括但不限于藥物發現、計算機視覺、醫學圖像分析、社會網絡分析、自然語言處理和推薦。
//ai.tencent.com/ailab/ml/KDD-Deep-Graph-Learning.html
目錄:
近年來, 隨著海量數據的涌現, 可以表示對象之間復雜關系的圖結構數據越來越受到重視并給已有的算法帶來了極大的挑戰. 圖神經網絡作為可以揭示深層拓撲信息的模型, 已開始廣泛應用于諸多領域,如通信、生命科學和經濟金融等. 本文對近幾年來提出的圖神經網絡模型和應用進行綜述, 主要分為以下幾類:基于空間方法的圖神經網絡模型、基于譜方法的圖神經網絡模型和基于生成方法的圖神經網絡模型等,并提出可供未來進一步研究的問題.
//engine.scichina.com/publisher/scp/journal/SSM/50/3/10.1360/N012019-00133?slug=fulltext
圖是對對象及其相互關系的一種簡潔抽象的直觀數學表達. 具有相互關系的數據—圖結構數據在眾多領域普遍存在, 并得到廣泛應用. 隨著大量數據的涌現, 傳統的圖算法在解決一些深層次的重要問題, 如節點分類和鏈路預測等方面有很大的局限性. 圖神經網絡模型考慮了輸入數據的規模、異質性和深層拓撲信息等, 在挖掘深層次有效拓撲信息、 提取數據的關鍵復雜特征和 實現對海量數據的快速處理等方面, 例如, 預測化學分子的特性 [1]、文本的關系提取 [2,3]、圖形圖像的結構推理 [4,5]、社交網絡的鏈路預測和節點聚類 [6]、缺失信息的網絡補全 [7]和藥物的相互作用預測 [8], 顯示了令人信服的可靠性能.
圖神經網絡的概念最早于 2005 年由 Gori 等 [9]提出, 他借鑒神經網絡領域的研究成果, 設計了一種用于處理圖結構數據的模型. 2009 年, Scarselli 等 [10]對此模型進行了詳細闡述. 此后, 陸續有關于圖神經網絡的新模型及應用研究被提出. 近年來, 隨著對圖結構數據研究興趣的不斷增加, 圖神經網絡研究論文數量呈現出快速上漲的趨勢, 圖神經網絡的研究方向和應用領域都得到了很大的拓展.
目前已有一些文獻對圖神經網絡進行了綜述. 文獻 [11]對圖結構數據和流形數據領域的深度學習方法進行了綜述, 側重于將所述各種方法置于一個稱為幾何深度學習的統一框架之內; 文獻[12]將圖神經網絡方法分為三類: 半監督學習、無監督學習和最新進展, 并根據發展歷史對各種方法進行介紹、分析和對比; 文獻[13]介紹了圖神經網絡原始模型、變體和一般框架, 并將圖神經網絡的應用劃分為結構場景、非結構場景和其他場景; 文獻[14]提出了一種新的圖神經網絡分類方法, 重點介紹了圖卷積網絡, 并總結了圖神經網絡方法在不同學習任務中的開源代碼和基準.
本文將對圖神經網絡模型的理論及應用進行綜述, 并討論未來的方向和挑戰性問題. 與其他綜述文獻的不同之處在于, 我們給出新的分類標準, 并且介紹圖神經網絡豐富的應用成果. 本文具體結構如下: 首先介紹三類主要的圖神經網絡模型, 分別是基于空間方法的圖神經網絡、基于譜方法的圖神經網絡和基于生成方法的圖神經網絡等; 然后介紹模型在節點分類、鏈路預測和圖生成等方面的應用; 最后提出未來的研究方向.
來自密歇根州立大學的YaoMa, Wei Jin, andJiliang Tang和IBM研究Lingfei Wu與 Tengfei Ma在AAAI2020做了關于圖神經網絡的Tutorial報告,總共305頁ppt,涵蓋使用GNNs對圖結構數據的表示學習、GNNs的健壯性、GNNs的可伸縮性以及基于GNNs的應用,非常值得學習。
摘要
圖結構數據如社交網絡和分子圖在現實世界中無處不在。設計先進的圖數據表示學習算法以方便后續任務的實現,具有重要的研究意義。圖神經網絡(GNNs)將深度神經網絡模型推廣到圖結構數據,為從節點層或圖層有效學習圖結構數據的表示開辟了新的途徑。由于其強大的表示學習能力,GNNs在從推薦、自然語言處理到醫療保健的各種應用中都具有實際意義。它已經成為一個熱門的研究課題,近年來越來越受到機器學習和數據挖掘界的關注。這篇關于GNNs的教程對于AAAI 2020來說是非常及時的,涵蓋了相關的和有趣的主題,包括使用GNNs對圖結構數據的表示學習、GNNs的健壯性、GNNs的可伸縮性以及基于GNNs的應用。
目錄:
百度網盤直接下載: 鏈接: //pan.baidu.com/s/1pQC45GLGOtu6T7T-G2Fn4w 提取碼: xrkz
講者介紹
Yao Ma是密歇根州立大學計算機科學與工程專業的博士生。他還在數據科學與工程實驗室(DSE實驗室)擔任研究助理,該實驗室由Tang Jiliang博士領導。他的研究興趣包括網絡嵌入和圖神經網絡在圖結構數據上的表示學習。曾在WSDM、ASONAM、ICDM、SDM、WWW、KDD、IJCAI等頂級會議上發表創新工作。在加入密歇根州立大學之前,他在Eindhoven理工大學獲得碩士學位,在浙江大學獲得學士學位。
Wei Jin是密歇根州立大學計算機科學與工程專業的一年級博士生,導師是Tang Jiliang博士。他的興趣在于圖表示學習。現從事圖神經網絡的理論基礎、模型魯棒性和應用研究。
Jiliang Tang 自2016年秋季以來一直是密歇根州立大學計算機科學與工程系的助理教授。在此之前,他是雅虎研究院的一名研究科學家,2015年在亞利桑那州立大學獲得博士學位。他的研究興趣包括社會計算、數據挖掘和機器學習,以及它們在教育中的應用。他是2019年NSF Career獎、2015年KDD最佳論文亞軍和6個最佳論文獎(或亞軍)的獲得者,包括WSDM2018和KDD2016。他擔任會議組織者(如KDD、WSDM和SDM)和期刊編輯(如TKDD)。他在高排名的期刊和頂級會議上發表多項研究成果,獲得了成千上萬的引用和廣泛的媒體報道。
Lingfei Wu是IBM AI foundation Labs的研究人員,IBM T. J. Watson研究中心的推理小組。
Tengfei Ma現任美國紐約IBM沃森研究中心研究員。
數據挖掘領域的國際會議WSDM將于2020年2月3日-2月7日在美國休斯敦召開,WSDM 2020全稱為第13屆國際互聯網搜索與數據挖掘會議(The 13th International Conference on Web Search and Data Mining, WSDM 2020)。WSDM是CCF推薦的B類國際學術會議,由SIGIR、SIGKDD、SIGMOD和SIGWEB四個專委會協調籌辦,在互聯網搜索、數據挖掘領域享有較高學術聲譽。這次會議共收到來自615篇長文投稿,僅有91篇長文被錄用,錄用率約15%。
為此小編特意整理了近期五篇圖神經網絡(GNN)相關的接收論文,讓大家先睹為快。
1. A Structural Graph Representation Learning Framework
作者:Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, Sungchul Kim, Anup Rao and Yasin Abbasi-Yadkori;
摘要:許多基于圖的機器學習任務的成功在很大程度上取決于從圖數據中學習到的適當表示。大多數工作都集中在于學習保留鄰近性的節點嵌入,而不是保留節點之間結構相似性的基于結構的嵌入。這些方法無法捕獲對基于結構的應用程序(如web日志中的visitor stitching)至關重要的高階結構依賴和連接模式。在這項工作中,我們闡述了高階網絡表示學習,并提出了一個稱為HONE的通用框架,用于通過節點鄰域中的子圖模式(network motifs, graphlet orbits/positions)從網絡中學習這種結構性節點嵌入。HONE引入了一種通用的diffusion機制和一種節省空間的方法,該方法避免了使用k-step線性算子來顯式構造k-step motif-based矩陣。此外,HONE被證明是快速和有效的,最壞情況下的時間復雜度幾乎是線性的。實驗結果表明,該算法能有效地處理大量的網絡日志數據,包括鏈接預測和visitor stitching。
網址: //ryanrossi.com/pubs/WSDM20-structural-node-embedding-framework.pdf
2. Initialization for Network Embedding: A Graph Partition Approach
作者:Wenqing Lin, Feng He, Faqiang Zhang, Xu Cheng and Hongyun Cai;
摘要:網絡嵌入已經在文獻中得到了深入的研究,并廣泛用于各種應用中,如鏈接預測和節點分類。盡管先前的工作集中在新算法的設計上或針對各種問題設置進行了量身定制,但常常忽略了學習過程中對初始化策略的討論。在這項工作中,我們解決了這個重要的網絡嵌入初始化問題,它可以顯著地提高算法的有效性和效率。具體來說,我們首先利用graph partition技術將圖劃分為幾個不相交的子集,然后基于這些partition構造一個abstract graph。我們通過計算abstract graph上的網絡嵌入,得到圖中每個節點的嵌入初始化,abstract graph上的網絡嵌入比輸入圖小得多,然后將嵌入傳播到輸入圖的節點中。通過對各種數據集的大量實驗,我們證明了我們的初始化技術顯著提高了最先進算法在鏈接預測和節點分類方面的性能,分別提高了7.76%和8.74%。此外,我們證明了初始化技術至少減少了20%的運行時間。
網址:
3. Dynamic graph representation learning via self-attention networks
作者:Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang and Hao Yang;
摘要:學習圖中節點的潛在表示是一項重要且普遍存在的任務,在鏈接預測、節點分類和圖可視化等領域有著廣泛的應用。以往的圖表示學習方法主要集中在靜態圖上,而現實世界中的很多圖都是動態的、隨時間變化的。在這篇論文中,我們提出了Dynamic Self-Attention Network (DySAT),這是一種新型的神經架構,它操作在動態圖上,并學習節點表示,以捕捉結構特性和時間演化模式。具體來說,DySAT通過在兩個維度(結構鄰域和時間動態)上聯合使用self-attention層來計算節點表示。我們對兩類圖進行了鏈接預測實驗:通信網絡和二分評級網絡。我們的實驗結果表明,DySAT在幾種不同的最先進的圖嵌入baseline上有顯著的性能提升。
網址:
4. Relation Learning on Social Networks with Multi-Modal Graph Edge Variational Autoencoders
作者:Carl Yang, Jieyu Zhang, Haonan Wang, Sha Li, Myungwan Kim, Ma? Walker, Yiou Xiao and Jiawei Han;
摘要:盡管節點語義已在社交網絡中得到了廣泛的探索,但對邊緣語義即社會關系的研究很少受到關注。理想的邊緣語義不僅應該顯示兩個用戶是連接的,而且還應該說明他么為什么彼此認識以及共享什么。然而,由于嘈雜的多模態信號和有限的用戶生成的ground-truth標簽,社交網絡中的關系往往很難分析。
在這項工作中,我們的目標是開發一個統一的且有原則的框架,通過在有噪聲和不完整數據存在的情況下整合多模態信號,將用戶關系描述為社交網絡中的邊緣語義。我們的框架對于半監督或無監督的情況也是靈活的。具體地說,我們假定每個用戶鏈接下的多個關系的潛在分布,并使用多模態圖邊緣變分自動編碼器來學習它們。我們用一個圖卷積網絡對網絡數據進行編碼,用多個重構網絡對任意信號進行解碼。在兩個公開的DBLP author network和兩個internal LinkedIn member network上的大量實驗和案例研究證明了我們提出的模型的優越性和有效性。
網址:
5. Robust Graph Neural Network Against Poisoning Attacks via Transfer Learning
作者:Xianfeng Tang, Yandong Li, Yiwei Sun, Huaxiu Yao, Prasenjit Mitra and Suhang Wang;
摘要:圖神經網絡(GNNs)有著廣泛的應用。然而,他們在對抗攻擊的魯棒性方面是不行的。先前的研究表明,對圖拓撲或節點特征使用不明顯的修改會大大降低GNN的性能。設計強大的圖神經網絡以防止poisoning attack是一項非常具有挑戰性的工作。現有工作的目標是僅使用poisoned圖來減少adversarial edge的負面影響,這是次優的,因為它們無法區分adversarial edge和normal edge。另一方面,來自與目標poisoned圖類似領域的clean圖在現實世界中通常是可用的。通過擾動這些clean圖,我們創建了監督知識來訓練檢測adversarial edge的能力,從而提高了GNN的魯棒性。然而,現有的工作忽略了這種clean圖的潛力。為此,我們研究了一個新的問題,通過研究clean圖來提高GNNs對poisoning attack的魯棒性。具體而言,我們提出了PA-GNN,它基于一種懲罰性聚合機制,通過分配較低的注意力系數來直接限制adversarial edge的負面影響。為了優化一個poisoned圖的PA-GNN,我們設計了一種meta-optimization算法,訓練PA-GNN使用clean圖和其adversarial圖懲罰擾動,并將這種能力遷移到poisoned圖上,以提高PA-GNN的魯棒性。在四個真實數據集上的實驗結果證明了PA-GNN對圖數據poisoning attack的魯棒性。
網址:
論文鏈接: 提取碼:uzby
題目: Graph Neural Networks: A Review of Methods and Applications
摘要: 許多學習任務都需要處理包含元素間豐富關系信息的圖形數據。建模物理系統、學習分子指紋、預測蛋白質界面和疾病分類需要一個模型從圖形輸入中學習。在文本、圖像等非結構化數據的學習等領域,對句子的依存樹、圖像的場景圖等提取的結構進行推理是一個重要的研究課題,同時也需要建立圖形推理模型。圖神經網絡(GNNs)是通過圖節點之間的信息傳遞來獲取圖的依賴性的連接模型。與標準神經網絡不同,圖神經網絡保留了一種狀態,這種狀態可以以任意深度表示來自其鄰域的信息。雖然原始GNNs已經被發現很難訓練到固定的點,但是最近在網絡結構、優化技術和并行計算方面的進展已經使它能夠成功地學習。近年來,基于圖形卷積網絡(GCN)、圖形注意網絡(GAT)、門控圖形神經網絡(GGNN)等圖形神經網絡變體的系統在上述許多任務上都表現出了突破性的性能。在這項調查中,我們提供了一個詳細的檢討現有的圖形神經網絡模型,系統分類的應用,并提出了四個開放的問題,為今后的研究。
作者簡介: Jie Zhou,CS的研究生,從事系統研究,主要研究計算機安全。他畢業于廈門大學,在羅切斯特大學獲得碩士學位及博士學位。
Zhiyuan Liu,清華大學計算機系NLP實驗室副教授。
題目: Graph Neural Networks:A Review of Methods and Applications
簡介: 許多學習任務需要處理圖形數據,該圖形數據包含元素之間的關系信息。對物理系統進行建模,學習分子指紋,預測蛋白質界面以及對疾病進行分類,都需要從圖輸入中學習模型。在諸如從文本和圖像之類的非結構數據中學習的其他領域中,對提取結構的推理,例如句子的依存關系樹和圖像的場景圖,是一個重要的研究課題,它也需要圖推理模型。圖神經網絡(GNN)是連接器模型,可通過在圖的節點之間傳遞消息來捕獲圖的依賴性。與標準神經網絡不同,圖神經網絡保留一種狀態,該狀態可以表示來自其鄰域的任意深度的信息。盡管已經發現難以訓練原始圖神經網絡來固定點,但是網絡體系結構,優化技術和并行計算的最新進展已使他們能夠成功學習。近年來,基于圖卷積網絡(GCN)和門控圖神經網絡(GGNN)的系統已經在上述許多任務上展示了突破性的性能。在本綜述中,我們對現有的圖神經網絡模型進行了詳細的回顧,對應用程序進行了系統分類,并提出了四個未解決的問題,供以后研究。
作者簡介: 周杰,教授,清華大學自動化系黨委書記,教授,博士生導師。
【導讀】CIKM 2019 (International Conference on Information and Knowledge Management),今年會議主題是 "AI for Future Life"。CIKM是數據庫、數據挖掘與內容檢索領域的旗艦會議。CIKM 2019共計收到1030篇長文有效投稿,其中200篇論文被大會錄用,總錄用率約19.4%。圖神經網絡(GNN)相關的論文依然很火爆,小編在官網上查看了,CIKM專門有專題,大約10篇長文接受為GNN專題論文。為此,專知小編提前為大家篩選了六篇GNN 長文論文供參考和學習!
作者:Zekun Li,Zeyu Cui,Shu Wu,Xiaoyu Zhang,Liang Wang;
摘要:點擊率(CTR)預測是在線廣告和推薦系統等網絡應用中的一項重要任務,其特點是多領域的。該任務的關鍵是對不同特征field之間的特征交互進行建模。最近提出的基于深度學習的模型遵循了一種通用的范式:首先將原始的稀疏輸入multi-filed特征映射到密集的field嵌入向量中,然后簡單地將其連接到深度神經網絡(DNN)或其他專門設計的網絡中,以學習高階特征交互。然而,特征field的簡單非結構化組合將不可避免地限制以足夠靈活和顯式的方式建模不同field之間復雜交互的能力。 在這項工作中,我們提出在一個圖結構中直觀地表示multi-field的特征,其中每個節點對應一個特征field,不同的field可以通過邊進行交互。因此,建模特征交互的任務可以轉換為對相應圖上的節點交互進行建模。為此,我們設計了一個新的模型-Feature Interaction Graph Neural Networks (Fi-GNN)。利用圖的強表征性,我們的模型不僅可以靈活、明確地對復雜的特征交互進行建模,而且可以為CTR預測提供良好的模型解釋。在兩個真實數據集上的實驗結果顯示了它的優越性。
網址: //www.zhuanzhi.ai/paper/4d6897c6a057a33539d3e6758c223a9c
2、Graph Convolutional Networks with Motif-based Attention
作者:John Boaz Lee,Ryan A. Rossi,Xiangnan Kong,Sungchul Kim,Eunyee Koh,Anup Rao;
摘要:深度卷積神經網絡在計算機視覺和語音識別領域的成功,使得研究人員開始研究該體系結構對圖結構數據的泛化。最近提出的一種稱為圖卷積網絡的方法能夠在節點分類方面取得最新的成果。然而,由于所提出的方法依賴于spectral圖卷積的局部一階近似,因此無法捕獲圖中節點間的高階相互作用。在這項工作中,我們提出了一個motif-based的圖注意力模型,稱為Motif Convolutional Networks,它通過使用加權多跳motif鄰接矩陣來捕獲高階鄰域,從而泛華了過去的方法。一個新的注意力機制被用來允許每個單獨的節點選擇最相關的鄰居來應用它的過濾器。我們在不同領域(社會網絡和生物信息學)的圖上評估了我們的方法,結果表明它能夠在半監督節點分類任務上勝過一組有競爭力的基準方法。其他結果證明了attention的有用性,表明不同的節點對不同的高階鄰域進行了優先排序。
網址:
作者:Guillaume Salha,Stratis Limnios,Romain Hennequin,Viet Anh Tran,Michalis Vazirgian;
摘要:圖自編碼器(AE)和變分自編碼器(VAE)是近年來出現的強有力的節點嵌入方法。特別是利用圖AE和VAE成功地解決了具有挑戰性的鏈路預測問題,目的是找出圖上的一些節點對是否被未觀察到的邊所連接。然而,這些模型側重于無向圖,因此忽略了鏈接的潛在方向,這限制了許多實際應用程序。在本文中,我們擴展了graph AE和VAE框架來解決有向圖中的鏈路預測問題。我們提出了一種新的gravity-inspired的解碼器方案,可以有效地從節點嵌入中重建有向圖。我們對標準graph AE和VAE表現較差的三種不同定向鏈路預測任務進行了實證評價。我們在三個真實世界的圖上獲得了具有競爭力的結果,超過了幾個流行的baseline。
網址:
4、Hashing Graph Convolution for Node Classification
作者:Wenting Zhao, Zhen Cui, Chunyan Xu, Chengzheng Li, Tong Zhang,Jian Yang;
摘要:圖數據卷積在non-gridded數據中的應用引起了人們的極大興趣。為了克服相鄰節點的排序和數量的影響,在以往的研究中,往往對局部接受域進行summing/average diffusion/aggregation。然而,這種壓縮成一個節點的方法容易造成節點間的signal entanglement,導致次優特征信息,降低了節點的可分辨性。針對這一問題,本文提出了一種簡單而有效的哈希圖卷積(HGC)方法,該方法通過在節點聚合中使用全局哈希和局部投影來進行節點分類。與傳統的完全collision聚合相比,hash-projection可以大大降低相鄰節點聚合時的collision概率。我們認為基于hash-projection的方法可以更好地保持甚至增加局部區域的原始差異,并得到進一步的改進。hash-projection的另一個附帶效果是將每個節點的接受域歸一化為一個共同大小的bucket空間,不僅避免了大小不同的鄰居節點及其順序的麻煩,而且使圖卷積運行起來就像標準的shape-girded卷積一樣。考慮到訓練樣本較小,我們在HGC中引入預測一致性正則化項來約束圖中未標記節點的得分一致性。HGC在transductive和inductive實驗環境下進行評估。在節點分類任務上的大量實驗表明,hash-projection確實可以提高性能,我們的HGC在所有實驗數據集上都取得了最新最好的結果。
網址:
5、Learning to Identify High Betweenness Centrality Nodes from Scratch: A Novel Graph Neural Network Approach
作者:Changjun Fan,Li Zeng,Yuhui Ding,Muhao Chen,Yizhou Sun,Zhong Liu;
摘要: Betweenness centrality (BC)是網絡分析中廣泛使用的一種中心性度量,它試圖通過最短路徑的比例來描述網絡中節點的重要性。它是許多有價值的應用的關鍵,包括社區檢測和網絡拆除。由于時間復雜度高,在大型網絡上計算BC分數在計算上具有挑戰性。許多基于采樣的近似算法被提出以加速BC的估計。然而,這些方法在大規模網絡上仍然需要相當長的運行時間,并且它們的結果對網絡的微小擾動都很敏感。 在這篇論文中,我們主要研究如何有效識別圖中BC最高的top k節點,這是許多網絡應用程序所必須完成的任務。與以往的啟發式方法不同,我們將該問題轉化為一個學習問題,并設計了一個基于encoder-decoder的框架作為解決方案。具體來說,encoder利用網絡結構將每個節點表示為一個嵌入向量,該嵌入向量捕獲節點的重要結構信息。decoder將每個嵌入向量轉換成一個標量,該標量根據節點的BC來標識節點的相對rank。我們使用pairwise ranking損失來訓練模型,以識別節點的BC順序。通過對小規模網絡的訓練,該模型能夠為較大網絡的節點分配相對BC分數,從而識別出高排名的節點。在合成網絡和真實世界網絡上的實驗表明,與現有的baseline相比,我們的模型在沒有顯著犧牲準確性的情況下大大加快了預測速度,甚至在幾個大型真實世界網絡的準確性方面超過了最先進的水平。
網址:
6、Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation
作者:Fengli Xu,Jianxun Lian,Zhenyu Han,Yong Li,Yujian Xu,Xing Xie;
摘要:近年來,agent-initiated社交電子商務模式取得了巨大的成功,這種模式鼓勵用戶成為銷售代理商,通過他們的社交關系來推廣商品。這種類型的社交電子商務中的復雜交互可以表述為異構信息網絡(HIN),其中三種節點之間的關系有多種類型,分別為用戶、銷售代理和商品。學習高質量的節點嵌入是研究的重點,圖卷積網絡(GCNs)是近年來發展起來的最先進的表示學習方法。然而,現有的GCN模型在建模異構關系和有效地從大量鄰域中采樣相關接收域方面都存在基本的局限性。為了解決這些問題,我們提出了RecoGCN(a RElation-aware CO-attentive GCN model)來有效地聚合HIN中的異構特征。它彌補了目前GCN在使用關系感知聚合器建模異構關系方面的局限性,并利用語義感知元路徑為每個節點開辟簡潔和相關的接受域。為了有效地融合從不同元路徑中學習到的嵌入,我們進一步提出了一種co-attentive機制,通過關注用戶、銷售代理和商品之間的三種交互來動態地為不同的元路徑分配重要性權重。在真實數據集上的大量實驗表明,RecoGCN能夠學習HIN中有意義的節點嵌入,并且在推薦任務中始終優于baseline方法。
網址: