本報告詳細介紹了萊斯大學與美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)之間的合作協議的關于網絡軌道上進行的第二年研究工作。這個項目的驅動力是開發自主網絡,以支持分布式多域作戰,同時對近距離的對手具有強大的彈性。這些尖端的網絡必須具有能源和頻譜效率,能夠自適應不同的作戰條件,并且在設計上能夠安全地應對新一類基于學習的威脅。第二年的一個亮點是DEVCOM ARL和萊斯大學的研究人員在整體參與和出版物方面的重要合作。
圖 用于估計場景幾何的示例網絡拓撲。盟軍節點之間正在進行的數據傳輸被解碼并重新用于對坦克進行成像。
本項目的最終目標是設計新一代的自主無線網絡,以支持分布式多域作戰(MDO),同時對近乎同行的對手具有強大的彈性。本報告總結了本項目第二年取得的進展,并為未來幾年制定了明確的研究方向。
自主網絡對于使軍隊能夠比對手更快地進行MDO演習至關重要。此外,這些也將促進整個戰斗空間(陸地、空中、海上、太空、網絡空間、頻譜、信息環境)和各種作戰功能(情報、任務指揮、火力、維持、保護、運動和機動)的融合和利用跨領域的協同作用。
為了開發新一代的網絡,該項目已被組織成三個相互關聯的研究方向:
從毫米波到太赫茲的安全網絡。材料的創新使人們能夠并且將繼續能夠獲得從低GHz到THz的廣泛頻譜。然而,新的能力帶來了新的挑戰,因為在更高的頻段,通信越來越具有方向性。在這個方向上,我們正在開發新的方法,以利用新興設備的特殊性能,這些設備可以在GHz到THz的頻段上進行傳輸,由萊斯大學的多個實驗室和部署的測試平臺支持。
人工智能(AI)驅動的自適應網絡管理。通信能力的最新進展為網絡管理和優化提供了一系列豐富的調整旋鈕。然而,網絡戰是依賴于場景的,并與信道和流量條件以及設備能力緊密相連。在這個主旨中,我們利用人工智能來了解作戰環境,并將網絡的作戰點引導到最佳狀態,甚至在惡劣的條件下。
保護網絡免受基于人工智能的威脅。基于學習的攻擊已經打開了一個新的威脅載體,被動的對手可以從聆聽正在進行的傳輸中學習,甚至從加密的網絡中潛在地提取關鍵信息。我們正在開發創新,使對手更難提取信息,創新范圍包括新的天線和新的高層方法。
第5、6和7節詳細描述了在這三個方向上取得的進展。作為一個總結性的預演,我們在此提供一份第二年期間每個方向的主要成就清單。
從毫米波到太赫茲的安全網絡
實現了一種保護太赫茲鏈路的方法,該鏈路表現出角色散,表明可以同時實現大帶寬和安全。
實驗證明了來自 "中間元表面 "攻擊的威脅,其中一個強大的對手試圖截獲高度定向的通信而不被發現。
展示了基于多面漏波天線(LWA)架構的強大的移動高定向鏈路的基礎,該鏈路跨度為100GHz至1THz。
人工智能驅動的自適應網絡管理
結合圖神經網絡的表達能力和算法展開的靈活性,為多輸入多輸出(MIMO)系統和能量受限的場景設計了可學習的功率分配機制。
為聯合學習提出了一個可證明的接近最優的功率分配策略,其中包含了學習系統的特定約束。
開發了一種基于圖機器學習的可訓練和可擴展的鏈路調度方法,增強了現有的方法并達到了最先進的性能。
設計了一個訪問控制的學習方案,可以在現有協議之間進行切換和調整,以使預先指定的效用最大化。
保護網絡免受基于人工智能的威脅
開發了一個無監督的 "無線日記 "框架,無需事先訓練就能識別無線節點的數量。
開發了一個框架,在存在錯誤測量的情況下,從一個竊聽者那里估計鏈接率。
開發了一種方法,被動地利用空氣中的無線能量來估計場景的地理位置。
美陸軍統一網絡計劃正在推動網絡在2028年之前從一個被認為是看不見的資產變成一個支持多域作戰(MDO)方式的部隊武器系統。美陸軍的統一網絡將提供一種可生存的、安全的、端到端的能力,使陸軍在競爭、危機或沖突期間以及在所有作戰領域(海洋、陸地、太空、網絡、空中)作為聯合/聯盟部隊的一部分進行運作。
美陸軍參謀長的《陸軍向多領域作戰轉型白皮書》和到2028年擁有一支具備多域作戰能力部隊的目標,突出了對陸軍統一網絡的關鍵需求。決策主導權和超額配給能力是MDO的核心,而陸軍只有通過彈性、安全的全球網絡能力和容量才能實現這一目標。在此基礎上,美陸軍統一網絡計劃將多種復雜的網絡現代化工作調整為支持MDO所需的單一、一致的方法。
通過跨領域的努力,美陸軍統一網絡計劃為2028年的Way Point部隊提供了一個統一的網絡,然后隨著信息技術的持續快速發展而不斷進行現代化。
美陸軍統一網絡計劃與陸軍戰略的重點相一致,即建立戰備、現代化、改革陸軍以及加強聯盟和伙伴關系。現有的戰術網絡現代化戰略和實施計劃與陸軍統一網絡計劃相銜接,并保持一致。此外,陸軍統一網絡計劃在多個階段和時間范圍內與2019+陸軍戰役計劃并行,并使其得以實施。
第一階段:近期(目前-2024年)--建立統一的網絡
這一階段已經開始,同步進行綜合戰術網絡(ITN)和綜合企業網絡(IEN)的現代化。這一階段的主要工作包括:
對這一階段具有決定性意義的是建立一個基于標準的安全架構,該架構建立在零信任原則之上,最初的主要重點是SIPR網絡的現代化,然后是NIPR的關鍵能力,包括工資、后勤、合同等。
美陸軍開始實施一個整體的方法,隨著時間的推移發展統一網絡,使多種努力同步進行,并利用新興技術,如軟件定義和5G及以上的無線網絡,也符合零信任原則。
美陸軍正在追隨美國防部副部長辦公室,將無線蜂窩網絡作為戰術和企業網絡使用的一項關鍵技術。這將補充網絡整合,減少對非無線網絡的依賴。
這一階段開始時,能力加速進入云基礎設施,同時迅速剝離傳統能力和流程。關鍵是建立共同的數據標準,以實現人工智能(AI)和機器學習(ML)等新興能力。
任務伙伴環境(MPE)的持續發展將繼續進行,因為企業努力建立一個持久的能力,并消除浪費的偶發努力。
美陸軍將繼續調整部隊結構,以實施國防部信息網絡行動(DODIN Ops)的建設,在一個有爭議和擁擠的環境中運營、維護和捍衛統一網絡。
美陸軍必須完成整個企業的網絡融合,以調整單一的陸軍服務提供商,提高網絡的準備程度、標準化和互操作性;提高陸軍的網絡安全態勢;并使DCO快速響應。這種融合為統一網絡的建立創造了條件。
這一階段結束時,建立了一個標準化的綜合安全架構,為統一網絡奠定了基礎,并能在世界任何地方快速部署和立即開展行動。
第二階段:中期(2025-2027)--統一網絡的運作
這一階段從25財政年度開始,繼續融合ITN和IEN的能力。這一階段的主要工作包括:
完成DODIN行動的構建,支持部隊結構,使統一網絡在競爭和擁擠的環境中得到防御和運作。
這一階段完成了混合云能力的建立,包括加速Al/ML能力發展的戰術編隊。
美陸軍將建立一個持久的任務伙伴網絡(MPN),包括從企業到戰術邊緣的所有硬件、軟件、基礎設施和人員,包括在所有戰斗訓練中心(CTC)和任務訓練綜合體的就業。
這一階段在統一網絡完全支持2028年的MDO目標部隊時結束。
第三階段:遠期(2028年及以后)--持續實現統一網絡的現代化
這個階段從28財政年度開始,當陸軍統一網絡在操作上、技術上和組織上完全準備好支持2028年的MDO Way Point部隊。
鑒于信息技術和網絡領域快速和持續的變化速度,這個階段是沒有盡頭的--現代化演變為統一網絡的成熟。這是一個持續的過程,統一網絡沒有固定的結束狀態。
美陸軍統一網絡計劃伴隨著陸軍統一網絡的實施,這是一個美國陸軍執行令(EXORD),它將框架分解為與追求框架內的努力方向(LOE)和支持目標有關的近期和中期的關鍵任務。作為網絡整合和管理的領導者,首席信息官(CIO)和副參謀長(DCS),G-6將使用陸軍統一網絡實施計劃來同步和評估整個部隊和所有任務領域的努力,以建立統一網絡,支持2028年具有MDO能力的軍隊。
多域作戰(MDO)概念的核心是利用由分布在多個合作伙伴之間的遠程和自主傳感器以及人類智能組成的重疊系統的情報、監視和偵察(ISR)網絡。實現這一概念需要人工智能(AI)的進步,以改善分布式數據分析,以及智能增強(IA),以改善人機認知。本文的貢獻有三點。(1)我們將聯盟態勢理解(CSU)的概念映射到MDO ISR的要求上,特別關注對有保障和可解釋的人工智能的需求,以便在資產分布于多個合作伙伴的情況下進行強有力的人機決策。(2) 我們提出了MDO ISR中人工智能和IA的說明性情景,包括人機合作、密集的城市地形分析和增強資產互操作性;(3) 我們評估了與情景相關的可解釋人工智能的最新進展,重點是人機合作,以實現更快速和敏捷的聯盟決策。這三個要素的結合旨在展示CSU方法在MDO ISR背景下的潛在價值,基于三個不同的用例,強調了在多伙伴聯盟環境下對可解釋性的需求是如何的關鍵
多域作戰(MDO)需要在有爭議的環境中,針對近鄰對手,在多個領域--從密集的城市地形到空間和網絡空間--開展行動的能力、能力和耐力(美國陸軍2018年)。MDO作戰環境的一個關鍵特征是,對手將在所有領域、電磁頻譜和信息環境中進行爭奪,而盟軍的主導地位是無法保證的。敵人試圖通過在時間上、空間上、功能上和政治上等多個方面將友軍分開來實現對峙。通過降低盟軍的識別、決策和行動的速度,以及通過多種手段(外交、經濟、常規和非常規戰爭,包括信息戰)瓦解聯盟來實現對峙。在這種情況下,快速和持續地整合收集、處理、傳播和利用可操作的信息和情報的能力變得比以往任何時候都更重要。
為了應對這一挑戰,MDO中的分層ISR概念設想利用 "與合作伙伴開發的現有情報、監視和偵察(ISR)網絡。...由遠程和自主傳感器、人類情報和友好的特種作戰部隊的重疊系統組成'(美國陸軍2018年,第33-34頁)。在空前激烈的競爭環境中實現ISR資產的價值最大化,需要有能力在合作伙伴之間共享資源--在作為聯合、機構間和多國團隊的一部分進行的行動中--在一個可控但開放的聯盟環境中,以可知的信任和信心水平。
人工智能(AI)和機器學習(ML)技術被視為實現MDO中分層ISR愿景的關鍵:"迅速將數據傳播給采用人工智能或其他計算機輔助技術的野戰軍或軍團分析小組,以分析大量數據"(美國陸軍2018年,第39頁)。事實上,MDO環境的要求被視為需要一種能力,以超過人類認知能力的速度和規模,融合包括ISR在內的多個領域的能力。強大的、可互操作的人工智能/ML被認為是融合來自多種資產的數據并在行動伙伴之間傳播可操作的知識以告知決策和任務完成的關鍵(Spencer, Duncan, and Taliaferro 2019)。
總之,挑戰是使人類和機器智能體(軟件和機器人)能夠在聯合、機構間、多國和高度分散的團隊中有效運作,arXiv:1910.07563v1 [cs.AI] 2019年10月16日 在分布式、動態、復雜和雜亂的環境中。從人類的角度來看,人工智能和ML是克服人類因操作速度和規模而產生的認知限制的必要工具,其目的是增強--而不是取代--人類的認知和決策。在這里,我們把智能增強(IA)看作是對人工智能的補充,正如在人工智能歷史的最早時期(Engelbart 1962)所設想的那樣。我們專注于由人類和AI/ML智能體組成的快速形成的聯盟團隊,在網絡邊緣運作,具有有限的連接、帶寬和計算資源,發揮決策作用,例如,陸軍士兵在密集的城市環境中。然而,大部分的討論也將適用于其他領域的一系列其他角色,例如,進行網絡領域決策的情報分析員。
我們之前在一個相關的背景下研究了這一挑戰:聯盟情境理解(CSU)(Preece等人,2017年),其中我們確定了人機協作中兩個特別重要的屬性:可解釋性以支撐信心,可講述性以提高操作的靈活性和性能。本文主要關注其中的第一個屬性,但也涉及到第二個屬性。我們首先在MDO背景下重新審視了CSU的概念,然后研究了該概念在三個MDO小故事中的應用:人機協作、密集城市地形分析和增強資產互操作性。最后,我們評估了與小插曲相關的可解釋人工智能的最先進技術,強調了分層解釋的概念(Preece等人,2018)是如何與MDO分層ISR中的人工智能/ML保證需求相適應的。
在繼續之前,我們退一步指出,MDO環境的關鍵特征--(i)快速變化的情況;(ii)獲得真實數據來訓練AI的機會有限;(iii)行動期間的嘈雜、不完整、不確定和錯誤的數據輸入;以及(iv)采用欺騙性技術來擊敗算法的同行對手--并非軍事背景所獨有;它們通常在政府和公共部門的應用中更普遍存在,正如這些努力的聯合、機構間和多國方面。事實上,一般來說,MDO概念的多領域廣度及其對競爭和沖突階段的考慮,意味著MDO影響到屬于政府和公共部門的政治和社會領域。
形勢理解(SU)是 "將分析和判斷應用于單位的形勢意識,以確定現有因素的關系,并形成關于對部隊或任務完成的威脅、任務完成的機會和信息差距的邏輯結論的產物"(Dostal 2007)。英國的軍事學說(英國國防部2010年)對理解的定義如下:
理解(洞察力)=對形勢的認識和分析
理解力(預見力)=理解力和判斷力
在這里,理解包括預見性,即推斷(預測)潛在的未來狀態的能力,這與SU涉及能夠得出有關威脅的結論的常見定義是一致的(Dostal 2007)。預見性必然包括在時間上處理和推理信息的能力。這些關于SU的觀點與信息融合有著內在的聯系,因為它們涉及收集和處理來自多個環境來源的數據,作為得出SU的輸入。就數據融合的JDL(Joint Directors of Laboratories)模型而言(Blasch 2006),就考慮的語義實體和關系的種類而言,CSU問題可能涉及相對較高或相對較低的理解水平。例如,在相對較低的層次上,CSU問題可能只涉及車輛或建筑物等物體的探測、識別和定位(JDL 1級和2級)。在更高層次上,CSU問題將涉及到確定威脅、意圖或異常情況(JDL 3級)。此外,來源通常會跨越多種模式,例如,圖像、聲音和自然語言數據(Lahat, Adali, and Jutten 2015)。
圖1:CSU分層模型(來自(Preece等人,2017))虛擬分布于多個合作伙伴,并采用多種技術:人機協作(HCC)、知識表示和推理(KRR);多智能體系統(MAS);機器學習(ML);自然語言處理(NLP)、視覺和信號處理(VSP)。
我們在聯盟行動背景下的SU的概念架構--聯盟態勢理解(CSU)--如圖1所示。最底層由數據源(物理傳感器和人類產生的內容)的集合組成,可在整個聯盟內訪問,收集多模式數據。上面的三層大致對應于JDL模型的0-3層。對于每一層,圖中顯示了所采用的主要技術--包括人工智能和ML--,盡管其他技術也可能被利用。信息表示層使用傳入的數據流來學習概念,并對實體以及它們在多層次語義顆粒度上的關系進行建模。過去的觀察歷史以明確或隱含的方式被編碼在這些表示中。信息融合層采用所開發的算法和技術,對來自信息表示層的概念和實體進行賦值。該層估計世界的當前狀態,提供洞察力(態勢感知)。然后,預測和推理層使用估計的當前狀態,加上模型的狀態空間來預測未來的狀態,提供預見性(情景理解)。圖中描述了聯盟的虛擬視圖:所有四個層都分布在聯盟中。
根據用戶融合模型(Blasch 2006),圖1中的上層需要對人類開放,為推理提供專家知識;這些層也需要對人類用戶開放,即能夠對系統產生的洞察力和預見力進行解釋。不同層之間存在著雙向的信息交流:在向上(前饋)的方向,低層的推理作為下一層的輸入;在向下(反饋)的方向,信息被用來調整模型和算法參數,并可能以不同的方式給傳感器分配任務。要創建更好的系統來支持CSU,就必須開發成熟的模型和算法,在一段時間內減少人類的干預,實現更大的自主性,但不能取代人類的參與和監督。
以MDO的分層ISR概念為出發點("遠程和自主傳感器、人類智能和友好特種作戰部隊的重疊系統"(美國陸軍2018年)第34頁 ),我們認為人類是圖2中描述的多智能體環境中的三種ISR智能體之一,同時還有基于(i)亞符號AI技術(例如深度神經網絡(LeCun, Bengio, and Hinton 2015))和(ii)符號AI技術(例如基于邏輯的方法)的軟件智能體。為了實現這三種智能體(ISR資產)之間的互操作性,我們需要:
1.使亞符號人工智能智能體能夠分享不確定性意識到的見解和知識的表示,然后可以傳達給符號人工智能智能體。
2.使符號人工智能智能體能夠從數據中學習因果聯系的不確定性分布,同時能夠與亞符號人工智能智能體分享洞察力;以及
3.開發共生人工智能技術,以有效地與人類互動,首先是通過從人機合作活動中不斷學習來適應定型的行為。
圖2:CSU的多智能體非層次方法:(上)人類智能體,(左下)亞符號AI智能體,(右下)符號AI智能體。
前兩個案例的重點是機器資產之間的互操作性。在第三個案例中,我們超越了傳統的分層架構,即人類只與裝備了符號化人工智能的智能體進行互動,而這些智能體又利用亞符號化人工智能在特定任務上實現人類水平或卓越的性能。這樣的傳統架構是有限的,因為:(1)并不總是需要符號AI與人類互動(Ribeiro, Singh, and Guestrin 2016);(2)有些任務,符號AI可以支持亞符號AI智能體(Xu等人,2018);(3)有些任務,人類可以支持符號和/或亞符號AI智能體(Phan等人,2016),因此AI智能體需要配備學習和推理人類層次和結構的能力。
圖3提供了(Spencer, Duncan, and Taliaferro 2019)中設想的MDO分層ISR架構與前面對資產的符號化、亞符號化或混合化特征之間的映射。
圖3:來自(Spencer, Duncan, and Taliaferro 2019)的簡化版圖:矩形代表符號系統;圓形代表亞符號系統;圓角矩形代表混合元素。
我們的工作旨在提高能力,以促進復雜的聯盟任務,支持MDO,其中聯合和多國團隊和多領域的需求是至關重要的(美國陸軍2018)。最重要的是,在作戰情況發生時提供一個連貫的觀點和評估,從而在復雜、有爭議的環境中整合CSU的學習和推理,為網絡邊緣的決策者提供信息。如前所述,CSU既需要集體洞察力--從不確定且通常稀少的數據中獲得對局勢的準確和深刻理解,也需要集體預見力--預測未來會發生什么的能力(Preece等人,2017)。
多年來,承受力的概念一直是人機交互(HCI)領域的核心,指的是一個物體的 "用途",即 "該事物的感知和實際屬性,主要是那些決定該事物如何可能被使用的基本屬性"(Norman 1988)。在MDO分層ISR的背景下,有必要考慮人類和機器資產對一系列ISR任務的承受力。人機合作的目的是為了讓每一方都能利用對方的優勢,并彌補對方的弱點(Cummings 2014)。例如,(Crouser和Chang,2012年)將視覺分析范圍內的機器能力描述如下:
基于目前的機器能力,以下內容構成了人類資產的負擔(Crouser和Chang 2012):
在履行MDO的過程中,設想部署有人和無人的戰術總部(HQ)將變得很普遍,如圖4所示,該圖是根據(White等人,2019年)中的情景闡述的。在這里,在部署有人值守的總部A的同時,在高威脅地區進一步建立了第二個無人值守的總部B,由 "虛擬參謀 "組成。這些人被設計成與有人值守的總部中的對應人員一起工作,并減少總部的足跡以及人類操作員的工作量和威脅。自主和載人的傳感器混合在一起進入無人總部,人機合作提供了持久的要求,即有一個 "人在循環",以做出關鍵的最終決定。
圖4:戰術領域的人機協作:部署配備了亞符號和符號AI智能體的有人和無人戰術總部;闡述自(White等人,2019)。
全球城市化速度的加快,以及城市和特大城市的戰略重要性,確保了MDO行動將在密集的城市地形中進行。在這里,密度指的是這種環境的物理和人口性質,產生了特定的物理、認知和行動特征。在密集的城市地形中進行MDO的準備工作,需要進行情報活動以了解人類、社會和基礎設施的細節;這些地區的特點是多樣化的、相互聯系的人類和物理網絡,以及提供不同程度的現成掩護和隱蔽的三維交戰區。
在這種環境下,ISR將利用和增強民用基礎設施。例如,民用CCTV(閉路電視攝像機)的使用將越來越多地得到自動面部識別處理的增強,以探測和跟蹤高價值目標,或支持建筑的生活模式。隨著目標進入車輛,民用自動車牌識別技術可能被利用。這種城市基礎設施的多樣性--在某些情況下擴展到全面的 "智能城市 "整合--為ISR資產之間的敏捷互操作性提出了進一步的要求,特別是由于ISR任務不一定能事先計劃需要什么樣的收集和處理。在這種情況下,分析的構成將是動態的和針對具體情況的,并不斷地重新提供和優化資源(White等人,2019)。
在密集的城市地形中,對聯合、機構間以及經常是多國合作的需求進一步凸顯。如上所述,在這種情況下,CSU取決于人與人工智能的合作:AI智能體等機器流程在數據分析方面提供了強大的能力,但它們需要為其產出提供一定程度的保證(解釋、問責、透明),特別是當這些產出被沒有接受過信息科學技術培訓的決策者所使用,并且他們可能正在利用相對陌生的當地ISR資產。目前的ML方法在生成CSU所需的世界的可解釋模型(即表征)的能力上是有限的(Lake等人,2017)。此外,這些方法需要大量的訓練數據,并且缺乏像人和基于知識表示的系統那樣從少量的例子中學習的能力(Guha 2015)。人類專家告訴機器相關信息的能力--通常來自他們對當地環境的生活經驗--增加了人類與人工智能互動的節奏和顆粒度,以及系統在滿足任務要求方面的整體響應能力。因此,重要的是為聯盟機器智能體配備綜合學習和知識表示機制,以支持CSU,同時提供保證(可解釋性)和被告知關鍵信息的能力,以減輕稀疏數據的問題(可講述性)。在最近的研究中,我們為神經符號混合環境建立了重要的基礎,包括多模態數據的多智能體學習(Xing等人,2018)、證據性深度學習(Sensoy、Kaplan和Kandemir,2018)、概率邏輯編程(Cerutti等人,2019)、正向推理架構,其中神經網絡的輸出被送入概率邏輯引擎,檢測具有復雜時空特性的事件(Vilamala等人,2019)。
上一節中的三個小情節所產生的目標是,通過創建系統架構,使機器和人類智能體人之間能夠協同合作,在有爭議的環境中獲得可操作的洞察力和預見力,從而應對在MDO中快速利用適應性ISR知識為各聯盟提供決策依據這一挑戰。
在我們早期對CSU的研究中,我們發現需要將來自各聯盟伙伴的人類和機器智能體敏捷地整合到動態和反應的團隊中。我們已經將其正式化為人類-智能體知識融合(HAKF):一種支持這種深度互動的能力,包括可解釋性和可告知性的雙向信息流,從而使人工智能和人類之間進行有意義的溝通(Braines, Preece, and Harborne 2018),如圖5所示。這種HAKF能力支持可解釋性和可講述性自然地成為人類和機器智能體之間的對話過程(Tomsett等人,2018),使AI智能體能夠對復雜的機器/深度學習分類產生的結果提供解釋,并接收修改其模型或知識庫的知識。
圖5:人類-智能體知識融合,提高信心和性能,支持更好的決策。
一個關鍵的要求是在上一節強調的分布式符號/亞符號整合中加入人類互動,并建立各種人類和AI智能體需要掌握的最低限度的共同語言集,以確保特定任務的有效溝通。為了支持動態情境感知收集和信息處理服務背景下的直觀的機器可處理的表述,我們特別關注機器生成的信息的人類可消費性,尤其是在對話式交互的背景下,以及決策者可能缺乏信息科學的深度技術訓練的情況下。這種共同語言必須能夠傳達不確定性和適當的結構,以實現與亞符號層的整合,以及與該領域相關的更傳統的語義特征。我們并不局限于純粹的語言形式,新的視覺或圖表符號,或者其他交流技術,都可以作為解決方案的一部分。
此外,有必要考慮各種自主智能體之間自動談判的情況,其中一些將是人類。同時,人類本身也可以成為學習任務的對象:如果機器智能體對單個人類智能體(或一般的人類智能體)有足夠的了解,可以推斷出建議或變化的影響,他們自己的行為就有可能被推到特定的方向。此外,機器智能體可能需要在人類智能體中找出最適合某項任務的人,而歷史數據可以幫助他們實現這一目標。這種共生的人工智能技術可以用來更有效地與人類互動,起初是通過從人機互動中不斷學習來適應定型行為。
在有爭議的環境中,這種復雜和動態的混合設置特別有風險,容易被利用,因此需要整合不確定性意識和概率能力。所有這些都要在與決策任務和人類用戶的參與相適應的節奏下實現,機器智能體能夠支持實時互動。
在最近的工作中,我們從解釋接受者的角度研究了可解釋性,有六種(Tomsett等人,2018):系統創建者、系統操作者、根據系統輸出做出決定的執行者、受執行者決定影響的決策主體、其個人數據被用于訓練系統的數據主體,以及系統審查者,例如審計師或監察員。基于這個框架,我們提出了一種 "分層 "的方法,通過復合解釋對象為不同的利益相關者提供不同的解釋(Preece等人,2018),該對象將滿足多個利益相關者所需的所有信息打包在一起,并可以根據接收者的特定要求進行解包(例如,通過訪問器方法)。我們認為這樣一個對象是分層的,具體如下。
第1層--可追溯性:基于透明度的模型內部狀態的綁定,所以解釋并不完全是事后的合理化,顯示系統 "做了正確的事情"。
第二層--證明:與第一層相聯系的事后表述(可能是多種模式),提供輸入和輸出特征之間的語義關系,表明系統 "做了正確的事情"。
第三層--保證:與第二層相聯系的事后表述(同樣,可能是多種模式),明確提及政策/本體元素,以使接受者相信系統 "做了正確的事"。
我們考慮了一個密集的城市地形環境,借鑒了(Kaplan等人,2018),其中包括CCT V在內的民用傳感基礎設施得到了聯盟ISR資產的補充。正如(Vilamala等人,2019年)所闡述的那樣,使用活動識別AI/ML服務監測來自公共市場的視頻資料。在閉路電視畫面中突然檢測到爆發了異常的、"暴力 "的身體活動。此時,通過增強的資產互操作性,聯盟ISR系統按需訪問其他傳感方式,以獲得更多關于情況的數據,挖掘最近從市場上收集的音頻數據,這些數據通過聲學傳感器獲得。處理音頻流的相關部分顯示出有節奏的吟唱,與視覺活動融合在一起,表明該活動是該地區特有的無害舞蹈儀式。請注意,該活動不具威脅性的推論構成了情景理解:具有預見性的洞察力。此外,雖然可以想象,當有足夠的數據對活動進行分類時,無害的舞蹈可以通過機器處理來識別,但在(Kaplan等人,2018)中,我們考慮的情況是,識別這種活動需要當地的文化知識,并由人機合作處理:機器將異常的視覺活動,包括來自音頻的額外背景,提請有經驗的人類智能體注意。
我們的分層解釋概念支持 "打包 "三個層次的解釋,以支持本例中人類的自信決策。
就視頻和音頻中的突出特征而言的可追溯性,例如,使用(Hiley等人,2019年)中的技術來區分重要的空間和時間特征(在后者,"暴力 "運動)。
假設可以通過機器處理來推斷活動的意義(洞察力和預見力),那么推斷的理由就很充分;以及
保證反事實已被考慮(無害與攻擊性行動的可能性),可能通過(Kaplan等人,2018)的不確定性意識方法表示。
在本文中,我們將聯盟態勢理解的概念應用于在多領域作戰中實現分層ISR的問題,特別是在人工智能和機器學習服務提供改進的分布式數據分析,以及情報增強--特別是對有保證和可解釋的人工智能的需求--支持改進人機認知的情況下。我們重點關注實現分層ISR愿景的三個要素:人機協作、密集的城市地形分析和增強的資產互操作性,強調在多伙伴聯盟環境下對可解釋的人工智能的需求是如何的關鍵。
我們目前和未來的工作集中在圖2所示的一般問題上:使亞符號AI智能體分享不確定性意識到的見解和知識表示,然后可以傳達給符號AI智能體,同時也使符號AI智能體有能力將見解分享給亞符號AI智能體(即機器對機器的可解釋性)。最終,我們尋求開發技術,使人工智能/語言智能體能夠通過從人機合作活動中不斷學習而與人類協同互動。
未來的美陸軍部隊將需要進行跨域機動(CDM),并且有時需要半獨立地進行部署,同時通信和 GPS 等基礎設施會被中斷或拒絕。機器人和自主系統將在擴大協作決策中機動部隊的作戰范圍、態勢感知和有效性方面發揮關鍵作用。
DEVCOM ARL 專注于發展對作戰人員概念的基本理解和可能的藝術,通過研究,極大地提高基于空中和地面的自主車輛感知、學習、推理、通信、導航和物理能力,以增強和增加在復雜和有爭議的環境中的機動自由。
可擴展、自適應和彈性自主 (SARA) 協作研究聯盟 (CRA) 專注于開發和實驗加速自主移動性和可操作性、可擴展異構和協作行為以及人類智能體團隊的新興研究,以實現自適應和彈性智能系統可以對環境進行推理,在分布式和協作的異構團隊中工作,并做出適時決策,以在復雜和有爭議的環境中實現自主機動。
網絡威脅變得越來越普遍。最近備受矚目的入侵事件表明,秘密的的網絡空間效應如何能夠挑戰21世紀的國際安全戰略格局。每個經濟部門和人類生活的各個方面對數字技術的日益依賴強烈地表明,這一趨勢將繼續下去。北約盟國正以日益強大的網絡安全和防御來應對,特別是當它與軍事系統、平臺和任務相交時。
對提高復原力和穩健性的要求加速了對人工智能技術的探索和采用,即使計算機能夠模仿人類智能的技術,用于網絡防御。深度機器學習(DML)就是這樣一種最先進的技術,它在網絡安全以及許多其他應用領域都表現出了相當大的潛力。深度機器學習可以增強網絡彈性,其防御措施隨著時間的推移隨著威脅的變化而變化,并減少人類專家手動數據分析的總體負擔。深度機器學習可以促進更快的響應,特別是在充分和足夠的訓練下。一些可能的考慮包括在建立或生成數據模型開發中的對抗性樣本。
本技術報告在整合北約范圍內深度機器學習(DML)的網絡防御應用知識方面采取了初步措施。它進一步確定了目前的解決方案和軍事需求之間的差距,并相應地構建了DML在軍事領域有前途的網絡防御應用的追求。研究小組以技術報告的體現為核心,從惡意軟件檢測、事件管理、信息管理、漏洞管理、軟件保障、資產管理、許可證管理、網絡管理和配置管理的角度審查國家標準和技術研究所的安全準則。
該報告研究了DML的復雜效用、實際實施以及公開的挑戰。研究工作組由數據科學、機器學習、網絡防御、建模與仿真和系統工程等領域的專家組成。研究人員和從業人員考慮了數據的聚集、數據的特征、共享數據的需要以及數據模型的共享,或其生成者。這些因素,包括如何處理、訓練、訪問數據,以及相關的技術,如遷移或聯邦學習,也被考慮在內。
網絡威脅越來越先進,對手更具戰略性,可以從世界任何地方表現出威脅。今天的對手擁有資源和時間,只要有時間和資源,就可以輕松地發動破壞性攻擊。
不同格式的數據的可用性和豐富性也有助于為對手創造一種靈活性,如果沒有數據的涌入,這種靈活性是不存在的[1]。由于對手很容易獲得工具和技術,所有形式的大數據的可用性,網絡攻擊達到了前所未有的高度,北約國家必須通過緩解工具和技術來增強其戰略地位,以減輕對軍事系統、平臺和任務的網絡威脅[2]。
緩解技術將包括最新和最偉大的技術,以創造彈性,及時發現和應對攻擊,并在平臺發生任何損害或損害之前恢復。
世界正在變得更加數字化[3],軍隊也不例外。隨著先進工具的出現和技術的數字化,研究人員必須做好準備,研究防御性技術,以防止軍事系統和平臺的破壞和退化。
RTG計劃探索深度機器學習(DML)的應用,以實施和加強軍事戰略網絡地位,并創建一個防御,不僅要解決今天的威脅,還要解決未來可能出現的威脅,如增加的處理能力,先進的工具和數據操作技術。
擬議的 "IST 163 - 網絡防御深度機器學習"活動的主要目標是鞏固全北約在DML和網絡防御領域的知識,確定民用解決方案和軍事需求之間的差距,并與其他北約國家合作,使用數據處理,共享數據和模型,并追求將最有前途的技術和應用轉移到軍事領域,同時堅持標準,確保數據與所選技術相匹配。
RTG致力于發現北約各國的DML技術,揭示數據是如何處理和適合神經網絡的,并確定各國在這些技術中的差距,以比較最佳的解決方案,這些解決方案有可能被其他可能沒有潛力或技術不先進的國家采用。
這項研究為各國創造了一個機會,以全面審視DML在網絡防御方面的能力和差距,并研究以最先進的DML方法加強網絡防御的手段。
在為DML創建數據時,來自不同背景的研究人員將共同支持反映數據效用和模型的最佳情況的用例,并努力確保數據最適合于研究。考慮到來自多種背景的擬議數據的動態,對數據的整理和消毒以適應模型,將創造一個機會,看到不同類型的數據對DML模型的各方面作用。
將特別關注術語與北約其他倡議中的相關活動的一致性。因此,它將面向來自人工智能、機器學習、建模和模擬以及系統工程等領域的多學科受眾。
工作組的工作將集中在機器學習上,包括深度學習方面。
網絡防御影響軍事行動的所有領域,包括通信、行動和后勤。隨著威脅的復雜化和對手變得更加創新,傳統的基于簽名的檢測威脅的方法很容易被規避。現有的防御措施無法跟上新的漏洞、漏洞和攻擊載體出現的規模。顯然,有必要開發自動和數據驅動的防御系統,其模型適合于軍事系統和聯盟操作環境。
減少數據分析的負擔和擴展到多樣化和聯合環境的網絡防御技術,現在和將來都對軍事行動相當重要。在這一類別中,一個有前途的領域是機器學習(ML)的應用,即研究和開發沒有預編程指令的模式識別方法來解釋數據。Theobold[1]明確闡述了機器學習的效用:
在20世紀上半葉的20年里,美國的武裝部隊是數字計算機發展的唯一最重要的驅動力[2]。隨著商業計算機行業開始形成,武裝部隊和國防工業成為其主要市場。在其發展過程中,人類對所有的軟件進行編程,并作為計算和算法進步的主要驅動力。面向對象的編程使軟件可以重復使用,并擴大了其規模。后來,互聯網使軟件民主化。隨著深度機器學習(DML)的出現,這一格局正準備再次發生根本性的轉變,這是ML的一個子集。DML技術通過訓練描述輸入和輸出之間關系的模型,使計算機能夠 "編寫 "自己的軟件。這一突破已經在加速每個行業的進步。研究表明,深度學習將在未來20年內使全球股票市場增加近50%[3]。
網絡防御也不例外,這是個趨勢。20世紀后半葉,社會和軍事應用中越來越多地采用數字技術,而21世紀頭幾十年的常規數據泄露事件,說明了一個有彈性的網絡空間的重要性。人工智能(AI)的應用,包括用于網絡防御的ML和DML,已經在國防研究論壇上獲得了相當多的曝光[4]、[5]、[6]、[7]、[8]、[9]、[10]、[11]。這些應用具有相當大的軍事前景,特別是涉及到漏洞發現、威脅識別、態勢感知和彈性系統。
網絡防御是北約合作安全核心任務的組成部分[12]。2002年,盟國領導人首次公開承認需要加強防御網絡攻擊的能力[13]。此后不久,在2003年,他們建立了北約計算機事件響應能力(NCIRC),這是一個由 "第一響應者 "組成的團隊,負責預防、檢測和響應網絡事件。從那時起,網絡領域的重要性和關注度都在不斷增加。2008年,北約建立了合作網絡防御卓越中心,目前由25個贊助國組成,其任務是加強北約盟國和合作伙伴的能力、合作和信息共享[14]。2014年,盟國領導人宣布,網絡攻擊可能導致援引北約創始條約中的集體防御條款。2016年,盟國承認網絡空間是軍事行動的一個領域。盟國領導人進一步承諾,將加強其國家網絡和基礎設施的復原力作為優先事項,并申明國際法適用于網絡空間[15]。雖然北約的主要重點是保護聯盟擁有和運營的通信和信息系統,但它規定了簡化的網絡防御治理,協助盟國應對網絡攻擊,并將網絡防御納入作戰計劃,包括民事應急計劃。北約清楚地認識到,其盟國和合作伙伴受益于一個可預測和安全的網絡空間。
對北約安全的網絡威脅越來越頻繁,越來越復雜,越來越具有破壞性和脅迫性。聯盟必須準備好保衛其網絡和行動,以應對它所面臨的日益復雜的網絡威脅。因此,盟軍的理論指出,網絡防御是影響未來軍事力量平衡的六個關鍵因素之一[16]。北約的政策進一步將網絡防御的追求定格在六個關鍵目標上[17]。
將網絡防御的考慮納入北約的結構和規劃過程,以執行北約的集體防御和危機管理的核心任務。- 重點關注北約及其盟國的關鍵網絡資產的預防、恢復和防御。
發展強大的網絡防御能力,集中保護北約自己的網絡。
為對北約核心任務至關重要的國家網絡的網絡防御制定最低要求。
提供援助,以實現最低水平的網絡防御,減少國家關鍵基礎設施的脆弱性。
與合作伙伴、國際組織、私營部門和學術界接觸。
最近的研究闡述了這些目標是如何實現的[18]。盡管其成員負責保護自己的網絡空間部分,但北約在促進互動、保持態勢感知以及隨著危機或沖突的發展將資產從一個盟友或戰術情況轉移到另一個盟友方面發揮著關鍵作用。它進一步倡導多國部隊之間的高度互操作性,包括聯合收集、決策和執行盟國在網絡空間的行動要素[19]。2013年,北約防御規劃進程開始向其盟國分配一些集體的最低能力,以確保一個共同的基線,包括國家網絡應急小組(CERT)、加密、教育、培訓和信息共享。在網絡空間以及其他領域,北約在建立國際規范和行為準則方面發揮了不可或缺的作用,促進了對不可接受的行為、譴責、制裁和起訴的明確性。
美國國家網絡戰略[20]宣稱有責任捍衛美國利益免受網絡攻擊,并威懾任何試圖損害國家利益的對手。它進一步確認了為實現這一目標而開發的網絡空間行動能力。美國軍事理論將網絡行動定義為一系列行動,以防止未經授權的訪問,擊敗特定的威脅,并拒絕對手的影響[21]。在本報告的背景下,有兩個關鍵功能非常突出。
網絡空間安全(Cybersecurity),是指在受保護的網絡空間內采取的行動,以防止未經授權訪問、利用或破壞計算機、電子通信系統和其他信息技術,包括平臺信息技術,以及其中包含的信息,以確保其可用性、完整性、認證、保密性和不可抵賴性。
而網絡空間防御(Cyber Defence)則是指在受保護的網絡空間內采取的行動,以擊敗已經違反或有可能違反網絡空間安全措施的特定威脅,包括檢測、定性、反擊和減輕威脅的行動,包括惡意軟件或用戶的未經授權的活動,并將系統恢復到安全配置。
盡管有區別,但網絡安全和網絡防御都需要對系統和安全控制進行廣泛的持續監測。聯合軍事理論進一步承認了整合能力的挑戰,其中包括。
民族國家的威脅,可以獲得其他行為者無法獲得的資源、人員或時間。一些國家可能利用網絡空間能力來攻擊或進行針對美國及其盟友的間諜活動。這些行為者包括傳統的對手;敵人;甚至可能是傳統的盟友,并可能外包給第三方,包括幌子公司、愛國的黑客或其他代理人,以實現其目標。
非國家威脅包括不受國家邊界約束的組織,包括合法的非政府組織(NGO)、犯罪組織和暴力極端主義組織。非國家威脅利用網絡空間籌集資金,與目標受眾和對方溝通,招募人員,計劃行動,破壞對政府的信任,進行間諜活動,并在網絡空間內直接開展恐怖行動。他們也可能被民族國家用作代理人,通過網絡空間進行攻擊或間諜活動。
個人或小團體的威脅是由可獲得的惡意軟件和攻擊能力促成的。這些小規模的威脅包括各種各樣的團體或個人,可以被更復雜的威脅所利用,如犯罪組織或民族國家,往往在他們不知情的情況下,對目標實施行動,同時掩蓋威脅/贊助者的身份,也創造了合理的推諉性。
事故和自然災害可以擾亂網絡空間的物理基礎設施。例子包括操作失誤、工業事故和自然災害。從這些事件中恢復可能會因為需要大量的外部協調和對臨時備份措施的依賴而變得復雜。
匿名性和歸屬性。為了啟動適當的防御反應,網絡空間威脅的歸屬對于被防御的網絡空間以外的任何行動都是至關重要的,而不是授權的自衛。
地域。防御性反應的累積效應可能超出最初的威脅。由于跨區域的考慮,一些防御行動被協調、整合和同步化,在遠離被支持的指揮官的地方集中執行。
技術挑戰。使用依賴利用目標中的技術漏洞的網絡空間能力可能會暴露其功能,并損害該能力對未來任務的有效性。這意味著,一旦被發現,這些能力將被對手廣泛使用,在某些情況下,在安全措施能夠被更新以考慮到新的威脅之前。
私營企業和公共基礎設施。國防部的許多關鍵功能和行動都依賴于簽約的商業資產,包括互聯網服務提供商(ISP)和全球供應鏈,國防部及其部隊對這些資產沒有直接的權力。
全球化。國防部的全球業務與其對網絡空間和相關技術的依賴相結合,意味著國防部經常從外國供應商那里采購任務所需的信息技術產品和服務。
緩解措施。國防部與國防工業基地(DIB)合作,以加強駐扎在DIB非機密網絡上或通過DIB非機密網絡的國防部項目信息的安全性。
2018年國防戰略[22]對美國軍隊在各個領域--空中、陸地、海上、太空和網絡空間--都表示嚴重關切。它進一步承認,當前的國際安全格局受到快速技術進步和戰爭性質變化的影響。為了應對這一挑戰,美國國防部確定了現代化的優先事項,其中包括人工智能/ML、自主性和網絡。網絡是一個獨特的作戰領域,對需要加強指揮、控制和態勢感知以及自主行動的軍事行動來說,具有重大挑戰和潛在的飛躍能力。
2019年聯邦網絡安全研究與發展戰略計劃[23]闡明了用人工智能(AI)模型、算法以及其他領域的人與AI互動來增強網絡安全研究與發展(R&D)的必要性。將人工智能技術納入網絡自主和半自主系統,將有助于人類分析員在自動監測、分析和應對對手攻擊方面以更快的速度和規模運作。這方面的應用包括部署智能自主代理,在日益復雜的網絡戰斗空間中檢測、響應和恢復對手的攻擊。預期成果包括預測固件、軟件和硬件中前所未有的安全漏洞;根據學習到的互動歷史和預期行為,從攻擊場景中持續學習和建模;利用通信模式、應用邏輯或授權框架,防御針對人工智能系統本身的攻擊;半/完全自主的系統減少了人類在網絡操作中的作用。
2020年,美國人工智能國家安全委員會[24]強調了人工智能技術對經濟、國家安全和人類福祉的潛在影響。它指出,美國的軍事對手正在整合人工智能概念和平臺,以挑戰美國幾十年來的技術優勢。人工智能加深了網絡攻擊和虛假信息運動帶來的威脅,我們的對手可以利用這些威脅來滲透社會,竊取數據,并干擾民主。它明確宣稱,美國政府應該利用人工智能的網絡防御措施,以防止人工智能的網絡攻擊,盡管它們本身并不能保衛本質上脆弱的數字基礎設施。
根據北約合作網絡防御卓越中心的數據,至少有83個國家已經起草了國家網絡安全戰略[25]。此外,所有30個北約成員國都發布了一份或多份治理文件,反映了保衛網絡環境的戰略重要性。這種堅定的姿態源于過去20年里發生的越來越普遍和有影響的網絡攻擊。在本節中,我們研究了影響北約盟國的高調入侵的簡短歷史,培養了當前的氣氛,并強調了對更好的網絡保護、威懾、檢測和反應技術的需求。
2003年,一系列協調攻擊破壞了美國的計算機系統。這些攻擊被美國政府命名為 "泰坦雨",持續了三年,導致政府機構、國家實驗室和美國國防承包商的非機密信息被盜。隨后的公開指控和否認,源于準確檢測和歸因于網絡攻擊的困難,成為網絡空間中新出現的國際不信任的特征。
2007年,愛沙尼亞成為一場持續二十二天的政治性網絡攻擊活動的受害者。分布式拒絕服務攻擊導致許多商業和政府服務器的服務暫時下降和喪失。大多數的攻擊是針對非關鍵性服務,即公共網站和電子郵件。然而,有一小部分集中在更重要的目標,如網上銀行和域名系統(DNS)。這些攻擊引發了一些軍事組織重新考慮網絡安全對現代軍事理論的重要性,并導致了北約合作網絡防御卓越中心(CCDCOE)的建立,該中心在愛沙尼亞的塔林運作。
2008年,一系列的網絡攻擊使格魯吉亞組織的網站失效。這些攻擊是在一場槍戰開始前三周發起的,被認為是一次與主要作戰行動同步的協調的網絡空間攻擊。
2015年,俄羅斯計算機黑客將目標鎖定在屬于美國民主黨全國委員會的系統上。這次攻擊導致了數據泄露,被確定為間諜行為。除了強調需要加強網絡復原力外,對這一事件的反應突出了采取行動打擊虛假信息和宣傳行動的必要性。
2017年,WannaCry勒索軟件感染了150個國家的20多萬臺電腦。這種不分青紅皂白的攻擊,由利用微軟視窗操作系統漏洞的勒索軟件促成,鎖定數據并要求以比特幣支付。在幸運地發現了一個殺毒開關后,該惡意軟件被阻止了,但在它導致工廠停止運營和醫院轉移病人之前。
2018年,挪威軍方和盟國官員證實,俄羅斯在歐洲高北地區舉行的三叉戟接點演習中,持續干擾GPS信號,擾亂了北約的演習[26]。"使用天基系統并將其拒絕給對手的能力是現代戰爭的核心"[27]。在過去幾十年里,軍事行動對天基資產的依賴性越來越大,天基資產越來越成為網絡攻擊的理想目標。俄羅斯等國都將電子戰、網絡攻擊和電磁戰斗空間內的優勢作為在未來任務中取得勝利的戰略的一部分。這些國家的現有理論突出了一個重點,即防止對手的衛星通信系統影響其作戰效率。衛星依賴于網絡技術,包括軟件、硬件和其他數字組件。空間系統對于在空中、陸地、海上、甚至網絡領域進行的行動中提供數據和服務是至關重要的。對衛星控制系統或帶寬的威脅對國家資產和目標構成了直接挑戰,并促進了對緩解措施的需求,以實現這些系統的彈性。
2020年,來自亞美尼亞和阿塞拜疆的黑客在納加諾-卡拉巴赫戰爭期間以網站為目標。錯誤信息和舊事件的視頻被當作與戰爭有關的新的和不同的事件來分享。新的社交媒體賬戶創建后,關于亞美尼亞和阿塞拜疆的帖子激增,其中許多來自真實用戶,但也發現了許多不真實的賬戶。這一事件強調了社會網絡安全作為一個新興研究領域的出現[28]。
2020年,一場重大的網絡攻擊通過破壞流行的網絡監控工具Solarwinds的軟件供應鏈滲透到全球數千家機構。據報道,由于目標的敏感性和高知名度,以及黑客進入的時間之長,隨后發生的破壞程度是美國所遭受的最嚴重的網絡間諜事件之一。在被發現的幾天內,全世界至少有200個組織被報告受到了攻擊。
越來越多的趨勢是網絡空間發展的特點。網絡技術在我們生活的各個方面發揮著越來越大的作用。這一趨勢也延伸到了軍事沖突。對網絡技術的日益依賴將帶來新的脆弱性,并侵蝕傳統網絡防御的界限。隨著基礎技術組件和界面的成熟,網絡空間和其他領域,包括關鍵基礎設施、軍事武器系統和綜合生物、物理和量子系統之間的交叉將越來越重要。在本節中,我們確定了將影響網絡空間演變的技術和非技術趨勢,以及ML在其防御應用中的基本效用。
硬件、軟件和協議的可編程性和復雜性日益增加。可編程性的增加帶來了快速的開發和交付窗口,但每一個新的代碼庫都會進一步引入新的漏洞。復雜性的增加導致了未使用的代碼路徑,即軟件臃腫,從而維持了不良的攻擊路徑。第三方和開源硬件和軟件的存在越來越多,這使得快速的原型設計成為可能,但也容易受到不透明的供應鏈和來源損失的影響。
自主性的應用和加速的決策循環是網絡沖突的方向和速度的特征。人類將在機器智能中依賴大數據、增加的計算能力和新型計算算法的匯合。日益增長的網絡速度需要更多地依賴預防妥協、復原力以及與人類專家的最佳人機合作。同時,網絡空間越來越不可信,新興的安全架構規定,需要根據資產和信息對任務背景的重要性來保護它們[29]。
網絡空間的應用范圍越來越多樣化。隨著邊緣設備保持通電和可訪問性,以及低尺寸、低重量和電源設備連接的應用增長,無處不在的連接將增加軍事上對網絡空間的依賴。與網絡物理系統(即物聯網)一樣,新興的生物、物理和量子應用將需要與網絡空間的新接口。這些接口將為網絡防御創造新的機會和挑戰,如儀器和傳感、側信道攻擊和形式驗證。
機器學習(ML)將繼續發展其與網絡空間技術和網絡防御應用的多層面關系。一方面,ML可以增強幾乎所有的網絡技術及其應用(即微電子、網絡、計算架構等的設計、開發和測試)。另一方面,網絡技術的進步(如張量處理單元、量子計算機)可以增強ML能力。鑒于在大量數據中進行模式識別的基本挑戰,ML可以大大改善網絡空間的能力和彈性。
互聯網用戶的數量囊括了世界一半以上的人口[30]。盡管有跡象表明,由智能手機出貨量下降和2020年全球大流行引起的近期增長放緩,但創新繼續推動產品改進。收集的數字數據的迅速崛起是那些增長最快的公司成功的關鍵,通常是通過數據挖掘和豐富的上下文增強,幫助個性化的產品和服務。這導致了對濫用數據、用戶隱私和準備推動市場變化或監管的問題內容的擔憂。隨著數字系統變得越來越復雜,數據越來越豐富,任務也越來越重要,利用的機會和意愿也越來越大。越來越多地,新興技術的網絡安全影響被納入國際外交和國防考慮。最近的例子包括脆弱性平等進程[31]、網絡空間信任與安全巴黎呼吁[32]和算法權利法案[33]。
戰略性的全球需求信號,包括氣候變化和資源短缺,可能會產生新的領土野心和聯盟,導致政治格局急劇變化。例如,由天基太陽能技術產生的電力可能被傳送到地面,這就需要新的關鍵基礎設施和網絡空間的全球存在點。同樣,由自然資源短缺引起的人口變化可能會改變政治和國家安全格局。這些變化將引入新的關鍵基礎設施,并對網絡空間產生依賴性。
軍事行動已經嚴重依賴網絡空間。這種依賴性是一個可以被利用來獲得不對稱優勢的弱點[34]。數字地形的丟失、退化、損壞、未經授權的訪問或利用為對手提供了巨大的優勢,并對軍事目標構成了威脅。近鄰的行為者將繼續試圖破壞網絡空間或反擊進攻性網絡行動。進攻性網絡能力的民主化和擴散將進一步為非近鄰的競爭對手提供具體的優勢。越來越多地,一個國家的能力和影響力可以通過其將消費電子產品武器化的能力來衡量,特別是當這些商業開發的系統將成為軍事應用的基礎。因此,網絡攻擊的范圍、頻率和影響都將增長。
同時,全球化將促使對軍事行動的標準和責任的審查增加。政治和公眾對問責制的要求將因戰爭的日益不透明而受到挑戰。例如,在物理領域開展的威懾行動需要精心策劃的敘述和信息傳遞,與24小時的新聞周期保持一致。然而,進攻性的網絡行動準備實現更加隱蔽的效果,不容易被觀察到或歸因。網絡戰工具已將網絡空間轉化為一個灰色地帶的戰場,在這里,沖突低于公開的戰爭門檻,但高于和平時期。
作戰將越來越多地將網絡與傳統領域(如陸地、海洋、空中、太空)結合起來。戰爭學說、國際條約和一般法律將隨著力量平衡、現有技術和區域沖突的變化而反應性地發展。進攻性網絡工具的民主化將對抗動能領域作戰的傳統優勢。前所未有的連通性和日益增長的民族主義將推動網絡空間繼續被用于不對稱的優勢。世界范圍內的社會動蕩所助長的虛假信息和影響運動將可能蔓延到網絡空間。盡量減少外部影響、執行數據隱私和管理數字內容的愿望增強,可能會推動互聯網的巴爾干化。
這在俄羅斯宣布將其國家部分從全球互聯網中關閉并成為 "數字主權",同時在網絡空間中追求決定性的軍事優勢中已經得到證明。在這個目標中,包括為人工智能系統建立信息安全標準。這樣的新技術應用很可能會影響俄羅斯選擇的實現其目標的方式。例如,Kukkola等人[35]斷言,人工智能可能為俄羅斯提供一個機會,以靈活的方式定義其數字邊界,反映普遍的意見和忠誠度,而不是地理位置。俄羅斯領導層進一步斷言,領導人工智能的國家將是 "世界的統治者",表明這種進步將是變革性的,其影響尚未被完全理解。
傳統的網絡安全和網絡防御方法依賴于人工數據分析來支持風險管理活動和決策。盡管這些活動的某些方面可以自動化,但由于其簡單性和對問題領域的有限理解,自動化往往是不足的。在這一章中,我們將調查DML應用的文獻,這些應用可以幫助信息安全的持續監控,用于美國國家標準研究所定義的一組安全自動化領域[1]。我們這樣做是為了對最先進的研究現狀、實際實施、開放的挑戰和未來的愿景建立一個結構化的理解。通過這些見解,我們指出了DML在整個網絡安全領域應用的一系列挑戰,并總結了我們的發現。
在不同的安全自動化領域中,我們已經確定了主題和建議未來研究的領域。其中一個反復出現的主題似乎是缺乏實際的實現,也就是說,缺乏高技術準備水平(TRL)。我們懷疑這可能是由于許多不同的原因,例如,未滿足性能預期、數據不足、不合格的深度學習架構、對促進可擴展的DML應用的通用數據存儲和分析解決方案缺乏共識,或研究的初級階段。通過我們的初步調查,我們強調了未來的研究方向和/或阻礙每個安全自動化領域的進一步進展的問題。
惡意軟件檢測。DML應用需要處理惡意軟件如何隨著時間的推移改變其統計屬性,例如,由于對抗性方法(概念漂移)。還有一個問題是關于數據共享,以適應不太可能被釋放到野外的高級惡意軟件,以及一般的數據訪問。此外,還需要研究如何定義能夠代表軟件的新特征,以便進行檢測和歸屬。
事件管理。DML與現有安全控制的整合不足,限制了DML應用的開發程度。在操作化、管理和例行程序方面,以促進標記數據的收集和深度學習模型的開發。
信息管理。DLP系統可以與網絡和終端系統緊密相連,需要對系統有一個深刻而廣泛的了解。在當前的IT安全趨勢下,加強數據保密性,這樣的系統正面臨著數據可訪問性的降低。這絕不是這個領域特有的問題,但卻使DML應用的開發變得復雜。因此,研究機會是存在的,例如,通過與底層操作系統更深入的整合來恢復數據的可訪問性。然而,也有一些課題需要研究描述任何給定數據是否包含敏感信息的條件,以及相同數據的變化如何被識別,而不考慮例如編碼方案。以及當所需的數據在沒有額外分析的情況下無法直接獲得時,如何表示模糊或開放的規則并驗證其合規性。
脆弱性管理。缺乏共識和對公共和足夠大的數據集的訪問,已經被認為是漏洞發現領域的一個挑戰。然而,有一些嘗試可以減少這種依賴性,通過部署預先訓練好的語言模型,例如,對軟件掃描進行模糊測試,以檢測漏洞并協助修補漏洞。我們預見了兩個可以進一步研究的方向:改進深度學習架構或改進數據集及其特征表示。
軟件保證。盡管支持DML應用的技術存在于相關領域,如惡意軟件檢測和漏洞管理。我們還沒有發現在這個領域內研究問題的努力,但當多個DML應用能夠協同工作時,我們期待這種發展。
資產管理。隨著即將到來的資產新浪潮,被稱為 "工業4.0"。其中包括制造業的自動化和數據交換的趨勢,以及移動設備、物聯網平臺、定位設備技術、3D打印、智能傳感器、增強現實、可穿戴計算和聯網的機器人和機器。我們認為,DML的應用可以并將有助于這種未來資產管理的某些方面,然而,哪些方面仍然是一個開放的研究問題,開放的文獻表明,需要探索行業特定的使用案例。
許可證管理。考慮到軟件資產管理(SAM)考慮到許可問題,這里也適用與資產管理相同的未來研究方向。- 網絡管理。移動目標防御(MTD)是一個新興的研究領域,將大大受益于人工智能驅動的方法。
配置管理。我們希望與MTD研究相關的技術可以使配置管理能力受益。
補丁管理。我們已經確定了解決某些問題的研究,如:以風險意識的方式動態調度補丁,自動漏洞修復分析,以及在軟件補丁尚未可用的情況下定位漏洞緩解信息。然而,沒有人試圖將這些納入一個單一的模型,從而創建一個完整的管道。這可能是未來研究中需要探索的一個領域。
最后,我們沒有發現任何證據表明,任何安全領域在DML應用方面的研究都已經完成。所有的領域都有尚未探索的研究領域,這些領域在未來可以并且有望經歷重大的研究。
惡意軟件是指在所有者不知情或不同意的情況下,故意設計成滲入、修改或破壞計算機系統的任何惡意軟件。惡意軟件具有多種形式的數字內容,包括可執行代碼、腳本和嵌入互動文件中的活動對象。下面列舉了常見的惡意軟件類型及其特點。
安全分析師和惡意軟件開發者之間的斗爭是一場持續的戰斗。最早記錄在案的病毒出現在1970年代。今天,惡意軟件的復雜性變化很快,利用不斷增加的創新。最近的研究強調了惡意軟件在促進網絡安全漏洞方面的作用,注意到惡意軟件的趨勢是以經濟利益為動機的目標有效載荷,并提供證據斷言互聯網連接設備的擴散將促進惡意軟件交易[2],[3]。
惡意軟件檢測是指識別終端設備上是否存在惡意軟件,以及區分特定程序是否表現出惡意或良性特征的過程。傳統的基于簽名的方法來識別和描述惡意軟件越來越不利,因為微不足道的改變使惡意軟件可以逃避普通的檢測方法[4], [5]。基于簽名的方法本質上是基于正則表達式的模式匹配,從觀察到的惡意軟件的經驗知識中獲得。從已知的惡意軟件樣本中提取的獨特字節串建立了一個簽名數據庫,通常由終端保護供應商的訂閱服務提供。當反惡意軟件程序收到要測試的文件時,它將文件的字節內容與數據庫中的簽名進行比較。只要惡意軟件不采用規避措施,這種方法是有效的,而且計算效率高(即類型1錯誤低)。然而,隨著簽名的數量和采用棘手的規避措施的增加,模式匹配的計算成本變得很高,而且越來越無效。啟發式方法在一定程度上通過規則解決了這一挑戰,但同時也增加了假陽性率。簽名和啟發式方法的脆弱性是一個長期公認的問題,它促進了對替代和補充技術的研究。
這些補充技術通常是一個艱巨的過程,需要詳盡地結合軟件逆向工程、源代碼調試、運行時執行分析以及網絡和內存取證。靜態分析技術可以識別表面特征,如加密哈希值、大小、類型、標題、嵌入內容和軟件打包器的存在。靜態分析工具包括源代碼和字節碼分析器、數字簽名驗證工具和配置檢查器。動態分析技術可以識別運行時的特征,如對文件系統、操作系統、進程列表、互斥因子和網絡接觸點的改變。動態技術需要大量的專業工具,包括解包器、調試器、反匯編器、解碼器、模糊器和沙箱,通過這些工具可以安全地執行、檢測和觀察可疑文件的行為。許多擁有強大信息安全計劃的軍事組織采用了一種混合方法,通過一系列的技術和工具對可疑的未知文件進行分流和檢查[6]。
盡管采取了全面的方法,但許多工具都有局限性,沒有一種技術可以自信地保證軟件的出處和衛生。例如,軟件打包器的存在和其他混淆文件內容的伎倆阻礙了靜態分析方法。同樣地,通過沙盒進行動態分析的實施成本很高,往往缺乏取證的可追溯性,而且很容易被虛擬的殺戮開關所顛覆,這些開關會對執行環境進行檢測。惡意軟件發現的ML應用可以追溯到20年前。早期的方法依賴于特征向量,如ASCII字符串、指令、n-grams、頭域、熵和動態鏈接庫的導入,這些都是從可執行文件中提取的。這些方法產生了不同的結果。雖然提供了巨大成功的跡象和顯著的準確性,但它們最終缺乏可擴展性,未能跟上不斷變化的威脅,因此必須繼續使用傳統的、精確的簽名。惡意軟件創建和發現的對抗性確保了對手一旦意識到用于識別其代碼的特征就會采用新技術。因此,由于缺乏暗示惡意的明顯或自然特征,這些技術被證明具有局限性。
事件管理包括監測工具和技術,并在必要時對網絡或系統中觀察到的事件作出反應。如果這些事件表明存在惡意或有問題的活動,則可稱為 "警報 "或 "警告"。它們通常被記錄在記錄一個組織的周邊事件的日志中。有大量的工具可以被認為是這個領域的一部分,但我們特別考慮兩個。安全信息和事件管理(SIEM)系統和入侵檢測系統(IDS)。前者致力于通過聚集來自多個安全控制的日志來實現分析。后者部署在戰略位置,分析本地系統或網絡的日志。
數據的分類是軍事領域的一個標準要求。傳統上,紙質文件被標記為 "非機密 "或 "機密 "等標簽,用戶必須遵循嚴格的規定以確保所需的保密性。這種基于紙張的系統的一個特性是文件和其分類之間的直接聯系,因為它是文件的一部分。文件分類的元信息不能與文件本身分開。這在數字環境中不能以同樣的方式實現,因為通常很容易將分類數據與其元數據分開,從而將其分類分開。一些系統試圖保證這種不可分割的聯系。然而,它們只限于邊緣情況。在實踐中,數據被儲存在無數的系統中,被轉移、改變、轉換,并使用難以計數的格式。一些例子是。
以PDF、Office Open XML或純文本等辦公格式存儲的文本文件。
以簡單格式存儲的圖像,如BMP(位圖圖像文件格式)或JPEG;以及
以WAVE或MP3格式存儲的音頻數據。
這些格式中有些提供受保護的元數據,有些則是除了信息之外沒有任何東西的普通格式。
本節重點討論一種通常被稱為數據丟失預防/數據泄漏預防(DLP)的一般方法,它可以處理任意數據。這樣的DLP系統會分析應用于數據的用戶行為(例如,通過電子郵件發送文件或打印文件)是否被給定的規則集所允許。元數據,如分類,可以緩解這一過程,但(在理論上)不是必需的。我們可以把這樣的DLP形式化為一個決策任務,我們要決定一個給定的行動a是否可以按照規則r應用于一個文件d。在白名單方法中,我們把對數據的操作限制在允許的規則中。其他的都是禁止的。黑名單方法則與此相反。除非明確禁止,否則一切都被允許。這兩種方法在網絡安全中都很常見。
我們可以區分兩個主要的系統設計。端點解決方案的工作方式類似于防病毒(AV)。它們監測特定設備上的活動。端點解決方案可以在訪問時以未加密的形式訪問數據(也稱為 "使用中的數據")或主動搜索系統中的數據(也稱為 "靜態數據"),這樣,主要的挑戰是對給定的數據進行分類并應用政策,例如,阻止分類文件被打印或通過不安全的渠道或不受信任的目的地傳輸。網絡解決方案監測數據交換,也被稱為 "運動中的數據"。因此,它們不能在特定的主機上執行規則,而是限制信息交流。網絡解決方案面臨的一個共同問題是,越來越多的網絡流量被端對端加密,因此監測系統無法讀取。介于上述兩種解決方案之間的第三類是基于云的解決方案,其中DLP是對存儲在基于云的系統中的數據進行強制執行。基于云的解決方案似乎非常特別,但它們與端點解決方案相似,因為它們可以在其云中的 "本地 "數據上操作,并與網絡解決方案相似,因為它們可以監測流量。然而,終端可能會在云中存儲加密的數據,這樣云系統可能會受到對未加密數據的較少訪問。
DLP系統面臨以下挑戰:
1)數據獲取。DLP必須訪問數據本身,以分析是否允許某個行動。這對基于網絡的解決方案來說變得越來越復雜。
分析數據。DLP系統必須 "理解 "并對內容進行分類。這意味著,他們必須支持廣泛的不同文件類型。
表示規則。規則是決定是否可以對給定的數據采取某種行動所必需的。對于一些規則,如 "不允許轉移標記為機密的文件",規則的表示是直接的。然而,"模糊 "規則要難得多。例如,"不允許轉讓軍事地點的圖片",因為沒有明確的定義,一張圖片是否包含軍事地點。
DML可以應用于所有挑戰,但分析數據是最明顯的挑戰,將在 "當前研究 "中簡要討論。
美國家安全系統委員會(CNSS)詞匯表第4009號將漏洞定義為信息系統、系統安全程序、內部控制或實施中的弱點,可被威脅源利用或觸發[41]。軟件漏洞是指在軟件代碼中發現的可被攻擊者利用的安全缺陷、小故障或弱點[42]。
漏洞管理是識別、分類、補救和緩解漏洞的循環做法[43]。美國國家標準與技術研究所(NIST)將漏洞管理能力定義為一種信息安全持續監控(ISCM)能力,它可以識別設備上的漏洞,這些漏洞很可能被攻擊者用來破壞設備,并將其作為一個平臺,將破壞延伸到網絡上[44]。漏洞管理的目的是確保軟件和固件漏洞被識別和修補,以防止攻擊者破壞一個系統或設備,而這又可能被用來破壞其他系統或設備。
美國家安全系統委員會[59]將軟件保證定義為:軟件按預期功能運行,并且在整個生命周期內沒有故意或無意設計或插入的漏洞的信心水平[59]。NASA技術標準8739.8A中的定義使用了類似的措辭[60]。
軟件保證領域與其他領域相聯系,特別是與漏洞管理領域相聯系,涉及到漏洞掃描和發現,但也涉及到惡意軟件檢測。
網絡安全的最佳實踐需要對構成信息環境的數字資產進行說明[1], [64], [65]。資產管理是指組織維護硬件、軟件和信息資源清單的做法,長期以來被認為是強大的網絡安全態勢的一個組成部分[66]。雖然傳統上是通過配置管理、網絡管理和許可管理的一些工具組合來完成的,但云計算和面向服務的技術的擴散已經導致了更新的解決方案。例如,信息技術資產管理(ITAM)、信息技術服務管理(ITSM)和軟件資產管理(SAM)工具,提供了對技術投資的商業價值核算和最大化的洞察力[67], [68]。
這些解決方案的需求和效用可以通過其需求來描述。獨立評估顯示,ITAM、ITSM和SAM工具的全球市場價值每年在10億至50億美元之間,并列舉了二十多家提供軟件工具或管理服務的技術供應商[69], [70], [71]。這些解決方案對設備、軟件,或者在云服務的情況下,對云服務提供商的接口進行檢測。他們進一步提供工作流程,將資產分配給業務角色和功能。盡管可用的儀器和工作流程功能具有可擴展性,但這些工具的共同特點是能夠感知、查詢和解釋它們所監測的資產的本地數據。更明顯的是,它們作為一種手段,支持最終由人類強加的手工業務流程。
正是通過這一視角,深度學習對資產管理的破壞可以得到最好的實現。現有的工具為監督業務功能的操作員提供信息。雖然它們的實施和有效使用可以幫助減輕安全風險,但它們要求其操作者指定一套配置參數。例如,SAM工具要求其操作者配置如何解釋軟件許可條款和產品使用權。這些工具通過商業智能儀表盤和工作流程建議提供了一定程度的自動化,但由于需要調整,這可能會增加整個解決方案的復雜性,這與直覺相反。
許可證管理工具可以控制軟件產品的運行地點和方式。它們在代碼中捕獲許可協議條款,自動收集軟件使用情況,并計算出成本影響,幫助優化軟件支出。當被軟件供應商采用并集成到他們的產品中時,它們有助于遏制軟件盜版,并提供量身定制的許可功能(例如,產品激活、試用許可、訂閱許可、浮動許可)。當被最終用戶組織采用時,它們有助于遵守軟件許可協議。許可證管理功能經常出現在SAM工具中。
網絡管理工具包括主機發現、庫存、變更控制、性能監控和其他設備管理功能。網絡管理工具通常與資產和配置管理工具的能力相重疊,并增加了便于設備監控和配置的功能。網絡管理同樣包括組織邊界內的那些系統,但為了管理云服務,可能會超出其傳統的范圍。事實上,軟件、網絡和虛擬化技術的爆炸性增長和采用已經推動了多個市場提供一系列屬于網絡管理的工具。
配置管理工具允許管理員配置設置,監控設置的變化,收集設置狀態,并根據需要恢復設置。配置管理跟蹤提供服務的組件之間的關系,而不是資產或網絡本身。管理信息系統和網絡組件之間發現的配置是一項艱巨的任務。系統配置掃描工具提供了一種自動化的能力來審計目標系統,并評估與安全基線配置的一致性。身份和賬戶配置管理工具使一個組織能夠管理身份憑證、訪問控制、授權和權限。身份管理系統還可以實現和監控基于身份憑證的物理訪問控制。軟件配置管理工具跟蹤和控制源代碼和軟件構建之間的變化。與其他安全自動化領域類似,深度學習的應用趨勢表明,正在從人類管理軟件系統向計算機管理軟件系統本身轉變。
補丁管理是指識別、定位和應用補丁到一套管理的軟件的過程,通常是在一個企業環境中。補丁通常以安全為導向,旨在修復軟件或固件的漏洞。由于新的軟件漏洞不斷被發現,補丁管理可能會成為一項困難和艱巨的任務,特別是對于擁有數百臺主機和復雜的軟件庫存的組織。因此,一個強大的補丁管理過程是必要的,以保持一個組織免受惡意活動的傷害。補丁管理因各種挑戰而變得復雜。首先,一個組織必須考慮一個修補機制,以確保眾多主機的安全,包括在家工作的設備、非標準設備、移動設備、以及具有各種操作系統和虛擬設備的設備。此外,補丁可以使用幾種不同的機制來交付,如手動安裝補丁、指導軟件自行打補丁、自動、計劃更新或補丁管理工具(第三方工具或操作系統提供的工具)。由于它既是一個耗時的過程,又對安全至關重要,任何自動化補丁管理的方法都將是非常有益的。
(本節中使用的分類法和術語是根據NIST報告[1],并從Shafee和Awaad的論文[2]中稍作擴展而采用的)。
機器學習的數據驅動方法在ML操作的訓練和測試(推理)階段帶來了一些漏洞。這些漏洞包括對手操縱訓練數據的可能性,以及對手利用模型對性能產生不利影響的可能性。有一個研究領域被稱為對抗性機器學習(AML),它關注的是能夠經受住安全挑戰的ML算法的設計,對攻擊者能力的研究,以及對攻擊后果的理解。AML也對針對深度學習模型的攻擊感興趣。
ML管道中的各個階段定義了這些對抗性攻擊的目標,如輸入傳感器或輸出行動的物理域,用于預處理的數字表示,以及ML模型。AML的大多數研究都集中在ML模型上,特別是監督學習系統。
用于對先前所述目標進行攻擊的對抗性技術可能適用于ML操作的訓練或測試(推理)階段。
人工智能(AI)已經被使用了很多次,因為它們在學習解決日益復雜的計算任務時具有前所未有的性能。由于它也被普遍用于影響人類生活的決策,如醫學、法律或國防,因此需要解釋或說明為什么這種人工智能系統會得出這樣的結論。
傳統的模型,如決策樹、線性和邏輯回歸,通過對特征權重的分析,允許一定程度的可解釋性;而深度神經網絡是不透明的,仍然是一個黑盒子。此外,如圖5-1所示,機器學習算法的性能與解釋訓練過的模型的難易程度之間似乎存在一種反比關系。
2017年,DARPA啟動了可解釋人工智能(XAI)計劃,以解決數據分析(針對情報分析員)以及未來利用強化學習的自主系統的可解釋性問題。在DARPA的報告中,提出了一套創建這種ML技術的方案,在保持高水平的學習性能(如預測精度)的同時,產生更多的可解釋模型,并使人類能夠理解、信任和管理新興的人工智能系統[13]。
文獻對可通過設計解釋的模型和可通過外部技術解釋的模型進行了區分。DL模型不能通過設計來解釋;因此,研究集中在外部XAI技術和混合方法上。Arrieta等人解釋了適用于不同類型的DL模型的技術和混合方法的所有細節。此外,他們解決了一些關于可解釋性和準確性之間的權衡、解釋的客觀性和不明確性以及傳達需要非技術專長的解釋的問題[14]。
超參數是控制學習過程行為的屬性,它們應該在訓練模型之前配置好,而不是在訓練過程中學習的模型參數,例如權重和偏差。它們很重要,因為它們會對正在訓練的模型的性能產生重大影響。
語法(框架)的互操作性。2017年,Open Neural Network eXchange(ONNX)格式被創建為社區驅動的開源標準,用于表示深度學習和傳統機器學習模型。ONNX協助克服了人工智能模型中的硬件依賴問題,并允許將相同的人工智能模型部署到多個HW加速目標。許多框架的模型,如TensorFlow、PyTorch、MATLAB等,都可以導出或轉換為標準的ONNX格式。然后,ONNX格式的模型可以在各種平臺和設備上運行(圖5-2)。
語義互操作性。當數據來自于含義不相同的混合來源時,就不可能了解趨勢、預測或異常情況。語義互用性是指計算機系統交換具有明確意義的信息的能力。為此,無論數據是從單一來源還是異質來源匯總而來,都需要高質量的人類注釋數據集來準確地訓練機器學習模型。
實現語義互操作性的最佳實踐之一是使用原型。原型是一種數據格式規范,它應該盡可能地提供最可用的完整細節。它提供了數據的共享意義。人工智能系統的語義互操作性要求原型是高質量的、基于證據的、結構化的,并由領域專家設計[20]。
與傳統的機器學習方法相比,深度學習在很大程度上依賴于大量的訓練數據,因為它需要大量的數據來理解數據的潛在模式。然而,在某些領域,訓練數據不足是不可避免的。數據收集是復雜而昂貴的,這使得建立一個大規模、高質量的注釋數據集變得異常困難。轉移學習是一個重要的工具,可以用來解決訓練數據不足的問題。它試圖將知識從源域(訓練數據)轉移到目標域(測試數據),方法是放寬訓練數據和測試數據必須是獨立和相同分布的假設,即樣本是相互獨立的,并且來自相同的概率分布。這樣一來,目標域的模型就不需要從頭開始訓練。
深度遷移學習研究如何通過深度神經網絡有效地遷移知識。根據使用的技術,Tan等人[21]將深度遷移學習分為四類:基于實例、基于映射、基于網絡和基于對抗。
1)基于實例的深度遷移學習。源域中與目標域不同的實例被過濾掉并重新加權,以形成接近目標域的分布。用源域中重新加權的實例和目標域中的原生實例來訓練模型。
2)基于映射的深度遷移學習。來自源域和目標域的實例被映射到一個新的數據空間。然后,新數據空間中的所有實例被用作訓練集。
3)基于網絡的深度遷移學習。一般來說,網絡中最后一個全連接層之前的各層被視為特征提取器,最后一個全連接層被視為分類器/標簽預測器。網絡在源域用大規模訓練數據集進行訓練。然后,預訓練網絡的結構和特征提取器的權重將被轉移到將在目標領域使用的網絡中。
4)基于對抗的深度遷移學習。這組技術的靈感來自生成對抗網(GAN)(圖5-3)。一個被稱為領域分類器的額外鑒別器網絡從源領域和目標領域提取特征,并試圖鑒別特征的來源。所有的源和目標數據都被送入特征提取器。特征提取器的目的是欺騙域分類器,同時滿足分類器的要求。
有了低質量的數據,無論機器學習和/或深度學習模型有多強,它都無法做到預期的效果。影響數據質量的過程分為三組:將數據帶入數據庫的過程,在數據庫內操作數據的過程,以及導致準確的數據隨著時間的推移而變得不準確的過程。關于降低數據質量的過程的細節可以在參考文獻中找到。[22].
在使用、導入或以其他方式處理數據之前,確保其準確性和一致性的過程,被稱為數據驗證。現在,數據存儲在不同的地方,包括關系型數據庫和分布式文件系統,并且有多種格式。這些數據源中有許多缺乏準確性約束和數據質量檢查。此外,今天的大多數ML模型定期使用新的可用數據進行重新訓練,以保持性能并跟上現實世界數據的變化。因此,由于任何參與數據處理的團隊和系統都必須以某種方式處理數據驗證,這就成為一項繁瑣和重復的任務。對數據驗證自動化的需求正與日俱增。
一種方法是由Amazon Research提出的單元測試方法[23]。該系統為用戶提供了一個聲明性的API,允許用戶對他們的數據集指定約束和檢查。當驗證失敗時,這些檢查在執行時產生錯誤或警告。有一些預定義的約束供用戶使用,用于檢查數據的完整性、一致性和統計量等方面。在約束條件被定義后,系統將它們轉化為實際的可計算的度量。然后,系統計算指標并評估結果,隨后,報告哪些約束成功了,哪些失敗了,包括哪個指標的約束失敗了,哪個值導致失敗。由于新的數據不斷涌現,該方法采用了遞歸計算方法,只考慮自上一個時間步驟以來的新數據,以增量方式更新度量。此外,該系統自動為數據集提出約束條件。這是通過應用啟發式方法和機器學習模型實現的。
另一種方法是基于數據模式的方法,由谷歌研究院提出[24]。對正確數據的要求被編入數據模式中。所提議的系統采取攝取的數據,通過數據驗證,并將數據發送到訓練算法中。數據驗證系統由三個主要部分組成。一個數據分析器,計算預先定義的足以用于數據驗證的數據統計數據;一個數據驗證器,檢查通過模式指定的數據屬性;以及一個模型單元測試器,使用通過模式生成的合成數據檢查訓練代碼中的錯誤。該系統可以檢測單批數據中的異常情況(單批驗證),檢測訓練數據和服務數據之間或連續幾批訓練數據之間的顯著變化(批間驗證),并發現訓練代碼中未反映在數據中的假設(模型測試)。
盡管深度學習通過使用神經網絡中的多層來逐步分解特征以識別某些特征,但它對數據來源的背景理解較淺,其中背景提供了使某一事件產生的環境或元素,并能為其解釋傳達有用的信息。因此,一個模型最終可能被專門用于訓練數據中記錄的一種或多種情況。因此,這個模型可能對類似的情況有偏見,從而只在這種情況下表現合理。該模型能夠推翻從訓練中學到的經驗,以適應不斷變化的環境。然而,這種能力是受限制的。研究能夠捕捉上下文的模型的動機,通過更強大的、有彈性的、可適應的深度學習來提高任務的有效性。這使得深度學習的使用更具成本效益。
彌補偏見問題的最初努力,始于Bottou和Vapnik[25]提出的局部學習的建議。它涉及到將輸入空間分離成子集并為每個子集建立模型。這個概念本身并不新穎,但由于處理大數據集的應用的復雜性,已經獲得了一些可信度[26]。相反,Mezouar等人[27]沒有發現局部模型比全局模型更值得投資用于預測軟件缺陷。多任務學習(MTL)[28]是機器學習的另一個子領域,可以利用。它將輸入空間分離成多個任務,并利用共享信息,同時考慮到它們的差異。其目的是通過聯合學習和獲取共享表征來提高多個分類任務的性能。Suresh等人[29]試圖在死亡率預測的背景下比較這三種類型的模型。他們的工作表明,多任務模型在整體和每組性能指標上都能勝過全局模型和在單獨的數據子集上訓練的局部模型。不幸的是,似乎還沒有就最合適的模型來捕捉上下文達成最終共識。由于在特定任務的模型之間進行信息共享的技術研究,調整本地/全局模型以適應新的環境,或如何將本地和全局模型結合起來,仍然是活躍的[30],[31]。
在上面提到的所有挑戰中,這個RTG的成員最關心的是分享知識的可能方式。本章討論的問題有兩種可能的方式:分享訓練數據或分享模型:
1)訓練數據共享。從北約演習中收集的數據是有價值的。能夠利用它們將是非常好的。對于數據共享,最可能的是,應該構建一個數據庫。當各盟國的數據庫被加入時,可能會出現語義互操作性的問題(見第6.4節,語義互操作性)。為了保持數據庫的完整性,所有的盟友都應該圍繞一個標準化重新形成他們的訓練數據,并以這種方式向數據庫提供數據。這既費時又容易出錯。此外,數據的質量是至關重要的,在向數據庫提供數據之前應該進行審查(見6.6節)。此外,這種方法是危險的,因為如果對手到達這個數據庫,他們可以在數據中下毒。(關于可能的訓練數據目標攻擊和針對它們的對策技術,見第6.1節,訓練階段攻擊)。
2)模型共享。在句法互操作性工具的幫助下,現在可以共享DL模型了。(見第6.4節,句法互操作性)。使用基于網絡的遷移學習,在北約盟友之間分享特征提取器似乎更有幫助,這樣任何盟友都可以在他們的測試數據上應用他們希望的任何任務的衍生知識(關于遷移學習的細節,見6.5節)。然而,問題是,誰來訓練這個模型,他將使用哪些數據?如果在數據庫中存儲數據是有問題的,那么為了訓練將被共享的模型,授予一個人/實體對所有北約練習數據的訪問權也可能是麻煩的。通常情況下,不存在這樣的平臺,允許每個人使用自己的數據來訓練相同的DL模型。然而,在這種情況下,一種叫做 "聯合學習 "的分散方法似乎是可行的。它是一種分布式的機器學習方法,在這種方法中,一些被稱為客戶的參與者一起工作,在多次迭代中訓練某個機器學習模型。聯合學習最早是在[32]中提出的,它是由一組移動設備執行的分布式訓練模型,這些設備與中央服務器交換本地模型的變化,中央服務器的功能是將這些更新集合起來形成一個全球機器學習模型。一個聯合學習場景由一個中央服務器和一組N個客戶組成,每個客戶都有自己的本地數據集。最初選擇一個客戶端的子集來獲得模型權重方面的共享模型的全局狀態。然后,基于共享參數,每個客戶在自己的數據集上進行本地計算。然后,客戶提交模型更新(即基于客戶本地數據集的本地學習的權重)給服務器,服務器將這些更新應用于其當前的全局模型,生成一個新的模型。然后,服務器再次與客戶共享全局狀態,這個過程要進行多次,直到服務器確定了一個特定的準確度。因此,客戶不需要分享他們的原始數據來為全局模型做貢獻,只要有足夠的CPU或能源資源來處理它所擁有的訓練數據就足夠了。
軍事行動植根于對工業時代危機的實際反應,并由關于規模、殺傷力和覆蓋范圍的假設形成[1]。然而,當代沖突跨越了區域邊界和地理領域。威脅的數量和行為者的范圍在數量和多樣性上都在增長,這與需要與之協調應對的行為者的數量相呼應。利用網絡空間的敵人可以挑戰盟國能夠或愿意作出反應的門檻。對網絡領域的依賴增加了在敵方網絡空間實現支持軍事目標的效果的重要性。最終,軍事行動變得更加動態和復雜。
深度機器學習(DML)已經成為人工智能領域的主要技術來源。可以預見的是,DML對網絡防御之外的軍事應用的影響將是廣泛的,因為它提供了在軍事行動環境中獲得信息和決策優勢的機會。在本章中,我們將研究那些有可能受益并因此重塑網絡防御的軍事應用,超越傳統的保護、威懾、檢測和響應概念。
軍事學說將指揮與控制(C2)定義為 "由適當指定的指揮官在完成任務的過程中對指定的和附屬的部隊行使權力和指導"[2]。指揮與控制是通過指揮官在完成任務時對人員、設備、通信、設施和程序的安排來實現的,以規劃、指揮、協調和控制部隊和行動。傳統的C2結構包括作戰指揮權、作戰控制、戰術控制和行政控制[3], [4]。這些結構植根于物理領域中開展的活動,以聯合行動區為界限,對網絡領域來說,其不足之處越來越多。
軍事理論進一步將[1]網絡行動定義為包括防止未經授權的訪問的網絡安全行動,為擊敗特定威脅而采取的防御行動,為創造拒絕效果而采取的攻擊行動,以及為獲得情報而采取的開發行動[5]。如同在傳統作戰領域(如陸地、空中、海上、太空)中執行的任務一樣,網絡行動也要遵守某些C2結構。然而,與其他領域不同,網絡部隊可能同時在全球、區域和聯合行動區執行任務。因此,網絡行動依賴于集中的規劃和分散的執行,需要對傳統的C2結構進行調整,以實現軍事單位和當局之間的詳細協調。這種結構要求進行規劃、執行和評估的所有各方了解網絡行動的基本行動和程序。聯合部隊執行的物理和邏輯邊界,以及對其使用的優先權和限制,必須進一步在軍事梯隊、國家部隊和聯盟伙伴之間的協調和同步中集中確定。
網絡行動的C2在很大程度上是由傳統的網絡安全技術形成的,比如那些對硬件、軟件、數據和用戶的安全控制進行持續監控的技術[6], [7], [8]。盡管C2現在和將來都是對人的挑戰[9],但新興技術中的共同主題將影響其發展,無論是在網絡領域還是傳統作戰領域。信息技術、傳感器、材料(如電池)、武器的進步,以及越來越多地采用無人駕駛和自主平臺,將推動C2的進化變化。計算機將越來越多地與其他設備連接,并收集或分享數據,而無需人類的干預或意識。在較小規模的設備上增加計算、存儲和帶寬能力將使新的分析技術能夠以更快的節奏提取更多的理解,并更接近觀察點。軍事單位可能進一步需要與一系列行為者互動,并聯合工作以實現共同的理想結果,而沒有任何權力來指導這些臨時伙伴或與他們的信息系統互操作。根據沖突的性質,戰術決策可能需要在不同的層面上進行。甚至完全消除某些網絡空間任務中的地理內涵也是可取的[10]。
總的來說,這些因素表明,分散化和敏捷性是C2架構中非常理想的原則。任何新的架構都可以而且應該支持傳統的等級制度、等級制度內的適應性團隊以及其他分布式環境,同時保持對戰斗空間的情況了解。這些問題包括缺乏網絡社區以外的專業知識,無常的性質、時間和圍繞網絡漏洞的平等,以及任務規劃的集中化[11]。新興的倡議,如美國國防部新興的聯合全域指揮和控制倡議[12],反映了這一概念,即動能、電磁、網絡和信息行動之間的協調相互作用。
分散和保護數據的新興技術可以進一步實現去中心化。分布式賬本技術,即區塊鏈,是記錄資產交易的數字系統,其中交易及其細節同時記錄在多個地方。DML最近提出了一種整合,通過它來克服區塊鏈實施中發現的實際挑戰[13]。同樣,保護使用中的數據,而不是靜止或傳輸中的數據的技術(例如,安全的多方計算、同態加密、功能加密、遺忘RAM、差分隱私)允許對其他方持有的數據進行有用的計算,而不泄露關于數據內容或結構的敏感信息。這樣的技術可以允許不受信任的各方安全地進行DML處理,或者允許多方共同計算有用的結果而不披露基礎輸入。值得注意的是,對抗性的惡意軟件可能會采用這些技術來更好地混淆其操作。雖然這些技術在學術界被廣泛研究,有良好的理論基礎,但特別需要更多的工作來適應軍事用例和可擴展性,以及DML可以提高應用程序的效用的具體實例[14]。
DML應用的進展將提供機會,為規劃和執行任務提供更有能力的決策支持輔助[15]。新穎的人/機界面、混合現實合成環境和遠程存在能力將進一步改變作戰人員之間、自動代理、機器和機器人之間的互動方式。這些技術發展共同提供了在復雜作戰環境中加速觀察、定位、決策和行動的潛力。DML將可能改善決策,并通過人機合作促進自主行動。
網絡空間依賴于空氣、陸地、海洋和空間等物理領域。它包括執行虛擬功能的節點和鏈接,反過來又能促進物理領域的效果。網絡空間通常由三個相互依存的層來描述[5]。物理層由提供存儲、運輸和處理信息的設備和基礎設施組成。邏輯層由那些以從物理網絡中抽象出來的方式相互關聯的網絡元素組成,基于驅動其組件的編程。最后,網絡角色層是通過對邏輯層的數據進行抽象而創建的視圖,以開發在網絡空間中運作的行為者或實體的數字代表。
在這些層中的操縱是復雜的,而且通常是不可觀察的。準確和及時的網絡空間態勢感知(SA)對于在一個日益復雜的戰場上取得成功至關重要。這在戰術環境中尤其如此,因為那里有獨特的信息處理和操作限制。政府和工業界正在進行的大量研究和投資旨在提供工具,從網絡數據中開發基本的SA,但在關鍵指標方面沒有提供所需的數量級改進,如成功的入侵檢測概率、誤報率、檢測時間、反應速度、效果的精確性和可預測性、戰斗損失評估的準確性和及時性,以及人類操作員的認知負荷。防御性反應的累積效應可能會超出最初的威脅,這就需要跨區域的考慮以及防御性反應的協調或同步。這些考慮,特別是對戰術戰場而言,需要在連續處理和更接近源頭的行動方面進行突破性創新,對來自多個異質網絡、情報收集、社交媒體和其他多模式來源的信息進行自主融合。
DML可能有助于開發一些方法,在對手利用這些漏洞之前加速發現這些漏洞。同樣,輕量級的入侵檢測系統可以在戰術邊緣的限制下運行,減輕對帶寬和延遲的限制。其他應用包括自動融合來自許多異質網絡的數據,這些網絡具有高度分布、聯合或分層的特性;自動識別來自不同來源(如網絡和系統、情報、社交媒體)以及不同時間尺度和安全敏感性的模式;網絡和任務本體,以促進操作狀態和任務影響之間的映射;以及建模和模擬解決方案,允許自動生成現實的數據集,以促進實驗。
任務保障是一個成熟的概念,在許多工程領域中進行探索,包括高可用性系統、故障分析以及軟件和系統工程[16]。美國防部政策將任務保證定義為:
一個保護或確保能力和資產--包括人員、設備、設施、網絡、信息和信息系統、基礎設施和供應鏈--的持續功能和彈性的過程,對于在任何操作環境或條件下執行國防部的任務必要功能至關重要[17]。
任務保障的根本是洞察那些成功實現目標所需的資源和行動。任務映射是確定一個任務與其基本資源和程序之間的依賴關系的過程。在網絡空間的背景下,這包括信息系統、業務流程和人員角色。網絡空間是一個復雜的、適應性強的、有爭議的系統,其結構隨時間變化。復雜的因素包括。
事故和自然災害會擾亂網絡空間的物理基礎設施。例子包括操作錯誤、工業事故和自然災害。由于需要大量的外部協調和對臨時備份措施的依賴,從這些事件中恢復可能會很復雜。
美國防部的許多關鍵功能和操作都依賴于簽約的商業資產,包括互聯網服務提供商(ISP)和全球供應鏈,國防部及其部隊對這些資產沒有直接的權力。
美國防部的全球業務與對網絡空間和相關技術的依賴相結合,意味著國防部經常從外國供應商那里采購任務所需的信息技術產品和服務。
確保依賴網絡基礎設施的任務的一個關鍵挑戰是難以理解和模擬動態、復雜和難以直接感知的方面。這包括確定哪些任務在任何時候都是活躍的,了解這些任務依賴哪些網絡資產,這些依賴的性質,以及損失或損害對任務的影響。對網絡地形的理解必須考慮到依賴性是如何隨著時間和各種任務的背景而變化的。它需要確定任務和網絡基礎設施之間的依賴程度和復雜性;考慮到相互競爭的優先事項和動態目標。這種洞察力可以確保必要資源的可用性,并幫助評估在有爭議的條件下的替代行動方案。
此外,作戰人員可能面臨復雜的情況,這些情況不利于傳統的網絡防御行動,而有利于保證任務。例如,當計算機系統被破壞時,目前的做法是將被破壞的系統隔離起來。然后,該系統通常被重建或從一個可信的備份中恢復。業務連續性計劃試圖解決在退化條件下的運作問題,而災難恢復計劃則解決最壞的情況。這些方法優先考慮最小的利潤損失,并不迎合作戰人員可能面臨的復雜決策類型,即要求保持一個完整的系統在線,以確保一個關鍵應用程序的可用性,而對手則利用它作為一個杠桿點來獲得進一步的訪問或滲出機密信息。在這樣的條件下,作戰人員需要清楚地了解每個選擇之間的權衡,以及所選路徑的結果對任務和目標的潛在影響。此外,與受到網絡攻擊的企業不同,作戰人員必須考慮到網絡攻擊是更廣泛的綜合效應應用的一部分,必須考慮對手協調使用網絡、電子戰和動能效應的因素。最后,災難恢復計劃可以說是戰爭失敗后的一個計劃。因此,作戰人員需要有效的理論和決策支持系統,要求在被拒絕的、退化的和有爭議的環境中保持任務的連續性。
目前的任務繪圖方法主要分為兩類。首先,流程驅動的分析是一種自上而下的方法,主題專家確定任務空間和支持該任務空間的網絡關鍵地形。這種方法通過主題專家的業務流程建模產生可解釋的結果,盡管這些結果往往是靜態的。其次,人工制品驅動的分析是一種自下而上的方法,來自主機和網絡傳感器的日志和數據被用來推斷網絡資產的使用。這種方法通過數據挖掘、紅色團隊和取證發現產生高保真的分解,盡管其結果沒有提供對執行任務的替代機制的洞察力。目前存在一系列的工具和方法來完成要素任務映射[18]。
人工智能(AI)已經在軍事任務的決策中出現了許多應用,并將繼續加速這一問題領域的能力。潛在的解決方案可以尋求對特定的業務流程進行建模,并使其成為機器可描述的,從而使用戶生成的邏輯可以對這些流程進行 "推理",并協助管理大量的信息或多個費力、復雜、甚至競爭的任務和解決方案集。DML,加上自然語言處理方面的進展[19],提供了特別的前景,因為C2渠道之間的傳統信息交換手段包括通過軍事信息流頒布的人類生成的任務命令。
防御性網絡空間行動(DCO)包括旨在通過擊敗或迫近網絡空間的敵對活動來維護軍事網絡的保密性、完整性和可用性的任務。這就將DCO任務與傳統的網絡安全區分開來,前者是擊敗已經繞過或有可能繞過現有安全措施的具體威脅,后者是在任何具體的敵對威脅活動之前確保網絡空間不受任何威脅。DCO任務是針對具體的攻擊威脅、利用或惡意網絡空間活動的其他影響而進行的,并根據需要利用來自情報收集、反情報、執法和公共領域的信息。DCO的目標是擊敗特定對手的威脅,并將被破壞的網絡恢復到安全、正常的狀態。活動包括事件管理、事件管理和惡意軟件檢測的任務。它還包括情報活動,以幫助理解新聞媒體、開放源碼信息和其他信號,從而評估敵方威脅的可能性和影響。因此,傳統上植根于情報收集活動的DML應用對防御性網絡空間行動具有同等的效用。
數據泄露的頻率越來越高,預示著安全自動化概念和能力的加速采用[20]。只有通過自動分析、響應和補救威脅,組織才有可能大規模地復制經驗豐富的網絡專家的專業知識和推理,并確保更大程度的保護。有兩個特別的技術類別脫穎而出。安全信息和事件管理,以及安全協調、自動化和響應。
安全信息和事件管理(SIEM)技術聚集事件數據,包括安全設備、網絡基礎設施、系統和應用程序產生的日志和網絡遙測。數據通常被規范化,從而使事件遵循一個共同的結構,并通過有關用戶、資產、威脅和漏洞的上下文信息來加強。SIEM平臺有助于網絡安全監控、數據泄露檢測、用戶活動監控、法規遵從報告、法證發現和歷史趨勢分析。
安全協調、自動化和響應(SOAR)技術能夠將工作流程應用于SIEM平臺收集的網絡事件數據。這些工作流程,有時被稱為 "游戲手冊",可自動采取符合組織流程和程序的響應行動。SOAR平臺利用與補充系統的整合來實現預期的結果,如威脅響應、事件管理,以及在廣泛的網絡管理、資產管理和配置管理工具中增加自動化。
總體而言,SIEM和SOAR技術實現了安全過程的兩個關鍵階段的自動化:信息收集和分析,以及響應的執行。新興研究研究了人工智能技術在事件檢測和自動行動方案建議方面的應用,這兩種技術都適用[21], [22], [23], [24], [25]。
隨著互聯系統的規模和范圍的增長,超越自動化的自主性應用對于可擴展的網絡防御是必要的。重要性較低的互聯系統可以由網絡安全傳感器、系統和安全操作中心監控,而關鍵系統,如部署在有爭議的環境中的系統,可能需要自主智能響應能力[15]。
許多任務環境帶來了不利的條件,其中適應性的、分散的規劃和執行是非常可取的。盡管已經探討了聯合網絡行動的好處和挑戰[26],但市場力量繼續推動軟件即服務解決方案,這些解決方案依賴于云計算基礎設施,在國防部預期的操作環境中可能無法使用。云計算的普遍性和對傳統網絡邊界的侵蝕,助長了對外部和越來越不可信的基礎設施的依賴。同時,這種方法往往提供了最佳的規模經濟和能力。
零信任是一種安全模式和一套設計原則,承認傳統網絡邊界內外威脅的存在。零信任的根本目的是了解和控制用戶、流程和設備如何與數據打交道。零信任框架提出了一個適用于企業網絡的安全愿景,包括云服務和移動設備。同時,零信任仍然是一種愿景和戰略,更多的規范性方法仍在出現[27]。其中包括云安全聯盟的軟件定義周邊框架[28],谷歌的BeyondCorp安全模型[29],Gartner的自適應風險和信任評估方法[30],以及Forrester的零信任擴展生態系統[31]。在探索這些設計原則的應用或它們在保證DML應用方面可能發揮的作用方面,人們做得很少。
隨著網絡安全產品和解決方案的生態系統日益多樣化,實現互操作性以協調機器速度的反應將變得至關重要。新興的規范,如OpenC2[32],將使網絡防御系統的指揮和控制不受底層平臺或實現方式的影響。OpenC2提供了標準化網絡防御系統接口的方法,允許執行網絡防御功能的解耦塊之間的整合、通信和操作。這套規范包括一種語義語言,它能夠為指揮和控制網絡防御組件的目的進行機器對機器的通信;執行器配置文件,它規定了OpenC2語言的子集,并可以在特定的網絡防御功能的背景下對其進行擴展;以及轉移規范,它利用現有的協議和標準在特定環境中實施OpenC2。這一舉措和類似舉措的成功將取決于工業界對它的采用。目前沒有類似的方法用于進攻性網絡空間行動,這主要是因為所使用的工具的定制性質。
社會網絡安全是國家安全的一個新興子領域,它將影響到未來所有級別的戰爭,包括常規和非常規的戰爭,并產生戰略后果。它的重點是科學地描述、理解和預測以網絡為媒介的人類行為、社會、文化和政治結果的變化,并建立社會所需的網絡基礎設施,以便在不斷變化的條件下,在以網絡為媒介的信息環境中堅持其基本特征,實際或即將發生的社會網絡威脅"。[33].
技術使國家和非國家行為者能夠以網絡速度操縱全球的信仰和思想市場,從而改變各級戰爭的戰場。例如,在DML的推動下,"深度造假 "技術出乎意料地迅速發展,這有可能改變人們對現實的認知、作為信息來源的新聞、人們之間的信任、人民與政府之間的信任以及政府之間的信任。
網絡防御將越來越多地納入反措施,以阻止與網絡領域不可分割的影響力運動。這將需要對部隊甚至社會進行教育,讓他們了解現代信息環境的分散性,存在的風險,以及審查我們消化并允許形成我們世界觀的事實的方法和多學科手段。消除軍隊和他們誓死捍衛的社會之間的任何不信任概念,對全球安全至關重要。
傳統的網絡安全和網絡防御方法是在網絡殺傷鏈的后期階段與對手接觸,而網絡欺騙是一個新興的研究領域,探索在早期與對手接觸的效用,特別是欺騙他們[34]。幾十年前,隨著蜜罐的出現,欺騙性方法在研究界獲得了新的興趣,并被視為推翻網絡防御固有的不對稱性的可行方法而得到重振。欺騙性方法有可能通過給對手帶來不確定性來改變不對稱的局面。同時,欺騙能力可能會帶來更多的復雜性。
網絡欺騙,有時被描述為移動目標防御的一種形式,包含了多個系統領域的技術:網絡、平臺、運行環境、軟件和數據。移動目標技術的設計是為了對付現代系統的同質性,即系統和應用程序之間足夠相似,以至于一個單一的漏洞可以使數千或數百萬(或更多)的設備同時受到攻擊。技術尋求在系統設置之間引入多樣性,使系統的關鍵組件隨機化,從而使攻擊者無法利用相同的特征,并隨著時間的推移改變系統組件,從而使相同的漏洞無法重復發揮作用。許多網絡攻擊是 "脆弱的",因為它們需要精確的配置才能成功,而移動目標技術就是利用這種脆弱性。盡管如此,仍然需要研究網絡指標和有效性措施,以判斷網絡欺騙和其他移動目標技術的成功,以及它們對不同威脅模式的應用。
2022 年 10 月 11 日,美國陸軍發布了一份綜合數據計劃(ADP),這是一種全軍范圍內改進數據管理以確保陸軍成為以數據為中心的組織的方法。
該計劃是一項為期三年的工作,將改善整個陸軍的數據管理、數據治理和數據分析。作戰任務是陸軍數據計劃的當前重點。ADP 在該任務領域的成果是通過進行必要的更改來確保作戰人員的數據得到正確管理和使用,從而為作戰人員提供優勢。陸軍已經開始對數據管理能力、工具和模型進行原型設計,以實現這一目標。
陸軍首席信息官 Raj Iyer 博士說:“數據以及如何在所有梯隊中整合這些數據以實現真正快速、敏捷的決策,才是真正為陸軍提供其在未來戰爭中所需的競爭優勢的關鍵。”
數據和數據分析將為 2030 年的陸軍提供動力。士兵將需要在正確的時間和正確的地點獲得正確的數據,以便在每個梯隊做出更快、更好的決策——以超越任何對手的思維和步伐。
與早期的軍事行動相比,現在的戰爭范圍更大且范圍不斷擴大。作為聯合全域作戰的一部分,多域作戰是陸軍必須準備并贏得下一場戰斗的地方。這是一個數據豐富的環境。
每個領域都有自己的信息和數據流,一些信息來自開源情報,一些來自天基傳感器,還有一些來自網絡空間。今天的士兵和指揮官需要跨領域的綜合來主宰戰場。
ADP 概述了工作的組織并提供了總體戰略目標。它側重于中期努力,未來將被另一個更新所取代。
通過陸軍數據計劃實現這一決策優勢是陸軍的關鍵目標。
在面對同行競爭對手的遠程精確火力威脅時,已經提出了很多關于重新加強西方空中優勢的新作戰概念。大多數專家主張采用更加綜合的軍隊方法,以高節奏的方式將多種軍事困境強加給對手。基于網絡協作的有人和無人資產將重新獲得戰斗力和機動能力。這樣一來,對手將被迫根據不確定的選擇做出決策,從而危及其行動結果。這樣一種新模式涉及多域作戰(MDO)概念。
多域作戰可以被描述為在一個領域內利用來自所有領域的傳感器和效應器產生軍事效果的能力,以及將指揮和控制(C2)下方給盡可能低的級別。倡導平臺整合和C2鏈中的輔助性,構成了重新加強部隊靈活性、復原力和反應力的基線。戰區的聯合部隊指揮官(JFC)將作為MDO的協調者。他們將有能力在戰術指揮官之間分配傳感器和效應器以執行專門的任務,在所有領域之間同步效果,并根據需要將任務的控制權下放到戰術邊緣。
這可以通過一個被稱為多域作戰云(MDCC)的包容信息技術和通信(IT & COM)的生態系統實現,形成一個由跨域的可操作傳感器、效應器和C2節點組成的作戰網絡。利用北約的C3分類法,MDCC將提供一種手段,以實現和加強北約國家和合作伙伴的互操作性,從而提高作戰效率。
下文將通過2040年的一個虛構的作戰場景來說明整合和輔助的原則,并強調其在作戰角度和MDCC功能要求方面的結果。
虛構的作戰場景從"空軍保護"開始,在一個國家對其少數種族進行了令人無法接受的突襲之后,隨后轉變為空中前沿基地作戰(A2BO)。聯合國(UN)授權北約進行一場軍事行動。北約部隊包括一個擁有新一代戰斗機(NGFs)和遠程航母(RCs)的下一代武器系統(NGWS)中隊,一些增強型傳統戰斗機,一個C2機載平臺,加上光學、雷達和通信衛星群,油罐車,網絡資產和地面特種部隊。一個帶有兩棲部隊的航母戰斗群也加入了該作戰區。
關于空軍保護,目標是防止任何空襲和對少數民族聚集地的騷擾進行反擊。在這個階段,聯合部隊司令部決定將空軍指定為受援部分,受援部分是特種部隊和海軍。因此,聯合部隊空軍部分指揮官(JFACC)負責戰術層面上所有空中平臺的指揮。
為了應對襲擊,JFACC需要一個由多領域傳感器輸入(空中、陸地、太空和網絡)建立的完全認可的畫面。探測特定社交網絡上的公眾騷動,結合特種部隊和天基資產的實時情報監視偵察(ISR),就可以從NGWS在動亂地區上空迅速展示武力。此外,任何支援該國家并呼吁對少數種族實施暴力的社交網絡都將受到網絡反擊,使其無法運作。
在行動的這一階段,MDCC是基于共享的開放式IT和COM架構,將所有可用的傳感器互聯起來形成包容性的助推器。它正在提供一個由實時ISR收集和過去情報融合形成的共同畫面。這樣一來,MDCC提供了一個高水平的態勢感知能力,以便根據JFC的指令,從JFACC到未來作戰航空系統(FCAS)任務指揮官層面,可以適當地開發和提出軍事行動選擇。
該突襲國家向少數種族聚集地發射了幾枚地對地中程導彈,造成了人員傷亡,局勢迅速惡化。此外,該國家啟動了他們所有的綜合防空系統(IADS),特別是遠程導彈。根據新的聯合國決議,北約立即決定改變其軍事態勢。聯盟下令破壞該國家的綜合防空系統,同時確保北約的戰略主動權,以便在以后需要時進行兩棲攻擊。
總體目標是堅定地應對襲擊,同時保持對升級態勢的控制。JFC收到來自戰略層面的指令,進行空中前沿基地作戰(A2BO),以消除該國家的空軍基地,阻礙其奪取少數種族聚集地控制權的 "既成事實"戰略。這些A2BO的目的是擴大空軍的行動選擇,同時減輕所有航空資產在脆弱作戰基地的風險。A2BO還必須提供更大的靈活性和超越該國家行動的能力。在戰斗附近,分散的空中作業點(AOL)可能有助于空中打擊,但也將有助于對方反介入空中阻斷(A2/AD)。
在從JFC分配額外的資產后,JFACC現在負責用地面、海基NGWS和來自防御與干預護衛艦(FDI)的巡航導彈對該國家空軍基地進行交戰。然而,根據局勢演變和對航母戰斗群可能出現的突發威脅,JFC在JFACC和聯合部隊海上組成部分指揮官(JFMCC)之間保持NGWS和FDI的反應性和動態重新分配。因此,JFMCC在與JFC立即同步后,將能夠向JFACC提出實時空中任務指令(ATO)或空域控制指令(ACO)的變更要求。
因此,這些由北約領導的持久前線空軍必須能夠使用彈性的、低特征的、低維護的、大量的有人和無人駕駛航空資產進行防御性和進攻性反空作戰。其目的是通過建立更加分散的、有彈性的和難以定位的AOL,形成針對A2/AD能力的效果,而不存在力量集中的相關脆弱性。這支部隊包括NGFs、各種RCs(包括傳感器和效應器)、增強型傳統戰斗機和空中戰術運輸機,作為戰區內武器、無人平臺、燃料和后勤支持的運輸工具,所有這些都通過動態利益共同體運作。根據AOL和NGF之間的通信狀態,特定的 "多域戰術功能 "將被委托給駕駛艙,以允許FCAS任務指揮官承擔 "動態目標 "和 "時間敏感ISR "的控制權。由于戰區的延伸,NGF加上衛星群將從擴展的態勢感知中受益,并在需要時承擔更廣泛的控制責任,與C2機載平臺上的 "前線控制小組 "已經承擔的責任并列。
將A2BO與JFACC和JFMCC的網絡結合起來,可以在MDCC內實現 "網絡可選系統"。這種 "網絡可選系統 "在可用時利用 "集中式網絡",并在與上級當局隔絕時在戰術邊緣的可用平臺中形成 "機會網絡"。在這里,MDCC是這種復雜MDO的助推器。一方面,MDCC整合了從JFC到戰術指揮官的所有決策過程(從計劃到評估再到執行),包括部隊分配和效果同步,為跨領域的動態支持/支援框架鋪平了道路。另一方面,它提供了所有指揮官之間的輔助性,允許在盡可能低的級別上授權C2,如AOL和NGF。
在成功的A2BO之后,北約希望利用這一情況,并指揮開展兩棲行動,以充分保障少數種族的安全。在這次行動中,JFMCC被指定為被支持的司令部,空軍和特種部隊則是被支持的司令部。所有平臺都有可能在海軍的授權下用于兩棲作戰。MDCC將使JFMCC能夠將所有領域的傳感器和平臺整合到大型海軍計劃演習艦隊中,并在需要時將C2授權給最佳海軍平臺指揮官。
這個虛構的場景說明了通過所有決策過程進行整合和輔助的必要性。這樣做有助于形成一個可靠的技術環境,以高作戰節奏產生全球戰斗力,整合所有領域的機動性,而不存在力量集中的弱點,并因此給對手帶來多種困境。這種技術環境是由MDCC提供的,它可以被描述為一個 "定制網絡系統",包括從后方到邊緣的所有可用平臺。因此,如前所述,MDCC是動態分配部隊和分配C2的MDO助推器。
作為新技術的設計者和提供者,工業界隨時準備支持武裝部隊塑造MDO作為一種新的作戰模式。考慮到利害關系,兩者之間強有力的伙伴關系對于確保徹底掌握需求和設計MDCC而不過早選擇某些技術方案至關重要,因為這將阻礙未來的MDO。在作戰概念和技術解決方案方面,這一旅程仍處于早期階段。只有攜手合作才能應對未來的挑戰。
Brigadier General準將(退役)(法國空軍)1987年畢業于法國空軍學院,2003年畢業于美國空戰學院。他有3000個飛行小時(美洲虎、幻影2000D),執行過122次戰爭任務,并作為總部官員擁有C2專業知識。他于2021年加入空中客車公司,擔任FCAS多領域行動的高級運營顧問。
Thomas Vin?otte上校(退役)(法國空軍)于1987年畢業于法國空軍戰斗機飛行員,2003年畢業于戰爭學院。他有超過3300個飛行小時(美洲虎、幻影F1CR、幻影2000 RDI和幻影2000-5),執行了83次戰爭任務,包括一次彈射,并作為總部官員擁有C2專業知識。他于2019年加入空中客車公司,擔任FCAS高級運營顧問。
Laurent le Quement于1996年畢業于阿斯頓大學。在2010年加入空中客車公司的發射器部門之前,他曾在汽車和轉型咨詢部門工作。在2018年成為FCAS的營銷主管之前,他在業務發展和創新方面擔任過許多職位
空軍將在一個多極世界中作戰,其特點是持續的、低于閾值的交戰,其中多層和多速的戰斗空間延伸到很遠距離。空軍將需要變得高度適應,并能夠通過在高速作戰環境中實時超越威脅,快速從協調過渡到同步,不僅在移動資產和人員方面具有敏捷性,而且在至關重要的信息方面也具有敏捷性。新作戰優勢的釋放將取決于空軍加強部隊之間的連通性和整合的能力,以便信息共享能夠比以往更快、更廣泛地進行。
空軍已經嚴重依賴跨五個作戰域的作戰能力——但這些域都將變得非常混亂和具有競爭性。空軍將需要改變他們使用的網絡、系統和流程,以及他們廣泛和基本的工作方式,以便能夠在現代戰場的長度、寬度和高度上思考、戰斗和取勝。多域作戰 (MDO) 為空軍引入新的作戰指揮、控制和作戰管理 (C2BM) 提供了先導,這有望以多種方式從根本上提高在跨多域戰斗空間同步部隊要素和協調效果方面的聯合效率,這在以前不可能實現。
本報告通過將關鍵的作戰范式、挑戰和戰略轉型的推動因素相互關聯,以向新的作戰方式演進,綜合了空軍向多域作戰 (MDO) 過渡的最新觀點。
隨著國家競爭再次成為常態,全球競爭正處于新的十字路口。未來的戰略環境將引發新形式的競爭,將包括恐怖組織、叛亂分子、雇傭軍和網絡犯罪分子等非國家行為者在內的敵人聯系起來。對手將在物理和虛擬領域從事合法和非法活動,一方面模糊了和平與戰爭之間的區別,另一方面模糊了本土和遠距離之間的區別。傳統的防御方法將受到可能不承認國界或不遵守國際規范和做法威脅的根本挑戰。
因此,空軍將在一個多極世界中作戰,其特點是持續的低閾值交戰,戰場空間延伸到很遠距離。空軍作為一個在行動中持續活躍的軍種——進行訓練和演習、保障任務或在運輸途中——以保持全天候的任務準備狀態,未來面臨的挑戰尤其明顯。引入多層次和多速度的戰場從根本上破壞了經濟和戰爭的性質,因此空軍將需要加速變革并建立新戰爭方式的能力,使他們能夠在高度復雜和緊張的競爭連續體中贏得未來沖突場景的全部內容,否則就有成為多余的風險。
面對在密集的反介入/區域拒止 (A2AD) 環境中使用先進網絡和武器系統能力的對手,競爭連續體將變得競爭激烈、混亂且受限。隨著空中作戰中心 (AOC)、指揮與控制 (C2) 節點和傳統機載平臺遠離戰斗,空軍執行的全方位保障和戰斗任務將變得更加復雜。因此,空軍將需要新的方法來提高生存能力,并在密集威脅環境中以相關的速度提供效果。空軍將需要變得具有高度適應性,并能夠迅速從協調過渡到同步,以在高速作戰環境中實時超越威脅,不僅在移動資產和人員方面具有敏捷性,而且在至關重要的信息方面也具有敏捷性。
當代威脅發展太快,通過電子手段的連接來應對威脅至關重要,因為無法再在聯絡層面有效協調行動。例如,考慮聯合空中作戰中心 (COAC) 和防空作戰中心(ADOC)并不總是明確定義為總部,可以將作戰 C2 要素在防御性防空和區域防空方面分開。常規和新出現的空中和導彈以不同的方式威脅,因此防御它們通常屬于不同的指揮機構。由于一個威脅概況對于地面指揮官來說可能太大,而對于空戰指揮官來說又太小,因此需要一個無縫集成的多層全域作戰架構來生成共享態勢感知 (SA) 并確保將正確的射手分配給在正確權限下的相應傳入威脅目標。
未來沖突的結果將有利于那些在競爭中獲得信息優勢的空軍,在競爭中各作戰領域被融合在一起,而不是基于優越的武器系統和獨立的能力。新的作戰優勢的釋放將取決于空軍是否有能力加強部隊成員之間的連接和整合,從而使信息共享比以往更快、更廣泛地發生。在這樣做的過程中,為了實現更有力的協調,指揮關系和結構將需要進行調整,甚至為新的戰爭方式重新定義。多域作戰(MDO)為空軍提供了未來新的作戰指揮、控制和戰斗管理(C2BM)的先導,它有望從根本上提高部隊成員的同步性和協調多域作戰空間的效果,這是以前不可能的。
多域作戰(MDO)的概念與聯合和集合作戰的概念不同,因為它提出了在各作戰領域執行基于效果的、同步的和戰術整合的任務,從而使空軍能夠在現代戰斗空間的長度、寬度和高度上思考、戰斗和獲勝。在過渡到MDO的過程中,空軍將需要對他們使用的網絡、系統和流程以及他們的工作方式進行廣泛和根本性的轉變。為了以相關速度運作,各級指揮官將需要獲得通過聯合共同作戰圖景(COP)提供的強大的、不斷更新的SA,以便比對手更好地了解作戰環境。此外,從機密和公開來源的數據和情報流中收集、存儲、分析、融合、分發和可視化信息的能力,以便在盡可能低的層次上更快地做出決策,這對作戰成功至關重要。
但是,如果沒有適當地過濾和管理,同樣可以創造作戰優勢的大量信息也可能使決策過程不堪重負。除了簡單地將每個傳感器集成到網絡中并集成跟蹤數據之外 從多個來源實時共享,必須對持續流向指揮官的數據和信息流進行智能融合和共享,以便只提供與給定任務或作戰要求相關的數據和信息。在一個信息就是力量、信息可以比以往更快、更遠、但也有太多數據和信息需要處理和吸收的時代,防止指揮官和作戰人員面臨信息負擔和認知超載的危險將是至關重要的。因此,需要新的數字解決方案和工具包,利用自動化和人工智能 (AI) 來支持信息可視化,以便更好地理解和改進決策。
信息優勢對于空軍將戰略意圖轉化為及時的作戰和戰術效果,并在現代戰斗空間的流動作戰領域進行協調,將是決定性的。管理、分析、融合、可視化的工具包,以及關鍵的是,更好地理解來自多源情報流的大量信息,將在未來幾年重新定義作戰規劃和執行。空軍將需要利用新興技術來塑造現代戰爭環境的數字層面,因為新的作戰C2可以支持未來戰斗空間所要求的性能水平。
在目前的配置中,作戰C2 仍然過于人工手動,并且與隨著傳感器和射擊者被合并到一個單一的主網格網絡中而變得可用數據大量混亂、信息不兼容。
傳統的 C2 指令、結構和流程可以基于 24 小時周期的決策循環,不足以應對未來的破壞性威脅和預期的行動速度。任何水平的技術進步都不會使傳統 C2 對未來作戰的預期步伐更加有效。人工智能、自動化、增強現實和量子技術為過濾、可視化和幫助理解大量信息提供了新的可能性,而利用大數據處理的數據分析和融合引擎將為個人平臺、能力和決策者帶來新的機會從聯合甚至泛政府的角度將其整合到一個共同的數字環境中。
一個共同的數字環境和作戰云的實現將使任何地點的部隊和用戶都可以訪問相同的數據和信息流,無論是實時規劃還是執行,并且以與執行任務相同的速率。高度適應不斷變化的任務要求的數字工具包將需要在作戰云上隨時可用,并使用軍事證書按需訪問幫助各級做出更好更快的決策。指揮官和作戰人員之間共享通用數字環境的發展將使作戰指揮控制的分散化和空中作戰中心傳統職能的地理點對點分布成為可能。
分布式 AOC 可以理解為同時在不同的地方,而不是在一個或另一個地方,它代表了空軍未來作戰方式的游戲規則改變者。空中作戰中心傳統上由空軍從一個擁有重要基礎設施的固定位置操作,以允許接收大量通信和大量多專業人員。這種集中式 C2 模型在過去為空軍提供了很好的服務,但是隨著威脅形勢的演變,從執行作戰 C2 的單個固定位置的概念使得空中作戰容易受到能力越來越強的對手的攻擊,這些對手可以通過動能和非-動力學手段。在任何接收關鍵通信和提供可操作 C2 的集中位置發生自然災害、火災或停電成為潛在單點故障的情況下,同樣存在風險。
點對點分布的AOC將與位于不同地點的高級指揮部更好地保持一致,而在聯盟的情況下,則與世界不同地區保持一致。分布式AOC還將使空軍有可能與更多不同的專業人員聯系起來--在任何特定時間,在一個以上的地方經常需要這些專業人員--以解決復雜的作戰挑戰。空軍將獲得決定性的優勢,最大限度地減少非周期性工作的需要,以便在需要的地方和時間獲得信息,關鍵是要建立冗余,以提高行動的適應性。隨著AOC功能的分布,空軍將有能力迅速適應動態作戰場景中不斷變化的需求,包括C2網絡中任何關鍵節點的潛在損失,使邊緣作戰人員能夠以更加安全和靈活的方式行動。
然而,分布式空中作戰中心架構所承諾的最顯著的力量倍增效應是使空軍能夠無縫地連接到位于不同位置的伙伴要素和能力。將位于不同地點的盟軍和伙伴空中作戰中心虛擬地聚集在一起,將使空軍能夠整合可用的聯軍能力,以便在任何給定時間和地點利用最有效和最致命的空中力量組合。通過以增強力量和提供綜合威懾的方式整合聯軍能力,可以減輕空軍單獨面臨資源或人員壓力的現實和日常挑戰。因此,空軍將更少地依賴單個平臺能力,而更多地依賴于具有集成作戰 C2 的共享能力架構的力量,該架構從根本上優化了傳感器/射擊者的任務和分配。
作為指導任務和加快行動步伐的過程的一部分,通過替換會減慢行動周期(從而降低反應時間)的傳統方法,必須明確授權給每個級別的指揮部,以便確定決策的優先級可能的最低水平。因此,連接到接收數據和中繼命令的敏捷、適應性強和有保障的網絡的單個指揮官應該能夠專門指揮下屬單位的活動。對交付作戰能力的命令進行適當的優先排序仍然至關重要,但未來的挑戰將與誰指揮指揮官有關——尤其是在對多個任務有明顯壓力的情況下 政府部門將被納入 C2 決策過程。即使授權保持不變,集中控制/分布式執行和任務指揮的模式也可能受到挑戰,因此空軍必須更新正式關系和開展業務的方式。
開放式架構、系統體系(SoS) 網絡,專為高速、大容量而設計,在廣泛而分散的用戶群中進行數據交換對于在需要的時間和地點向合適的人提供相關信息至關重要。Link 16 為互連性和互操作性提供了一個通用標準,對聯軍行動仍然至關重要,但即使有一個在其用戶之間全面設計和實施的現代化計劃,其本身也不夠。更強大的作戰 C2 的基本原理推動了聯合全域指揮與控制 (JADC2) 結構和先進戰斗管理系統 (ABMS) 在美國的發展。JADC2 設想將整個部隊的傳感器、射手和支持平臺連接到主網格網絡,以便作戰指揮控制從以服務為中心的架構有效地推進到高度靈活的聯合全域架構。美國空軍打算利用 JADC2 實時融合來自無數不同來源的數據,而 ABMS 打算通過將正確的傳感器連接到正確的射手來感知、理解并允許指揮官比對手更快地采取行動。
在一個沒有任何單一平臺或武器系統本身能夠確保作戰成功的未來,JADC2和ABMS的目的是用其他系統的優勢來系統地減輕單個組件系統的局限性。沒有與ABMS或同等的作戰管理(BM)系統連接的平臺將具有較低的生存能力,并最終成為多余的。JADC2和ABMS是美國在每個戰爭場景中取得戰斗成功的基礎,它們為未來的作戰C2提供了將正確的傳感器連接到正確的射擊者的基礎。開發一個高度可擴展的、完全集成的、具有明確授權的多分類網絡架構,將是實現信息優勢的關鍵,它使指揮官和作戰人員能夠更有效和高效地執行。目前的網絡和系統需要進行現代化改造和調整,以實現更大程度的戰斗空間信息,然而,全面的網絡整合帶來了相當大的技術挑戰,因為各個系統并不總是使用一種共同的語言或順利地相互連接,特別是在涉及盟國和伙伴空軍的多國背景下。
互操作性是未來戰爭的關鍵,而協同作戰的步驟設想跨所有平臺進行信息交換,而不僅僅是戰斗人員。除了由新的具有指揮能力的戰斗機領導的傳統戰斗機之外,隨著第五代平臺的出現,互操作性將需要擴展到所有平臺,包括遙控飛行器 (RPV) 和自主系統。在強大的聯合任務指揮下,互操作性與綜合規劃和作戰指揮控制將允許加速作戰,以克服具有先進網絡能力和武器系統的對手。將遺留系統調整為單一網格、多域網絡是空軍面臨的最關鍵挑戰,必須進行戰略轉變,優先考慮全面的網絡集成和互操作性以及必要的財務資源、時間和人員。
整合帶來了復雜的挑戰,有時需要比預期更長的時間才能實現結果,正如之前在 Link 16 上采用、適應和實施變化的國家經驗所表明的那樣。空軍必須迫使行業合作伙伴更廣泛地采用數據協議和工程系統的標準化,以便能夠有效和高效地實現未來所需級別的互操作性。同時,空軍必須 打破狹隘的思維方式、過時的數據和信息共享政策以及阻礙他們作為組織利用信息真正力量的文化障礙。軍事背景下與美國前總統羅納德·里根(Ronald Reagan)的話有了新的關聯,他將信息稱為現代的氧氣,因為信息力量是未來戰場上有效作戰的基礎。
將盟軍和合作伙伴的資產、資源和專業知識進一步互連,超出單個固定地點的定位,這將成為空軍在未來沖突中保持競爭力的必要條件。三十年前,可能有二三十人,包括指揮官及其參謀參與作戰計劃、執行和 C2。今天,視頻電話會議和數字應用程序使分布在不同地點和時區的數百名員工的點對點協作和信息共享成為可能。與盟國和合作伙伴互操作性的障礙在邏輯上需要考慮并更緊密地結合在一起 - 旨在確保數字環境得到主動保護和防御的國家網絡安全方法及其警告。依賴網絡空間和在網絡空間中作戰的固有脆弱性將使信息戰在傳統作戰之外占有一席之地。同時,空間領域和量子加密技術的進步將開始通過徹底改變軍事行動中的通信方式來減輕復雜網絡空間威脅的影響。
互操作性是衡量聯盟有效性的關鍵,并將決定在未來的同行競爭環境中的戰斗成功。在沒有盟友和合作伙伴的幫助下,單獨過渡到全域作戰戰略是不可行的,但從聯盟的角度來看,要實現真正的互操作性,必須對空軍設計和規劃未來能力進行戰略反思。互操作性通常可以通過調整現有的系統而得到改善,但如果要以未來沖突所要求的方式在戰略上推進互操作性,以達到戰斗和勝利所必需的聯盟效力的程度,則需要成為一種采購考慮。
互操作性存在著重要的政策層面障礙,例如,與采購項目的過度分類和軍事系統的轉讓有關。這種對聯盟有效性的障礙在近年來的聯盟作戰活動中已變得很明顯,并促使美國引入新的方法,如國防出口特性計劃,該計劃旨在為優先考慮和追求互操作性的方式帶來范式的轉變。將互操作性考慮納入主要采購項目的初始能力文件的作戰概念(CONOPS),將確保它在未來系統的設計階段得到適當的規劃,并戰略性地納入采購過程本身,而不是作為事后的想法被編入。
美國還將更加強調與盟友和合作伙伴共同開發系統,并以系統的早期出口為目標,這一方面有助于改善整體系統設計和安全性,另一方面也能壓縮開發時間和降低成本。任何空軍都不能假設自己總是擁有最好的技術解決方案和概念,因此,當國際市場上有更優越的替代品時,進口能力將需要更高的優先權。軍事系統的本土開發提供了次要的優勢,如經濟效益的本地化和通過國內創造就業機會來培養高技能的勞動力,但也有一些權衡,如較低的性價比或系統不能與替代品提供的相同水平的性能。
在系統層面上,設備之間的互操作性是至關重要的,但是作戰平臺本身和確保它們的互連性本身并不足以實現互操作性,也不會自動轉化為改善聯盟的有效性。空軍必須通過制定共同的作戰方案和戰術、技術和程序(TTPs)來加強聯盟層面互操作性的概念基礎。空軍共同訓練、合作和培養工作關系的方式是打開未來作戰優勢的關鍵。建立信任需要時間,而作戰層面的互操作性--相對于系統層面的互操作性--是建立在多年的訓練和并肩工作上的,以了解和推進可以共同實現的目標。不可能在危機時期尋找信任,也不可能期望能夠以未來所需的行動水平和速度來運作。
空軍有必要作出新的努力,以改善與關聯部門以及盟國和伙伴空軍的同步和協調。建立一個更強大的傳感器網絡和發展收集、存儲、處理、分析、融合和分享適當安全級別的信息的能力的途徑始于雙邊討論,隨著聯合演習的推進,并隨著從持續努力和互動中獲得的經驗教訓被廣泛實施到培訓、教育和最終的積極行動本身而得以實現。歸根結底,在擴大力量和試圖實現聯盟伙伴之間的綜合威懾方面,信任的概念將比技術因素更重要。盟友和合作伙伴可以成為非常有價值的見解的來源,空軍必須變得更加開放,不斷地與同行分享威脅情況,并保持思想的持續互動,以支持持續改進。
在這個時代,信息被視為力量,但只有當它被分享時才會變得真正強大,在評估盟友和合作伙伴之間的信任時,信息共享的方式是衡量有效性的關鍵。人工智能和神經網絡將能夠實時處理和分析目前需要數周時間的大量信息,然而,空軍的思考和反應速度將取決于他們在正確的時間向正確的人提供正確和相關的分類信息的能力。考慮到信息共享的三個基本要素(需求方面的理由;使之成為可能的技術和基礎設施;以及受其支配的政策和規則),理由越來越被認為是合法的,使之成為可能的手段在大多數情況下也是現成的。然而,以父權為框架的政策和信息發布規則與文化障礙相結合,阻礙了盟友和合作伙伴之間及時有效的信息共享,甚至經常是根本沒有。
古老的信息可釋放性政策和僵化的數據所有權文化,限制了實時甚至是歷史信息流向需要的地方。盡管空軍擁有與盟友和合作伙伴更緊密合作的動力,但他們總體上仍然落后于更有效作戰所需的信息共享水平。有效的信息共享的障礙和阻礙可歸因于傳統的模式,然而過去有效的東西不一定在未來有效。并非所有的信息都需要與所有級別和所有項目的人共享,但確保正確的人能夠獲得正確的信息是可能的,一方面,重新設計適用的信息共享政策、規則和分類以消除瓶頸,另一方面,通過硬件和軟件解決方案,降低工業規模的信息共享的操作安全(OPSEC)風險。
從商業部門的成功經驗中可以學到寶貴的經驗,即如何安全地改善企業層面的連接和信息共享,關鍵是與外部合作伙伴的連接和信息共享,從而提高生產力,為股東創造更高的價值。建立新的授權、政策和信息保護程序是必要的,以便讓信息在行動領域之間以及在共享的任務伙伴網絡中的不同安全分類之間安全和無縫移動。空軍將需要促進和實施更強大的信息和數據安全,同時通過與聯合和盟國或聯盟伙伴更好地協調技術和程序來建立一個共同的數據結構。跨作戰領域的信息和數據網絡的可訪問性和安全性將成為重中之重,而信息的完整性、可信度和可靠性則是剩余的問題。
隨著數字技術和創新的加速作用和采用,空軍的運作方式正變得越來越復雜。然而,機遇也伴隨著風險,因為支持空軍的信息技術和系統本身就成為一種威脅。網絡空間對于彌合現代戰斗空間所跨越的巨大距離至關重要,因此將繼續成為軍事行動中一個永久的、日益突出的要素。然而,大量信息的快速收集、控制和傳播產生了一種新的戰爭類型,即產生了傳統軍事系統必須能夠對抗和防御的具有普遍性的持續威脅。網絡空間和電磁頻譜為信息系統、武器和平臺的運作提供了重要的地形,指揮官的首要考慮之一是需要支配流動的作戰領域,使其盡可能受到抑制和保護,以防止可能帶來區域拒絕問題的攻擊。
網絡保護和通過一切必要手段捍衛網絡空間對軍隊來說是勢在必行的,但未來更重視的是數據和信息資源本身,而不是為它們提供地形的網絡。密碼學的現代化對于實現有保障的安全通信至關重要,但對部隊進行數據保護和信息安全教育是空軍需要解決的一個挑戰。軍隊需要重新培訓組織心態,并制定源自零信任文化的標準操作程序(SOP),以便作戰人員嚴重依賴的信息在所有層面上不斷得到認證和驗證。更廣泛地說,軍隊在網絡空間的主要重點仍將是通過網絡安全軟件和計算機網絡操作來保護C2的物理和電子。
盡管在網絡空間建立交戰規則(RoE)的挑戰仍然存在,但在未來幾年,信息作戰將不可避免地成為與傳統作戰一樣的核心能力。軍隊已經觀察到戰斗之王從火炮過渡到空中力量,空中力量穩步發展,可以在任何時候和任何地方使用。盡管在過去的30年里,空中力量是火力的 "首選",但不確定的是,在未來的30年里,空中力量是否會成為戰斗之王,或者動能能力是否會像其他傳統能力一樣,被更有效、更精確和更經濟的替代品所取代。預測未來總是很困難的,但目前的軌跡表明,非動能能力將最終成為戰斗之王,火力將從硬件過渡到軟件,因為不再需要飛行的效果,因為計算機代碼和遙遠的點擊將變得比動能武器的震蕩效果更具破壞力。
衛星能夠以最快和最安全的方式將信息傳遞到最底層的指揮部,其數據鏈接對于在高度競爭的環境中同步部隊成員,加速觀察、定位、決定和行動(OODA)的循環,以及在行動前和行動中加強部隊的安全和保障至關重要。
空間領域為全球通信、高空情報、監視和偵察(ISR)以及為保持對空域的控制和執行未來預測的高節奏行動所必需的定位、導航和定時(PNT)解決方案提供無與倫比的覆蓋范圍和持久性。將空間領域納入MDO將釋放出一種力量倍增效應,因為它允許創建跨作戰領域的新網絡,并為分布式聯合規劃和執行建立新機制。隨著傳統的地面和空中指揮要素被推到離戰斗更遠的地方,向空間領域的邁進對于在地面要素和遠程載體之間更廣泛地傳播連接是至關重要的,從而使部隊要素能夠彼此和總部要素之間更理想地運作。
擴大的地球同步衛星群將通過為所有類型的載人平臺、遙控飛行器和自主系統提供連接,使它們能夠一起遠程操作,從而實現一種新形式的作戰C2。隨著目前的限制因素--即計算能力、通信帶寬和太陽能電池板產生的電力--被克服,空軍將通過多種類型的新情報產品和服務呈現革命性的新前景。在未來幾年,利用大數據處理、人工智能和機器學習(ML)來生成、處理、分析和過濾衛星上的大量信息,并自主地向指揮官和作戰人員提供實時的關鍵信息服務將成為可能。空中和太空力量交織在一起,如果沒有所需的最低水平的天基能力,任何向MDO的過渡--設想進入所有作戰領域,但可以說以太空領域為核心--將仍然無法實現。
進入空間領域的初步步驟側重于發展空間態勢感知(SSA),在推進到天基傳感器和其他能力之前,從地面的雷達和強大的望遠鏡開始。在最基本的層面上,SSA必須允許空軍評估發射,監測衛星和運載火箭重返大氣層,跟蹤軌道上的衛星并提供潛在碰撞的預警。從這一初步步驟開始,需要由地面站、空間飛行器和通信鏈路組成的空間基礎設施,而作戰效果的提供則取決于專門的空間工作人員、操作人員及其工具包,這些因素綜合起來考慮,有可能消耗大量的財政資源。
空軍需要發展主權控制的空間能力的方法,這些方法既要有成本效益,又要有靈活性,例如插入硬件和軟件更新。提供即插即用解決方案的商業現成(COTS)技術和納米衛星--其開發成本相對較低,并能以低成本迅速復制--降低了進入空間領域的門檻,并將在允許空軍以必要的速度前進方面發揮重要作用,同時,越來越多的商業衛星運營商能夠有競爭力地為軍事行動提供帶寬和其他關鍵產品。
然而,空間領域的物理復雜性使得任何空軍或任何國家發展空間力量的相關技術復雜性和成本負擔本身完全不現實。空間領域構成了空間中較大和較小的軍事行為者的需要--無論大小--密切協作,甚至共同發展空間軍事力量。對空軍的要求是與盟友和伙伴協調步驟,無論他們是已經有了既定的程序和方案,還是處于啟動階段,對于利用空間領域為軍事行動提供的真正潛力將是至關重要的。
政府間、商業和研究伙伴關系將需要構成軍事空間戰略的基石,以便有可能從大量的現有知識中獲益,并應用從既定的空間行為者和遺留計劃的經驗中獲得的教訓。應用實驗對于空軍培養專業知識和能夠更迅速地確定能力差距和優先事項非常重要,當與盟友和伙伴合作推進時,可以大大簡化空間能力的開發周期,并為擴大長期的共享利益提供基礎。
通過戰略協調,資源單獨緊張的盟國和伙伴國空軍將能夠把他們的重點限制在建立具有利基能力、機制和軌道的小型衛星星座上,以便以后匯集起來,合并成更大或超大的星座。盟友和合作伙伴之間形成的超大型衛星星座有望提供一個更加多樣化和強大的共享能力架構,否則是無法實現的,關鍵是要建立冗余,以防止突然失敗或失去服務。建立冗余是必要的,因為在未來十年,新的空間行為者和空間威脅的引入使空間領域不僅更加擁擠,這本身就帶來了重大的新風險,而且還首次出現了軍事競爭。
作為通常負責領導軍隊進入空間領域的軍種,當空軍開始考慮發展空間足跡和作戰能力時,眼前的挑戰是制定能夠在預算限制內和以相關速度提供需求的方案。
"盟國和伙伴之間形成的超大型衛星星座有望提供一個更加多樣化和強大的共享能力架構,否則是無法實現的,關鍵是要建立冗余,以防止突發故障或服務損失。"
通過將天基能力分布在一個與盟國和伙伴共享的更廣泛的空間架構中,空軍將能夠從更多樣化的能力套件、更高的可用性和全球安全通信的延伸中獲益。隨著天基能力向盟國和伙伴之間共享的架構發展,控制目前被隔開的衛星的地面站將需要互聯并更接近AOC,以改善C2的決策。由于空間資產為民用和軍用用戶提供產品和服務,然而空間領域的使用使作戰C2變得復雜,可能需要其他政府部門參與傳統上由軍事指揮官負責的決策。
軍事指揮官很可能在特定情況下優先考慮或在空間領域的正確時間作出反應的能力減少或受到限制。在某種程度上,在可能的情況下插入的常設協議,可能會澄清如果向另一用戶提供的服務受到軍事行動的影響而需要遵循的具體程序。傳統的C2周期、程序和結構是為了對實體單位行使權力,而空間領域則側重于獲取和傳輸數據和通信以實現效果,需要不同的考慮。因此,一個專門的軍事空間指揮部是必要的,以滿足居住在各兄弟部門、其他政府部門以及外部盟友和合作伙伴的空間工作人員之間所需的巨大的整合和協調程度。
空軍在提供解決方案以有效利用空間進行多域作戰方面發揮著至關重要的作用,并且通常將負責從國防角度領導、管理和培育空間--例如在英國、澳大利亞和荷蘭,其空軍最近已經建立了初步的空間指揮部。一旦空軍建立了初步的操作能力,空間領域的C2結構和程序將隨著新框架的建立而發展,以產生綜合的空間領域意識,捍衛主權、盟國和伙伴的空間能力,并全面推進軍事空間行動、計劃和能力。一個專門的空間指揮部除了使可能沒有共同愿景的姐妹部門在空間領域的使用上保持戰略一致,甚至沒有充分認識到它的潛力外,還對培養空軍多領域行動所需的新的專業空間工作人員和專業知識的骨干隊伍至關重要。
為了使空軍有能力在各作戰領域進行思考、戰斗和取勝,幾乎所有的遺留系統都需要升級,而且空軍需要提高他們在面對快速技術進步時吸收有任務能力的技術的能力。隨著在采購周期的關鍵決策點上做出判斷的挑戰加劇,空軍采購規劃人員必須走一條鋼絲。在追求提供革命性能力的新解決方案、購買成本較低的商業現成技術(COTS)以彌補能力差距或試圖升級遺留系統之間做出選擇將變得更加微妙。在投入使用的新系統和升級遺留系統之間取得適當的平衡將被新系統的挑戰所加劇,這些新系統往往無法迅速投入使用。
為了滿足未來的作戰要求并保持機動自由,遙控飛行器和自主系統在多領域的戰斗空間中發揮著重要作用。人們普遍承認,無人駕駛和自主系統反映了未來的空中力量,但是空軍仍然傾向于主要從載人平臺和系統的角度考慮問題。對載人威脅和平臺的傳統關注導致了訓練和模擬的發展,TTPs甚至C2流程都是圍繞著提高載人系統對抗載人威脅的能力而設計的。空軍必須在載人、遙控和自主系統方面進行更全面的思考,其中人工智能具有巨大的作用,以確保它們得到適當的考慮,并適當推動對未來威脅、能力發展、培訓、實戰飛行和C2本身的思考。
下一代空域和戰斗管理將需要大數據處理和人工智能來擴展人類的決策空間,同時也有一個潛在的需求,即空軍能夠依靠快速軟件開發來提供基于云的服務解決方案,通過認證的軍事證書安全地訪問。人工智能的最大挑戰是與它的使用相關的控制水平。出于道德、法律和安全的原因,完全不對人工智能施加任何控制是不可行的--然而,施加人類控制超過一定程度,就會有效地減慢其旨在加速的決策過程。目前,無論是在駕駛艙還是在C2中心,人工智能都需要面向為決策者生成和提供選擇,但隨著作戰周期的加快和戰爭的自動化,它的作用將越來越大。
建立快速能力辦公室可能有助于解決采購挑戰,為關鍵任務的前線需求提供更快的周轉,然而,盡管有可能實現快速采購,空軍必須確保他們能夠在沒有特定系統的情況下通過產生開箱即用的解決方案,將現有技術與人類的洞察力和創新相結合。世界上最具創新精神的組織都能有效地利用集體天才的力量,而空軍必須更好地通過培養有利的程序、伙伴關系和心態來培養創新文化,直至最低層。思想沒有等級之分,當空軍領導人創造出創新蓬勃發展的組織環境時,基層人員或非入伍軍官可以成為解決行動挑戰的重要媒介和催化劑。通過扁平化組織,減少等級之間的縱向距離和部門之間的橫向距離,空軍可以實現一個更深入參與的員工隊伍,以更好地收獲創新的好處。
為了提高技術適應性,空軍必須使用通用的開放式架構開發未來的系統和數字解決方案,并更好地將操作人員和最終用戶與開發系統和工具的工程師和技術團隊以及負責采購和維持決策的辦公室聯系起來。通過迭代開發系統和工具來實現更深層次的合作,與操作人員建立共同的所有權,并使修訂工作能夠即時進行。用戶的直接、持續的參與將提高標準化程度--如圖形用戶界面--支持操作人員的培訓,并能確保服務成員為成功做好準備。與工業伙伴和學術界的伙伴關系將對壓縮系統從構思到原型的開發周期起到關鍵作用,確保更快的失敗途徑,并使空軍在技術上的適應性更強。
促進創新文化
空中力量仍然是今天動能效應和空運的最具決定性的能力,但空軍領導人必須確保空中力量在2030年及以后仍然具有相關性。空軍已經嚴重依賴在五個作戰領域的行動能力--然而這些領域都將變得非常混亂和有爭議。一系列的安全挑戰已經加大,變化的速度也在增加,因為潛在的威脅在破壞性技術武器化的推動下加速。空軍將面臨的挑戰是為潛在的安全損失找到解決方案,并保持他們在未來受限和退化的作戰空間繼續作戰的能力。為了變得更有生存能力、更靈活和更有彈性,以威脅為中心的聯合反應將是至關重要的,空軍必須重新定義他們如何與兄弟部門、盟友和合作伙伴進行合作、共存和競爭。空軍將需要在內部變得更加互聯互通,并與姐妹軍種、盟友和合作伙伴一起,在多領域的整合中取得成功,并在未來延伸的戰斗空間中提供協調的效果。
雖然世界各地的空軍確實無法在單一領域充分發揮優勢,更不用說在多領域背景下,但從過去的經驗中可以學到豐富的教訓。歷史上充滿了破壞性的挑戰,空軍必須制定戰略來推動執行MDO所需的轉型變化。這種轉變必須從擴大演示開始加速,以連接整個作戰領域的傳感器、射手和部隊要素。MDO范式廣泛要求平臺和專業人員同時支持各種各樣的作戰要求和聯合指揮官的連接。因此,在向MDO過渡的過程中,人的因素將比技術更具有決定性,如果要實現全面的網絡整合和戰斗云在軍事行動中的實際應用,必須更新培訓、發展和領導人員的方法以反映新的現實和戰爭方式。
空軍需要變得能夠利用流動領域,有效地結合航空、空間和網絡空間,在全球舞臺上采取戰略行動(或發出信號)--在范圍和速度上有更多的選擇和最小的政治風險。
"為了變得更有生存能力、更靈活和更有彈性,以威脅為中心的聯合反應將是至關重要的,空軍必須重新定義他們如何共同運作、共同存在并與兄弟部門、盟友和合作伙伴競爭。
態勢感知是作戰人員的必需能力。一種常見的監視方法是利用傳感器。電子光學/紅外(EOIR)傳感器同時使用可見光和紅外傳感器,使其能夠在光照和黑暗(日/夜)情況下使用。這些系統經常被用來探測無人駕駛飛機系統(UAS)。識別天空中的這些物體需要監測該系統的人員開展大量工作。本報告的目的是研究在紅外數據上使用卷積神經網絡來識別天空中的無人機系統圖像的可行性。本項目使用的數據是由作戰能力發展司令部軍備中心的精確瞄準和集成小組提供的。
該報告考慮了來自紅外傳感器的圖像數據。這些圖像被送入一個前饋卷積神經網絡,該網絡將圖像分類為有無無人機系統。卷積模型被證明是處理這些數據的第一次嘗試。本報告提供了一個未來的方向,以便在未來進行擴展。建議包括微調這個模型,以及在這個數據集上使用其他機器學習方法,如目標檢測和 YOLO算法。