機器學習模型通常在靜態環境中開發,其目標明確且數據集經過精心篩選。然而,實際部署時,這些系統與用戶的交互會同時影響模型學習與用戶行為。此類動態場景引發三大核心挑戰:個性化與非個性化訓練的權衡:數據聚合提升統計效率,但犧牲用戶個性化;用戶行為影響的量化方法:當算法決策以混淆標準評估的方式改變未來數據分布時,如何衡量系統效應;約束條件下的算法設計:突破傳感器限制、樣本稀缺性及隱私問題等系統約束,實現規模化有效個性化。本論文構建了理論模型以形式化聚合-個性化權衡關系,闡明有限數據下個性化提升性能的條件與機制;提出時序感知的觀測因果推斷框架,分離算法干預與混雜因子的效應;開發兼顧系統約束與隱私保護的可擴展算法。這些成果為理解用戶偏好對模型訓練與部署的雙向影響奠定基礎,揭示了學習算法如何與用戶偏好相互塑造的動態規律。在機器學習研究中,模型的構建、訓練與評估通常遵循靜態封閉范式——預設的損失函數、精心篩選的數據集以及嚴格的測試集驗證機制,推動了自然語言處理、計算機視覺等領域的重大突破。然而,這種受控實驗忽略了算法與人類用戶交互時產生的動態效應。實際應用中,機器學習系統的目標往往超越研究中常用的用戶無關性能指標。以推薦系統為例,為滿足用戶群體的多樣化偏好,系統必須提供個性化輸出,由此引發數據聚合與個性化的本質矛盾:聚合數據可提升整體數據可用性,增強模型泛化性能,但會犧牲個性化;個性化輸出能提高用戶滿意度,卻會減少單用戶有效樣本量,限制模型學習能力。盡管已有諸多方法試圖平衡這一矛盾,但何時以及如何權衡二者仍缺乏理論指導。機器學習模型對用戶行為和消費模式的反饋效應同樣未被充分認知。監管機構日益關注算法決策的社會影響量化(如推薦系統如何加劇信息繭房或誘導過度使用)。該問題本質上是因果推斷問題,但傳統觀測因果推斷方法在數字平臺場景中往往失效——用戶歷史交互數據會混淆算法決策與后續行為的因果關系。由于算法基于用戶歷史數據調整輸出,我們難以區分用戶行為變化究竟源于算法干預,還是既有偏好。隨機對照試驗(RCT)雖可解決此問題,但其依賴平臺合作且成本高昂,還存在倫理風險[Kramer et al., 2014]。針對這些挑戰,本論文構建了雙向影響理論模型:聚合-個性化權衡模型:揭示機器學習系統中平衡兩類目標的時機與機制;時序感知因果框架:破解用戶-算法反饋環的混雜效應,為監管者提供無需RCT的社會影響量化工具;約束條件算法創新:克服傳感器限制、樣本稀缺、隱私保護等實際障礙,確保個性化在復雜環境中有效落地。這些理論分析與算法創新共同構成了用戶偏好與機器學習系統雙向塑造的研究框架,為動態交互場景下的模型部署提供新范式。
深度神經網絡在過去十年中雖已在各類機器學習任務中展現出卓越性能,但其在資源受限且動態變化的現實環境中的部署仍面臨挑戰。大規模模型雖精度優異,但其計算需求往往難以滿足邊緣設備與實時應用的要求;輕量級模型雖效率占優,卻在動態域偏移場景下普遍存在魯棒性與泛化能力不足的問題。這一矛盾在移動醫療等隱私敏感、效率優先且可靠性要求嚴苛的應用中尤為突出。本論文提出TempT(時序一致性測試時自適應)方法——一種無需標注數據的測試時自適應(TTA)新范式,通過利用時序連貫性作為自監督信號,對連續輸入的模型預測施加平滑性約束。該方法通過抑制高頻波動,不僅提升了預測穩定性,更顯著增強了模型在未知環境中的性能與魯棒性。該技術在以表情識別、視頻目標檢測為代表的視頻學習任務中效果尤為顯著,因其能有效保持幀間一致性。進一步地,我們創新性地將拓撲數據分析(TDA)中的持續同調理論引入模型行為量化領域,通過分析網絡中間激活的拓撲特征,開發出選擇性自適應策略,使模型能自主判斷何時調整有利、何時維持不變。此外,基于時序一致性的新型正則化技術被提出,可同步提升模型泛化能力與域偏移魯棒性。在AffWild2、SHIFT和CIFAR100P等真實數據集上的實驗表明:TempT不僅性能超越現有TTA方法,更使輕量模型達到媲美大型架構的精度水平(如SHIFT數據集上mAP提升4.7%)。本研究彌合了域適應與自監督學習間的鴻溝,為受限環境下的深度學習提供了兼顧魯棒性、隱私保護與可擴展性的解決方案。
人類智能的標志是通過應用從先前任務中學到的相關知識來應對新任務的能力。因此,人類只需要從新任務中獲取最少的示例就可以完成適應過程。相反,深度學習模型在實現如此顯著的泛化能力方面仍然落后于人類,尤其是在數據有限的新任務上。這樣的學習設置被稱為資源高效學習。在本論文中,我們探索了面向視覺能力深度學習模型的資源高效問題表述。
//dr.ntu.edu.sg/handle/10356/180196
我們首先研究了僅限視覺的神經模型,并將其應用于長尾圖像分類。在長尾圖像分類中,尾部類別的訓練樣本稀缺,而頭部類別的訓練樣本豐富。訓練分布的不平衡使得學習良好的尾部類別表示成為一項困難任務。我們提出了一種插值質心對比學習(ICCL)方法,通過利用豐富的頭部類別樣本,促進尾部類別表示的學習。我們在頭部和尾部類別之間創建插值樣本,并通過一種新的插值質心對比損失優化表示。我們在多個長尾評估數據集上展示了ICCL的有效性。
接下來,我們將研究擴展到視覺語言模型(VLM),它涉及圖像和文本模態。我們研究了零樣本視覺問答(Zero-shot VQA),該任務限制了VLM訪問任何VQA訓練樣本。我們設計了一個模塊化框架PnP-VQA,能夠執行零樣本VQA,并且無需任何訓練。我們利用自然語言和網絡可解釋性技術作為接口,結合多個預訓練模型。具體來說,我們首先通過關注相關的圖像區域生成多個引導問題的圖像描述。然后,我們將這些描述作為上下文輸入到預訓練語言模型中以回答問題。我們的引導問題描述可以捕捉到詳細的視覺屬性,并包含回答詞匯,從而幫助問答模型得到正確答案。我們的PnP-VQA在多個VQA基準測試中達到了最先進的結果。 最后,我們調查了VLM的零樣本評估。VLM在零樣本設置下的測試任務表現反映了它們的真正泛化能力,這對于我們公平地比較不同VLM并追蹤它們的進展至關重要。當一個測試任務與VLM的訓練任務有較高相似性時,該VLM的表現可能優于其他沒有這種相似性的VLM。因此,我們進行遷移學習實驗,研究訓練任務和測試任務之間的任務相似性,這在評估VLM時往往未被考慮。此外,我們通過對遷移性能進行因子分析,直接從數據中發現潛在的視覺語言技能。我們證明了因子分析是一種有效的數據驅動方法,可以識別合理卻令人驚訝的視覺語言技能。 此外,我們通過提出一個新的基準測試OLIVE,解決了當前缺乏關注VLM在實際環境中評估的視覺語言基準問題。OLIVE模擬了來自用戶對VLM的多樣化查詢,旨在真實的應用場景中進行評估。
近年來,深度學習的進展在很大程度上得益于數據和計算資源的增加。盡管數據的豐富性使模型在某些領域表現良好,但在實際應用中(例如醫學領域),數據往往稀缺或難以收集。此外,也存在將大型數據集視為許多相關的小數據集的情境,其中一個小數據集相關任務的數據可能不充足。同時,人類智能通常只需少量樣本即可在新任務上表現出色,這強調了設計數據高效AI系統的重要性。本論文探討了應對這一挑戰的兩種策略:元學習和對稱性。
元學習將數據豐富的環境視為許多小型、獨立數據集的集合。每個小數據集代表一個不同的任務,但它們之間存在潛在的共享知識。利用這種共享知識可以設計出在相似領域中高效解決新任務的學習算法。相比之下,對稱性是一種直接的先驗知識。通過確保模型的預測在輸入發生任何變換后仍保持一致,這些模型可以提高樣本效率和泛化能力。
在后續章節中,我們提出了一些旨在提高深度學習系統數據效率的新技術和模型。首先,我們展示了基于條件神經過程(CNPs)的編碼器-解碼器風格的元學習方法的成功應用。其次,我們引入了一類新型的表達力強的元學習隨機過程模型,這些模型通過在函數空間中堆疊神經參數化的馬爾可夫轉移算子序列構建而成。最后,我們提出了群等變子采樣/上采樣層,以解決傳統子采樣/上采樣層中等變性的喪失問題。利用這些層可以構建端到端的等變模型,從而提升數據效率。
//ora.ox.ac.uk/objects/uuid:98de960f-f7eb-4437-8c37-174b82374b21
傳統的機器學習方法通常依賴于最大似然估計(MLE),因為它易于實現并且與KL散度最小化等價。然而,僅通過最大化似然訓練的模型通常缺乏在實際部署中所期望的某些特性,例如不確定性的量化、對分布外輸入的魯棒性或遵守隱私約束。隨著機器學習模型的廣泛部署,這些重要特性比以往任何時候都更加必要。不幸的是,能夠提供這些特性的方法往往難以在當今的大型模型和數據集上實現。 在本文中,我們提出了幾項貢獻,以提高超越最大似然方法的可行性。首先,我們在多個領域改進了貝葉斯機器學習。這使我們能夠恢復感興趣參數的完整后驗分布,而不僅僅是最大似然方法提供的點估計。其次,我們在序列任務中實現了新的訓練方案:強化學習和序列建模。在強化學習的情況下,這使我們能夠開發不泄露私人信息的獎勵最大化策略。在序列建模的情況下,我們實現了新的散度方法,從而改進了文本生成。 我們的貢獻使我們能夠將分布感知的方法擴展到多個領域,并實現最先進的結果,包括恢復因果圖的后驗分布、在模擬機器人任務中開發隱私感知算法,以及使用具有數十億參數的語言模型生成類人文本。
傳統的機器學習方法通常依賴于最大似然估計(MLE),因為其實現簡單且等價于最小化KL散度。然而,僅通過最大化似然進行訓練的模型往往缺乏在實際應用中所期望的某些特性,如不確定性的量化、對分布外輸入的魯棒性,或遵守隱私約束。隨著機器學習模型被越來越廣泛地部署,這些重要特性變得比以往任何時候都更加必要。不幸的是,能夠提供這些特性的方法在當今的大模型和大數據集下通常難以實現。
在本論文中,我們提出了若干貢獻,以提高超越最大似然方法的可操作性。首先,我們在多個領域改進了貝葉斯機器學習。這使得我們能夠恢復感興趣參數的完整后驗分布,而不是最大似然方法所給出的點估計。其次,我們在順序任務中實現了新穎的訓練方案,包括強化學習和序列建模。在強化學習的案例中,這使我們能夠開發不會泄露私人信息的獎勵最大化策略。在序列建模的案例中,我們實現了新的散度函數,從而改進了文本生成。
我們的貢獻使得分布感知方法能夠擴展到多個領域,取得了最新的研究成果,包括恢復因果圖的后驗分布、在模擬機器人任務中開發隱私保護算法,以及使用數十億參數的語言模型生成類似人類的文本。
在我的博士學習期間,機器學習領域取得了巨大的進展。然而,隨著這些模型在越來越廣泛和重要的應用中部署,越來越多的關注點集中在它們的局限性上。盡管許多當前的模型在某些領域可以實現超越人類的表現 [SHM+16],它們仍然存在一些人類不會表現出的缺陷。這些問題包括缺乏對分布外數據的魯棒性 [SZS+14]、缺乏對不確定性的考慮 [GPSW17],以及私人信息的泄露 [KR19]。
在本論文中,我們的目標是開發解決這些缺陷的方法,涵蓋多種機器學習問題和應用領域。特別是,我們首先專注于改進貝葉斯機器學習,這是一種在參數估計中超越最大似然估計的傳統方法。在后續部分中,我們在強化學習和序列建模中引入了替代的訓練方法。正如下文所討論的,這些方法也可以看作是超越最大似然的訓練方法。
最大似然目標無疑是今天機器學習中最常用的目標函數,是分類、參數估計和生成建模中占主導地位的方法。簡單來說,給定一個數據集 DDD 和一個由參數 θ\thetaθ 參數化的概率模型 PθP_\thetaPθ,為數據集中的元素分配概率,最大似然目標尋找: θ?=arg?max?θEx~D[log?Pθ(x)]. 然而,最大似然目標并不總是機器學習從業者的顯而易見的選擇。在早期的分類研究中 [LeBB+98],非基于似然的目標函數常常被使用。在早期關于神經網絡機器學習的教材中 [Bis95],提出了幾種損失函數,包括平方和目標。實際上,在2010年代中期,生成對抗網絡 [GPM+14] 開始采用非似然損失。然而,最大似然目標逐漸成為今天機器學習中的主要目標函數。其原因有很多。首先,MLE方法在概率論上非常有依據,因為它與最小化KL散度是等價的。
DKL(PD∥Pθ) = Ex~D [log PD(x) ? log Pθ(x)] = ?Ex~D [log Pθ(x)] + C, 其中PD是數據集D的經驗分布函數(或基礎的群體分布),C是一個不依賴于θ的常數。因此,最大化似然等價于最小化數據分布與由θ參數化的分布之間的KL散度。其次,MLE方法通常非常容易優化。最大化似然只需要從數據集中采樣并計算對數似然的梯度,而這通常可以通過現代自動微分工具包輕松實現 [BFH+20, PGM+19]。相比之下,最小化數據分布與參數化分布之間的其他散度(例如χ2散度)通常要求對數據分布的密度有詳細了解。這種情況通常是未知的,而通過學習分類器近似這種密度的方法(如生成對抗網絡)則需要與θ一起對分類器參數進行對抗性訓練,導致訓練不穩定。
最后,最大似然通常與下游任務目標高度一致。例如,在ImageNet發布后變得流行的分類任務中 [DDS+09],最大化正確標簽的概率正是訓練分類模型的目標。 然而,最大似然目標并不總是最合適的選擇。不幸的是,采用非基于似然的目標通常是具有挑戰性的。在現代機器學習中,方法的可擴展性和優化的便捷性是所有方法的重要考慮因素。我們面臨的挑戰是:找到超越最大似然方法的技術,同時保持數據效率、易于通過梯度下降優化,并具備計算擴展性。為了解決這個問題,我們利用了一些在本論文中提出的關鍵技術:變分推理用于神經函數逼近下的貝葉斯推斷,連續松弛和路徑梯度估計器用于減少優化中的方差,以及將問題重新參數化為更易處理的等價形式。 本論文分為兩部分,但有一個共同的目標:開發超越典型MLE方法的技術。在第一部分中,我們研究了貝葉斯機器學習的改進,尤其在數據較少的情況下,由于數據集的有限性,關于θ的值可能存在相當大的不確定性。首先,我們開發了一種使用正則化流計算高維積分的新方法,并將其應用于計算貝葉斯定理中的歸一化函數。然后,我們將變分推理應用于因果發現問題,解決了在復雜有向無環因果圖集中構建后驗分布的挑戰。 在第二部分中,我們研究了在序列任務中超越最大似然的替代訓練方法。首先,我們研究了在強化學習中執行隱私約束的問題。這需要控制策略生成的軌跡分布,以確保它們不會泄露有關私有狀態變量的信息。最后,我們解決了基于序列數據的自回歸模型訓練問題。我們將任務重新表述為模仿學習任務,從而可以有效地最小化與數據分布的不同散度。超越MLE方法還為生成過程提供了額外的靈活性,我們通過允許回溯來增強生成過程。
在參數估計的設定中,我們有一個數據集D,并希望推斷感興趣的參數θ。例如,我們可能有一組(x, y)對,并希望推斷可能的線性關系的斜率,在假設數據生成y = θx + ?(其中? ~ N(0, σ))的情況下。最大似然估計給出了使Ex~D [Pθ(x)]最大的θ值,也可以寫作P(D|θ)。實際上,我們通常想要得到的是P(θ|D),即在給定數據集的情況下θ的后驗概率。根據貝葉斯定理,我們知道P(θ|D) = P(D|θ)P(θ)/P(D),其中P(θ)是θ的先驗分布,P(D)是歸一化常數。只要θ可以從數據中識別,并且先驗分布對θ的真實值有密度,那么在足夠的數據情況下,最大似然解將收斂于后驗分布的眾數。然而,在數據有限的情況下,得到完整的后驗分布通常非常重要,而不僅僅是最大似然值。后驗分布可以指示對θ估計的不確定性,這在做出最優決策時非常有用。 然而,精確計算后驗分布通常是不可行的,因為它需要計算歸一化常數P(D) = ∫ΘP(D|θ)P(θ)dθ。當θ的維度超出適度范圍時,由于維度詛咒,進行這種積分變得極其困難。在論文的第一個貢獻中,我們通過隨機采樣域的子集并估計每個子集的積分值來解決這個問題。雖然這是無偏的,但這種方法在典型目標函數下具有極高的方差,因為它們集中在域的一個小體積內。我們通過使用正則化流解決這個問題,正則化流是一種靈活的變換家族,可以在保持體積的同時在空間之間映射。這使我們能夠學習一個可逆映射,將[0, 1]d映射到積分域上,構造該映射,使得在[0, 1]d上的均勻分區通過正則化流映射后在積分域上生成具有大致相等積分量的(非均勻)分區。這大大降低了估計器的方差。通過改變分區的數量,我們可以在重要性采樣估計器(在無限多的小分區的極限下)和變分下界(在單個分區的極限下)之間平滑插值。
在這一部分的第二個重點中,我們將變分推理應用于從數據中推斷線性高斯結構方程模型(SEM)的問題。結構方程模型是一種特定類型的因果圖,配備了因果解釋的有向邊。在線性高斯SEM中,條件概率分布是高斯分布,均值由圖中變量的父節點的線性函數給出。盡管這個設定受到了限制,但在這種設定中進行變分推理仍然具有挑戰性。主要問題是網絡必須是一個有向無環圖(DAG),這是在鄰接矩陣空間中的一個復雜約束。我們通過將DAG權重矩陣重新參數化為P LP?來解決這個問題,其中L是下三角矩陣,P是置換矩陣。這使我們能夠應用關于置換的松弛的最新研究 [MBLS18]。我們發現我們的方法能夠恢復與真實數據生成圖非常相似的圖,并且表現優于基線方法。
在論文的第二部分中,我們從序列建模和強化學習(RL)設定的角度,探索了超越最大似然的訓練方法。如上所述,最大似然等價于KL散度最小化。實際上,正如 [Lev18] 中所描述的,我們可以將傳統的強化學習目標視為在熵獎勵的條件下最大化回報的過程,這等價于最小化由策略引發的分布與按軌跡獎勵加權的分布之間的KL散度。
在這一部分的第一個章節中,我們研究了在滿足信息披露約束的情況下最大化回報的任務。例如,參與管理CEO日程的算法可能擁有私人信息,在安排會議時不應泄露這些信息,或者游戲策略可能包含一些應該保密的有用信息。這表現為對對手從策略行動中推斷私有信息的能力的約束——為了隱藏私有信息,可能有必要采取次優行動(從減少回報的角度)。我們將其表述為對私有狀態變量與策略行動之間互信息的約束,并使用對抗訓練的批評者來試圖發現這些私有信息。我們進一步通過引入可微分模擬器擴展了這一方法,使我們首次能夠將私有強化學習擴展到高維模擬機器人任務。
在這一部分的最后一章中,我們解決了自回歸序列建模的傳統問題。通常這被表述為最大似然問題:對于由一系列標記構建的序列x1,目標是最大化似然PL1 log Pθ(xi|x<i)。這等價于最小化數據的經驗分布與由自回歸模型Pθ引發的分布之間的KL散度。然而,越來越多的模型用于生成任務,即自回歸地采樣一系列標記,如x1 ~ Pθ(·),x2 ~ Pθ(·|x1),依此類推。如果模型Pθ與基礎數據分布完全匹配,這將導致從真實的序列分布中采樣。然而,對于不能完全匹配數據分布的有限容量模型,最大化似然不一定會導致最理想的自回歸序列分布。我們將任務重新表述為模仿學習任務,從而能夠有效地最小化與數據分布的不同散度。此外,超越MLE方法為生成過程提供了額外的靈活性,我們通過允許回溯來增強生成過程。我們將該方法擴展到具有超過70億參數的Llama-2-7B語言模型 [TMS+23],并且性能優于可比方法。
在機器學習領域,我們致力于開發能夠學習的算法,即在沒有被特別編程完成某項任務的情況下,積累關于如何完成任務的知識。在這篇論文中,我們從兩個不同的角度來探討學習:我們可以應用高效機器學習者的領域以及我們可以通過更有效地解決底層優化問題來改進學習的方式。機器學習方法通常非常依賴數據。雖然現代機器學習在解決實際問題方面取得了巨大成功,但這些成功案例主要局限于有大量相關領域數據可用的設置。元學習領域旨在通過創建“學會如何學習”的模型(即能夠在給出相對較少的示例時迅速適應新任務的模型)來開發具有改進的樣本效率的模型。在本論文中,我們關注使用超網絡進行任務適應的攤銷元學習者,這些學習者成本非常有效,只需通過超網絡進行一次前向傳播即可學會如何執行新任務。我們展示了這些攤銷元學習者可以以超出其在小樣本學習設置中的典型用途的新方式來利用。
我們針對攤銷元學習者開發了一種基于集合的中毒攻擊,這種攻擊讓我們能夠定制一組協同作用的輸入,用作適應新任務的訓練數據(即作為支持集)時,這些輸入能夠欺騙系統的學習算法。這樣共同制作的對抗性輸入可以協同操縱分類器,對于具有可微適應機制的攤銷學習者來說,這種輸入尤其容易計算。我們還在可解釋性領域利用攤銷學習者進行“數據集調試”,在此過程中,我們開發了一種稱為Meta-LOO的數據價值或樣本重要性策略,可用于檢測噪聲或分布外數據;或者將一組示例提煉到其最有用的元素。
從我們的第二個角度看,機器學習和優化是密切相關的;實際上,學習可以被表述為以模型參數為目標的訓練損失最小化問題——盡管實際上我們還需要我們的算法具有泛化能力,這不是更廣泛優化的關注點。選擇的優化策略影響了算法學習的速度以及找到的解決方案(即模型參數)的質量。通過研究優化,我們可以改善我們的模型的學習效果和速度。
在這篇論文中,我們采取了雙管齊下的方法來實現這一目標。首先,我們開發了一種在線超梯度基礎的超參數優化策略,通過支持廣泛的超參數同時保持可擴展性,改進了現有的最佳技術。值得注意的是,我們的方法支持優化算法的超參數,如學習率和動量,這是文獻中類似方法不支持的。其次,我們開發了一種適用于深度學習的非凸損失景觀的二階優化策略。我們的算法近似了一個鞍點是排斥而非吸引的鞍點自由版本的Hessian,以一種適用于深度學習問題的方式。
本論文的核心目標是通過提高深度學習模型的標簽和訓練效率來增強深度學習的實用性。為此,我們研究了基于信息論原理的數據子集選擇技術,特別是主動學習和主動采樣。主動學習提高了標簽效率,而主動采樣提高了訓練效率。監督式深度學習模型通常需要大量的帶標簽數據進行訓練。標簽獲取可能既昂貴又耗時,且訓練大型模型資源密集型,這限制了其在學術研究和“大科技”公司之外的應用。深度學習中現有的數據子集選擇方法通常依賴于啟發式方法或缺乏一個原理化的信息論基礎。相比之下,本論文檢查了數據子集選擇的幾種目標及其在深度學習中的應用,力求采用一種由信息論啟發的更原理化的方法。
我們首先在單次前向傳播的深度神經網絡中區分了認知不確定性和隨機不確定性,這提供了有用的直覺和洞見,關于不同形式的不確定性及其對數據子集選擇的相關性。然后,我們提出并研究了在(貝葉斯)深度學習中進行主動學習和數據子集選擇的各種方法。最后,我們將各種現有和提出的方法與在權重或預測空間中信息量的近似聯系起來。
支撐這項工作的是一個原理化且實用的信息論量符號,包括隨機變量和觀察到的結果。這篇論文展示了從統一視角出發工作的好處,并強調了我們的貢獻對深度學習實際應用潛在影響的可能性。
模型無關的特征重要性度量對于揭示不透明或“黑箱”機器學習模型的任務至關重要。這種模型在高風險決策環境(如醫療保健或銀行業)的激增,要求開發靈活且可信的方法來解決這個問題。由于沒有地面真實的特征重要性進行比較,各種競爭方法提供了不同的方法和/或理念,通常都聲稱自己更優越。最近一些最受歡迎的方法是從合作博弈論的工具進行適應,這些工具在獎勵或成本分享問題中被使用。在本文檔中,我們報告了這類特征重要性方法的最近進展。特別是,我們討論了一個使用Shapley值的“數據為中心”的群體(cohort)-基礎框架,用于模型不可知的局部特征重要性。我們提出了一個主要的重要性度量,并探討了更適合特定用例或數據環境的該方法的幾種適應。我們分析了這些方法的屬性和行為,并將它們應用于包括選民注冊和累犯數據在內的一系列合成和實際問題設置。然后,我們提出并討論了局部重要性聚合和特征重要性評估的新方法。
當在非結構化和半結構化環境(如倉庫、住宅和零售中心)中操作時,機器人經常需要從雜亂的箱子、貨架或桌子中交互式地搜索和檢索特定的對象,這些對象可能部分或完全隱藏在其他對象后面。我們將此任務定義為機械搜索,其目標是在盡可能少的操作中檢索到目標對象。在這些場景中,由于傳感器噪聲、遮擋和未知物體特性的存在,魯棒地感知和操作目標具有挑戰性。由于這些感知和操作挑戰,從數據中學習端到端的機械搜索策略變得非常困難。相反,我們將機械搜索策略分成三個模塊,一個感知模塊從輸入觀察中創建一個中間表示,一組低級操作原語,以及一個高級操作選擇策略,該策略根據感知模塊的輸出迭代選擇要執行的低級原語。我們探索了在操作原語方面取得的進展,如推和抓取,帶有未知對象的場景分割和占用分布預測,以推斷目標對象的可能位置。此外,我們證明了使用模擬的深度圖像或點云可以為感知網絡快速生成大規模的訓練數據集,同時允許它們泛化到真實世界的對象和場景。結果表明,在模擬和物理實驗中,與基準策略相比,集成這些組件可以產生一個高效的機械搜索策略,提高15%的成功率,并減少提取目標對象所需的操作次數。
深度神經網絡(DNNs)使計算機能夠在許多不同的應用中脫穎而出,如圖像分類、語音識別和機器人控制。為了加快DNN的訓練和服務,并行計算被廣泛采用。向外擴展時,系統效率是一個大問題。在分布式機器學習中,高通信開銷和有限的設備上內存是導致系統效率低下的兩個主要原因。
//www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-83.html
本文研究了在分布式機器學習工作負載下,在數據和模型并行性方面減輕通信瓶頸并實現更好的設備上內存利用的可能方法。
在通信方面,我們的Blink項目緩解了數據并行訓練中的通信瓶頸。通過打包生成樹而不是形成環,Blink可以在任意網絡環境中實現更高的靈活性,并提供近乎最佳的網絡吞吐量。為了消除模型并行訓練和推理過程中的通信問題,我們從系統層上升到應用層。我們的sensAI項目將多任務模型解耦到斷開的子網中,其中每個子網負責單個任務或原始任務集的子集的決策制定。
為了更好地利用設備上的內存,我們的小波項目有意增加任務啟動延遲,在加速器上的不同訓練任務波之間交錯使用內存峰值。通過將多個訓練波集中在同一個加速器上,它提高了計算和設備上的內存利用率。